
PHYSICAL REVIE%' C YOLUME 45, NUMBER 4 APRIL 1992

Shape diffusion in the shell model
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The diffusion coefBcient for quadrupolar shape changes is derived in a model based on the mixing
of static Hartree-Fock configurations by the residual interaction. The model correctly predicts the
width of single-particle configurations. %'e find a diffusion rate depending on temperature as T,
consistent with at least one other theoretical estimate. However, our diffusion rate is an order of
magnitude lower than two values extracted from data.

PACS number(s): 21.60.Cs, 21.10.Gv

I. INTRODUCTION

How fast does a highly excited nucleus change its
shape7 This question is important for the understand-
ing of nuclear reactions of various kinds, including fission
and the emission of statistical photons in the giant dipole
region. It appears that highly excited nuclei have a hin-
drance in their fission decay due to the shape dynamics [1,
2]. Also, the statistical giant dipole photons should have
a spectrum reflecting the range of nuclear shapes present
in the ensemble, provided that shape changes take place
slowly; if the changes are rapid, the width of the giant
dipole is decreased by the mechanism of motional nar-
rowing [3, 4].

Given this motivation, it is of interest to understand
the theory of shape dynamics and calculate from basic
interactions the parameters of the theory. Much work
has been done on this subject —we can only allude to
it. Among the attempts to construct a theory, there has
been significant work based on linear response theory [5,
6], based on damped diabatic motion [7], and based on
perturbation theory with respect to adiabatic motion [8].
In general, other workers have focused on the calcula-
tion of friction in a dynamical equation for the collective
motion. A diffusion rate can then be deduced from the
Einstein relation.

Our point of view here is quite different. We shall avoid
completely a discussion of friction or collective motion,
and concentrate exclusively on the diffusion in the nu-
clear shape degree of freedom. Our basic assumption-
one certainly open to question —is that the highly ex-
cited nucleus can be described as an incoherent mixture
of Hartree-Fock configurations at a given energy. We
thus ignore single-particle motion, which can only come
in indirectly through the changes in the single-particle
wave functions in different Hartree-Fock configurations.
The assumption of incoherence requires high excitation
energy because the pairing interaction induces strong co-
herence between configurations near the ground state.

More problematic is our assumption that self-consistent
Hartree-Fock configurations exist at high excitation. We
shall work in a restricted model space, the Nilsson model,
where this is true, but in an unrestricted space our as-
sumption may not be valid.

Since we assume a basis of static Hartree-Fock solu-
tions, the dynamics comes entirely from the residual in-
teraction. This means that only matrix elements chang-
ing the orbit of two particles simultaneously are relevant.
Matrix elements between configurations with only one
particle orbit changed are zero by the Hartree-Fock con-
dition. The rate at which a state i is depopulated may be
calculated from Fermi's "golden rule" if the level density
is high enough. This reads

F =
h ).[('[ -.a.vlf)I'b(&g —E*), (1)"f

where the sum is over Hartree-Fock states f differing by
the orbital assignment of two particles. Each Hartree-
Fock state has its own shape, so the shape will change by
this process. %'e illustrate the model in Fig. 1, showing a
potential energy surface in some deformation coordinate.
The static Hartree solutions are shown by dots. In a con-
strained calculation, each dot would become a parabola,
because the constraining field changes the energy and
deformation of the state. The decay of the state i is il-
lustrated by the arrows in the figure. The final states f
will not differ greatly in deformation from i because only
two particles have changed orbit.

This picture leads directly ta a diffusion madel for the
shape-changing dynamics. Let us remind ourselves how
the diffusion equation is derived from a discrete-basis dy-
namics. In Fig. 2 we show a set of discrete states, each
connected to its immediate neighbors by a rate equation,

dP; = —2I'P; + I'P; + I'P;
df

= ra~'&P

The right-hand side is proportional to the second differ-
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FIG. 2. Model of probability flow along a linear chain of
discrete states, which leads to the dift'usion equation.

II. SIMPLIFIED THEORY OF Dp

FIG. 1. Schematic view of our diR'usion model. The dots
represent self-consistent Hartree states, characterized by an

energy E and a quadrupole moment q. The potential energy
surface, indicated by the broken line, forms the lower bound-

ary of the region containing these states. A given state, shown

by the larger dot, mixes with others through the residual in-

teraction, as indicated by the arrows. In each interaction step,
the quadrupole moment changes by only a small amount.

ence operator on P;(t), as shown on the second line. If
we have a continuous coordinate associated with the in-
dex i, the second difference is approximately the second
derivative times the square of the step size,

2PP
)

P

In our situation we do not have a fixed step size, but
the obviously relevant quantity is the transition rate
weighted by the square of the jump in deformation. Thus
our model for the diffusion will be the classical diffusion

equation,

BP ct2P

at
=

pap2

with the difFusion coefFicient Dp given by

Dp = ) (Pi PJ ) l(i I~residual lf) I ~(~g @i)

(2)

The quantity P = P(P, t) is the probability density func-
tion for the quadrupole distortion P at time t.

In the remainder of this paper we shall try to estimate
Dp and find its dependence on mass number and exci-
tation energy. We shall begin in the next section with
some rough est;imates. In the third section we give some
results for a microscopic calculation of Eqs. (1) and (2)
using a 6-function residual interaction. We then discuss
other theoretical estimates, making use of the Einstein
relation, and also compare with numbers extracted from
experimental data.

To estimate Dp from Eq. (2) we shall separately cal-
culate the lifetime of the Hartree configurations and the
mean-square change in quadrupole deformation when two
particles change their orbits. We first consider the life-
time question. Empirical information is available about
the lifetimes of single-particle states at moderate exci-
tation. From particle transfer reactions we know that
a state at about 8 MeV excitation has a width in the
range 3—4 MeV [9]. The energy dependence of the width
is predicted to be quadratic in the Fermi gas model; a
phenomenological parametrization is

2E'ex

'20M V

where E,
„

is the excitation energy of the state. To apply
this to the multiparticle-multihole configuration repre-
senting a member of a finite-temperature ensemble, we
recognize that the smearing of the Fermi surface by the
finite temperature opens phase space to transitions in a
way similar to the excitation energy in a simple config-
uration. The amount of phase available at temperature
T is related to an excitation energy above a cold Fermi
sphere by E,„=xT [10]. Thus, a temperature of 2.5
MeV is equivalent to an excitation energy of nearly 8
MeV, and by Eq. (3) we expect the particle to have a
decay rate of about 3—4 MeV.

We have two arguments to relate the single-particle
width to the decay rate of the multiparticle-multihole
configuration. The first argument compares the final
state phase space of the single-particle decay to that of
the states in a thermal ensemble. The particle decays to
two-particle —one-hole configurations whose level density
is given by

(' dn
P2p —» =

l( ~

El' 2

where dn/dc is the single-particle level density of neu-

trons or protons. We assume here that the main inter-
action responsible for the damping is the neutron-proton
interaction. The corresponding level density from a ther-
mal ensemble may be calculated from the integral

P&hermai = dnqdn2dn3dn4b ~g + ~g —~3 —e4 $ 2 1 3 1 — 4

(dn)"
T dzidz2dzsdz4b(zi + z2+ z3+ z4)f(zi)f(z2)f(*s)f(z4)(dc)
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where f(z) = 1/(1+ e ) is the Fermi distribution func-
tion. The last integral can be evaluated exactly [ll] to
give

2z' (dn't
Ptbermal— 3 (de) (4)

=-4d„"rr.,(E) .

In accordance with the previous discussion, we assume a
quadratic dependence of I' on E and evaluate it at E =
xT. For fixed energy, the single-particle width is roughly
independent of A, while the density of states factor is

proportional to A. Thus the A and T dependence of the
width of a configuration is expected be

Comparing the two phase spaces, we express the width
of the thermal configuration as

PthermalI thermal —I sp
Psp

single-particle width should be evaluated at E 8 MeV.
This single-particle level density is given by dn/dc =
3A/4e~ 1.8 MeV ~, where e~ 32 MeV is the Fermi
energy. The result is

r&q,„~s(3.2 MeV)(1.8 MeV )(2.5 MeV)

=19 MeV

Our next task is to estimate the average change in
deformation that occurs when two particles jump or-
bits. We shall restrict ourselves to quadrupolar defor-
mations and examine the distribution of quadrupole mo-
ments of the single-particle orbitals. If we assume no
correlation between the change of orbital occupancy and
the quadrupole moment, the mean-square change in the
valence particle quadrupole moment is the sum of the
mean-square dispersions of the single-particle moments.
To estimate the dispersion in single-particle quadrupole
moments, we use the harmonic oscillator model for the
orbits. The mass quadrupole operator is defined

I'(x AT (6)
Q=) (2z; —z; —y;)

The identical-particle interaction will of course also con-
tribute to the diffusion. It is in fact the pairing interac-
tion that is mainly responsible for nuclear shape dynam-
ics at very low excitations. However, due to the nature of
the nuclear force, the identical-particle interaction should
be much less important for the process we are consider-
ing. The important interaction for off-diagonal matrix
elements is in the nucleon-nucleon s-wave channel. By
the Pauli principle, nn or pp pairs with parallel spins can-
not be in relative s states, and so the contribution from
identical-particle pairs is reduced by a factor of 2. In ad-
dition, as we shall see in the next section, the strength of
the identical-particle interaction is also smaller.

The second argument to relate the widths is to esti-
mate the number of particles and holes in the thermal
ensemble and to multiply the single-particle width by
this factor. The average number of particles is easily de-
termined by integrating the Fermi function over positive
energies,

OO 1
N = dnP

0 e(~ ~~)I& + ]

A similar equation applies for the number of holes. The
integral is converted to one over energy which can be
evaluated exactly, and we find for the total number of
neutron quasiparticles

dn
Np + Nh: 2 ln 2 T

dc

This is multiplied by the single-particle decay rate at
an excitation energy E = xT to get the decay rate of
the neutron quasiparticles. Since the protons only inter-
act with the neutrons in this model, we do not need to
consider them explicitly. The result of this estimate is
practically identical to Eq. (3).

As an example, we consider the nucleus 6Ge at a
temperature of 2.5 MeV. Then according to Eq. (5) the

and the mean-square dispersion in a shell with N quanta
of excitation is

t' h i N(N+3)
(~j 2

Core polarization increases this moment by roughly a
factor of 2 and the mean-square dispersion by a factor
of 4. We relate this to the dispersion in deformation
parameters P using the relation for near-spherical shapes,

(Q) = 2/ A(r')P

Thus dispersion in P is given by

((p p )z)
1«(q.p')
5Az(, z)z

= 6.8N(N+ 3)A-«' = 9.0A-',
where we have included a factor of 4 for the number of
orbitals and another factor of 4 for the core polarization
enhancement. In the last part of the equation we took
Tuu = 41/A ~ and Ro ——1.2A~~s fm Multipl. ying this
dispersion by the width, the diffusion coefficient is then
given by

9.0r, (E)T 170Ts
Any hA~~z (8)

with E = m'T. Returning to our numerical example of
Ge, the diffusion coefficient is estimated as

Dp(A = 76, T = 2.5 MeV) = 28 keV/h (9)

its matrix element in an oscillator state with quantum
numbers (n~, ns, n, ) and oscillator frequency ur is given
by

h
(Q,p) = ) (2n„—n; —n„;)f7'
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III. MICROSCOPIC CALCULATION OF Dp TABLE I. Parameters for Nilsson Hamiltonian [Eq. (10)]
used in the calculation.

A. ¹ilsson model calculation

Our microscopic determination of Dp is based on the
evaluation of the transition matrix element in Eq. (2)
with Nilsson single-particle states and a simple b-function
residual interaction. We have used a standard single-
particle Nilsson Hamiltonian [12],

Nucleus

76G
110S
15SE

Protons

0.0700
0.0637
0.0670

0.390
0.600
0.540

Neutrons

0.0730
0.0637
0.0670

0.290
Oa420

0.420

h 'I7 1+-rn) ~ z
2m 2 i=1

—~h~p 2l s+ p, (l —(I )N)

with the Hill-Wheeler parametrization [13]

5
~, = ~pexp — pcos

~ p ——j ~4~ (, 3)
and the frequencies

h~p ——(41 MeV)A I
1+—le —Z&

3 A

Cartesian axes. The eigenvectors of Eq. (10) are written

4t. (x) = ) .M(, .0:.(*)4."„(v)M',(z)x.
n, s

where the g's are harmonic oscillator wave functions, the
y's are sPinors for j = ~z, and Mt.„,—(ns~k) is the diag-
onalizing matrix. Thus we can write the field annihilation
operators as

a(x) = ) Pt. (x)at.

for protons (neutrons). Here (I ))v is the expectation
value of l in the corresponding major oscillator shell.
Table I lists the values of K and p used in our calculation.

The Hamiltonian is diagonalized in the deformed har-
monic oscillator basis ~ns), where n = (n, nz, n, ) are
the harmonic oscillator quantum numbers along the three

I

where ap is t,he annihilation operator for the orbit k.
We next calculate the matrix elements appearing in

Eq. (2). The neutron-proton interaction must be treated
separately from the identical-particle interaction because
of the antisymmetrization. In both cases the matrix ele-
ment can be written

(f)vresidua) (&) = ve ) (f~~ (xj xj')~&)
el )2

= v, d x d x' a x a x' b~ ~ x —x' a x' a x

=v, ) (f~a', a", a„a„(i)f dvxg", (x)p", (x)p (x)p„(x)
k lmn

where v, = v„&,v„„is the neutron-proton or identical-particle interaction strength. (For simplicity, we have not
explicitly written the spin dependence of the residual interaction; it will be discussed shortly. ) Since the initial and
anal states have different deformations, the self-consistent single-particle wave functions are not the same, and we

distinguish with a prime the Fock operators and wave functions in the two bases. Equation (ll) neglects the imperfect
overlap between spectator particles. It turns out that the deformation changes are small enough so that the difference
between primed and unprimed orbitals can be neglected in the above equation.

The term following the bracket in Eq. (11) is expanded as follows:

kgk~l gl~~ g rn~ng n

¹Mt. „a,aM, „i,&M

X I~ k ~ I ~ m ~ n I~ k ~ I ~ tn ~ n I~ k ~ I ~ rn ~ n Sg k ~ l ~ tn g n )x x a m y y y y z s z s

where I is the integral of four harmonic oscillator wave
functions (see the Appendix) [14]. The spin structure of
the matrix element, contained in the factor S, depends
on whether rn and n (or k and I) are orbits of identical
particles. We assume no spin dependence in the neutron-
proton interaction, and pure singlet interaction between

identical particles. Then S is given by

', b, k, b, i, for np configurations
S, i.-.a. = I 2(1 —b, a, i)(1 —b. ..)

for pp and nn configurations

We also need to calculate the change in quadrupole
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q = ) np(k(Q(k) (12)

where the ny are the occupation numbers for the orbitals.
The oscillator frequencies should of course be adjusted to
minimize the total energy of the configuration. Instead
of this, we change the oscillator frequencies to make the
expectation the quadrupole part of the momentum tensor
vanish: P& ny (k

~
IC q ~

k) = 0, where

(klI~q)k) = ).[M~, .I [2h4.(». +1)—h4 (» +1)

—h~„(2n„+1)] (13)

and Kq = h (2V'~ —Vz —T2)/2m. This procedure
provides a core-polarization contribution to the total
quadrupole moment which comes out very similar to the
simple estimate of a factor of 2 increase over the valence-
par ticle contribution.

We examine the transitions for an ensemble of initial
configurations chosen from the canonical ensemble using
the Metropolis method. We will also examine the behav-
ior as a function of the energy of the initial configuration,
in which case they may be regarded as representatives of
the microcanonical ensemble. The b function in Eq. (2)
is represented by

b(E E )
~(+Emax —IEI —@I)

(14)f '

2gg
where 0(E) is the step function. This completes our dis-
cussion of the calculation of the quantities appearing in
Eq. (2).

B. Determination of the interaction strength e

In order to find I' and Dp we must choose the strength
of the interaction, v„for the np and pp/nn matrix ele-
ments. The most fundamental point of view would be to
take the interaction from effective Brueckner interaction
based on a realistic two-nucleon potential. One could also
take a more phenomenological approach and adjust the
interaction to fit I', thus only demanding that the model
predict the ratio of Dp/I'

Let us first discuss the more fundamental approach.
The Brueckner Q-matrix interaction is rather compli-
cated, with strong spin dependence and both an attrac-
tive and a repulsive character at different momentum
transfers. A reasonable average for the matrix elements
we need is to weight equally all momentum-changing
transitions at the Fermi surface. We shall use a G-matrix
parametrized as a function of momentum transfer only,
so that the average is given by the simple expression

moment in Eq. (2) in order to find Dp. In our basis the
quadrupole moment of a single-particle orbital is

&kl&l»=
2 ). l~~, .I'

( 2n, +1 2' +1 2nv+11
h y

The total quadrupole moment is just

t' 0
(tC) = f dB v~l q = 2' cos —cos—

2 2p

A G-matrix parametrization appropriate for valence par-
ticles is given in Ref. [15];we used their Reid central in-
teraction in our average. From the singlet-even (T = 1)
G matrix we find vi —u„„=410 MeV fm, while the
triplet-even (T = 0) yields a vo —650 MeV fm con-
tribution to e„&. This implies an average np strength
of 530 MeV fm and a strength for the identical-particle
interaction of 410 MeV fm .

A more phenomenological way to estimate the interac-
tion strength is to fit nuclear structure properties. The
pairing gap is very dependent on the off-diagonal interac-
tion; in Ref. [16]a b-function interaction was used to cal-
culate pairing in heavy nuclei and the empirical data was
fit with a strength of 340 MeV fm . This value is lower
than the G-matrix average, which is not surprising be-
cause the average weights lower-momentum components
of the interaction more heavily.

There is no equivalent property in nuclear structure
that depends sensitively on the oR'-diagonal np interac-
tion. The spectra of np states in odd-odd nuclei of course
depends on the interaction, and these spectra have been
used to extract empirical np interactions [17]. The vol-
ume integral of the np interaction in this reference has a
value 900 MeV fm, which seems too large for our ma-
trix elements. These interactions have long-range com-
ponents which would not contribute significantly to the
off-diagonal matrix elements, but which affect the total
volume integral. Another study compared b function in-
teractions with and without a long-range monopole term
to fit energy levels in the sd shell [18]. The fit with
only a b function gave vo ——750 MeV fm and v&

175 MeV fm, implying v„z——460 MeV fm . Allowing
additional monopole terms, the corresponding b-function
strengths were vo ——540 MeV fm, vi ——390 MeV fm,
and v„z——460 MeV fm . One final measure measure of
the interaction strength is the nuclear potential. The real
part of the optical model potential for low-energy neutron
scattering has a volume integral per target nucleon in the
range 450—500 MeV fm [19].

The effective Hamiltonian is well understood for light
nuclei, where essentially all of the structure can be inter-
preted with a Hamiltonian space that incorporates the
entire major shell [20]. We can make an independent
check of interaction strengths by comparing similar cal-
culations using the empirical Hamiltonian. For this pur-
pose we have examined the Hamiltonian for Ne, de-
scribing four valence particles in the sd shell. We take as
unperturbed states the SU(3) states in this space. These
states diagonalize the quadrupole operator, and so have
the maximum localization in shape. [There is one differ-
ence from the treatment with the Nilsson model, how-
ever: the SU(3) states have good angular momentum,
unlike the Nilsson states. ] We then calculate the mixing
between the basis states using the perturbative formu-
las Eqs. (1) and (2) and various approximations to the
Hamiltonian. The results are displayed in Table II. We
first consider the effect of the b-function interactions in
this space, which are the first three entries. The first
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TABLE II. Widths of SU(3) states in the nucleus Ne,
calculated from Eq. (I). The exact Hamiltonian is the W
interaction from [20]. An average is taken over all SU(3)
states of 4 particles in the sd shell having angular momen-
tum J = 2+. The energy of the states are expectation values
of the Hamiltonian, and the b function is represented by a
normalized sum over all Anal states in an energy interval of
width 4 MeV centered at the energy of the initial state.

Hamiltonian
delta
delta
delta
2-body empirical
full empirical

Vp

(MeV fm )
0

-560
-560

V1

(MeV fm )
-340

0
-340

r
(MeV)

0.3
2.1
2.8
3.3
10.6

entry shows the width due to an identical-particle inter-
action of strength 340 MeV fm by itself, and the second
entry shows the width due to the neutron-proton inter-
action, taken with a strength of 560 MeV fm . We see
that the identical-particle interaction has a much smaller
effect than the neutron-proton interaction, but is not en-

tirely negligible. The third entry shows the combined
effect of the two interactions. It may be seen that they
are not quite additive as expected, perhaps because there
are only four particles in the valence space. In the next
two entries we compare the widths calculated from the
matrix elements of the empirical Hamiltonian. Entry 4
shows the results using only the two-body part of the
Hamiltonian. This is most comparable to desired calcu-
lation, and it may be seen that the width is fairly close to
the width from the b-function interactions. In the last en-

try we show the width calculated from the full empirical
interaction. Here the one-particle terms in the Hamilto-
nian (mainly the ds~2-ds~q splitting) make the widths of
the pure SU(3) states very large. We shall return to this

point in the conclusion.
In the remainder, we adopt as our a priori inter-

action strengths the values v„r ——500 MeV fm and

v„„=340 MeV fm . We are fairly confident about the
identical particle interaction, but would place at least
25% uncertainty on the strength of the np interaction.
In the end, the strongest basis for estimating the diffu-

sion coefficient will be from the ratio Dp/I', using other
estimates (or measurements) of I' to infer Dp.

C. Numerical results for Mg, Ce, Sn, and Er

In this section we examine the numerical results of the
model for a range of nuclei. The lightest one we con-
sider is the nucleus 2 Mg, where we can directly compare
with a complete shell model calculation. However, this
nucleus is really too small for statistical arguments to
be valid and our main emphasis will be on the nucleus
sGe. This was chosen because the level density is high

enough to justify our approximations, but the number
of particle-hole configurations is small enough to permit
rapid calculation. Calculations for iioSn and iMEr are
also presented here; they will be related to experiment in
a later section.

We first test our interaction by calculating the width
of a single-particle state in sGe. Taking a state at 9.1-
MeV excitation, we find a width of 3.3 MeV, in good
agreement with the empirical formula.

To calculate the finite-temperature diffusion coefli-
cient, we selected initial states from the canonical en-
semble at a temperature T = 2.5 MeV. We required the
states to have a deformation in the vicinity of P = 0.16,
which is the ground-state deformation. The spectrum
of 7sGe in our Nilsson calculation has a level density
near the Fermi level of 2.0 and 2.6 MeV for protons
and neutrons, respectively, so the average energy will be
E,„x(dna/de+ dn„/de) T /4 70 MeV. We cal-
culate matrix elements to final states within an energy
interval given by LE~~„=2 MeV.

The average contributions to I' and Dp from this en-

semble are shown in Table III. Note that the identical-
particle interaction makes only about a quarter of the
total, in agreement with the argument in Sec. II. The
predicted width, I' = 26.3 MeV, is in good agreement
with Eq. (4). We might have expected to underpredict
the width, because there are omitted collective effects
that increase the width of single-particle states [9]. It is

likely that the interaction strength is somewhat high in

compensation. In any case, the agreement here allows us
with reasonable confidence to use the same interaction
strength for the difFusion coe%cient.

We now examine the distribution of widths of the
states within the ensemble. Figure 3 shows the widths

of the states as a function of their excitation and Fig. 4

shows the average width in the ensemble. The width ob-
viously increases with excitation energy, but the scatter
is too large to ascertain the precise dependence on E,„.

TABLE III. Decay widths and diffusion coe%cents for various nuclei at temperature

T = 2.5 MeV. The interaction strengths are vpp ——v „=340 MeV fm, and v„p:500 MeV fm .
Also included in the table are the coresponding quantities for Mg, calculated with the empirical

two-body Hamiltonian. The uncertainties in the results due to the Monte Carlo averages and sums

are approximately 8/p, 16'Pp, and 42'Pp for Ge, Sn, and Er, respectively.

Nucleus

I' (MeV)
(pp)+(nn) (np) Total

Dp (keV)
(pp)+(nn) (np) Total

Ds/I'
(IO-')

24M
76G
11GS
158E

7.3
7.7
14.9

19.0
21.8
41.6

3.1
26.3
29.5
56.5

2.7
1.5
1.3

4.6
3.1
2.6

30
7.3
4.6
3.8

10.0
0.28
0.16
0.067
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FIG. 3. Distribution of initial states contributing to the I'

of Eq. (1) for Ge at T = 2.5 MeV (np configurations only).
FIG. 5. Distribution of initial states contributing to the

Dp of Eq. (2) for Ge at T = 2.5 MeV (np configurations
only).

The increase is certainly faster than linear in E,„,and

it is consistent with E« ~ . The 3/2 power law is pre-
dicted from Eq. (6), replacing the temperature T in that
equation by gE«

Figure 3 also shows that there are substantial fluctua-
tions in I' at fixed E„.The configurations have an aver-

age of about 10 quasiparticles, so fluctuations of magni-
tude /1/10 might be anticipated. In heavier nuclei these
fluctuations will be smaller and our assumption that we

can treat all configurations (of fixed E,„)as having the
same width is reasonably just, ified.

In Fig. 5 we show the distribution of Dp for the same
ensemble of Ge states; Fig. 6 shows the average as a
function of excitation energy. Again, Dp is fairly well

defined with some fluctuation, and there is a pronounced
energy dependence similar to what we found for I'. Here

also an E,„dependence is predicted, since the change
in b,Q2 with excitation is negligible. The average value
of Dp is 7.3 keV with our interaction strengths. This is
smaller than the estimate in Eq. (9) by a factor of 4. This

is not surprising: the orbital overlaps will be poorer when
there is a large change in quadrupole moment. This pro-
duces an anticorrelation between large matrix elements
and large changes in q, an eHect ignored in our estimate
in Sec. II.

In Figs. 7—9 we present additional statistical informa-
tion about the calculation. One question is the extent to
which a single term or a few terms dominates the sum in
Eq. (2). The perturbative rate equation depends on there
being many contributions of comparable strength. Fig-
ure 7 shows the decomposition of the relevant quantity
for a typical configuration. We see that the sum in Dp
arises from a multitude of weak transitions rather than a
few strong ones, supporting our use of Eq. (2).

We next examine the distribution in quadrupole mo-
ment change and energy change of the transitions. This
is displayed in Fig. 8. The diffusion model is only appli-
cable if the change in q is small for each transition. This
is seen to be the case; the maximum quadrupole moment
change seen in the figure (Aq 50 fm ) corresponds to
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FIG. 4. Average I' of Eq. (1) for Ge as function of ex-
citation energy. The solid circles are the averages and the
dashed line is a smooth curve through them.

FIG. 6. Average Dp of Eq. (2) for Ge as function of
excitation energy. The solid circles are the averages and the
dashed line is a smooth curve through them.
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FIG. 7. Residual interaction matrix element, M, distri-
bution for Ge at T = 2.5 MeV.

FIG. 9. Dependence of I' on the energy cutofF DE,„of
Eq. (14) for Ge at T = 2.5 MeV (nfi configurations only).

a deformation change of EP 0.1. The distribution in

energy change should be uniform if the results are to be
independent of the averaging interval LE ~. This also
seems to be reasonably satisfied (see Fig. 9).

At this point we should emphasize that our Nilsson cal-
culation is performed at a fixed deformation value. Thus
when a transition that changes the quadrupole moment
occurs the new state will no longer be in equilibrium at
that deformation. Hence we expect the quadrupole part
of the kinetic energy, Itq of Eq. (13) to be greater for
larger Aq; Fig. 10 demonstrates this clearly. In fact it is
possible to find at which deformation the new configura-
tion is in equilibrium by varying P until ICq vanishes; we

have found that the corresponding change in quadrupole
moment coincides with the prediction of Eq. (12).

We next examine the dependence of I' and Dp on the
nuclear size. From Table III, we see that the width in-
creases with mass number A. In the rough estimate Eq.
(6) we predicted a linear dependence on A. Comparing

Ge and 'ssEr, this seems to be the case, but the 'ioSn
is anomalously low. It should be noted, how'ever, that

Sn is a semi-magic nucleus and thus would have a lower
than average level density.

The difFusion coefficient Dp should decrease in heavier
nuclei as A, according to Eq. (8). From Table III we see
a decreasing trend that is consistent with this behavior,
recognizing that there are substantial shell fluctuations
from nucleus to nucleus. The A dependence of our results
can be fit with the formula

50T3
Dp (15)

Finally, we present calculated values of I' and Dp for
the mixing of SU(3) states in the nucleus ~4Mg. Here the
interaction was the two-body part of the Hamiltonian of
Ref. [20], and the average was obtained from the lowest
100 states out of about 1000 total. Both the width and
the diffusion constant are seen to scale from the heavier
nuclei as expected. The ratio of diffusion coefficient to
width has a value 0.010, to be compared with the esti-
rnate 0.015 from Eq. (7).
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FIG. 8. Transition strength, IMI, density as a function
of quadrupole moment change Eq and energy change DE for

Ge at T = 2.5 MeV.
FIG. 10. Correlation between Aq and Kg for Ge at T =

2.5 MeV.
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TABLE IV. Translation of collective coordinates.

Coordinate
name Ref.

[4]

[7]
[28]

Translation

Q /gal 2p,

p = /5/16sP
n2 = g5/4s P

z = 10P fm

Method
Small amplitude

Small amplitude
Small amplitude

Distance to saddle

To summarize, we can get a rather good understanding
of the diffusion model for heavy nuclei from the rough
considerations of Sec. II. It is only necessary to decrease
the diffusion coefficient by a factor of 3—4 to account for
the correlation between matrix elements and changes in
the quadrupole moment.

IV. COMPARISON WITH OTHER WORK

A. Theory

There are a number of theoretical approaches to the
dynamics of large amplitude motion [4,21,22], and we
wish to make the connections between the different equa-
tions of motion and compare values of the parameters. In
the literature the emphasis has been on the calculation
of a linear friction coefficient g in a Newtonian equation
of motion,

M6+ ya = I'

BP B t' 1 i B2P

Bt Bn 5 x )
where

(16)

where n is some deformation coordinate, M is the in-
ertial mass associated with that coordinate, and I" is a
generalized force. Once one has the friction coefficient

y, the diffusive dynamics can be included by adding a'
Langevin force to I". The resulting Langevin equation is
used in Ref. [4].

An equivalent formulation is with the Fokker-Planck
equation, which describes the evolution of the phase-
space probability distribution for the collective coordi-
nate. In the overdamped limit the probability distribu-
tion P(n, t) satisfies the Smoluchowski equation [23]

TABLE V. Comparison of theoretically and experimen-
tally extracted diffusion coe%cients for Er at 2 MeV tem-
perature.

Source
Present theory
Diabatic friction [7]
Linear response [6]
Prescission neutrons [1]
Dipole narrowing [4]

Value
2.0 keV
2.7 keV

12.4 keV
& 40 keV
SO keV

These numbers are scaled to A = 158 using Eq. (15).

considered constant for all deformations of interest. For
fission or other decay processes, this requires that the ex-
citation energy be large compared to any barriers to the
decay. We note that the validity of the Einstein relation
in this context is discussed in Ref. [25]. They find it to
be a sensible approximation in the temperature range we

consider, T 2 MeV.
Before we can compare friction coefficients in the liter-

ature, we have to translate the many different definitions
of the collective coordinate to a common one. In many
cases the definition reduces to a pure quadrupole distor-
tion in the small amplitude limit, and we can make the
connection in that limit. In Ref. [6] the collective coor-
dinate has dimensions of length and we compare it to
P by equating the deformation distance from a spherical
shape to the fission saddle point in the two cases. For a
nucleus with A 210, this is 14 fm in the coordinates
of Ref. [6] and P 1.4 in quadrupole distortion. Table
IV shows the translation to our variable P for the various
calculations we discuss.

We now consider the model of Noerenberg [7]. He de-
rives a formula for the friction coefficient; using the P
deformation variable the formula is g = 3AcFq&&,/Sn'.
Here p« is a local equilibration time which he estimates
to be 0.5 x 10 s at T = 2.5 MeV. We apply this to

Er using the Einstein relation and find a diffusion co-
efficient in good agreement with our own calculation, as
may be seen in Table V. In [26] a formula is given for
r~, in terms of physical quantities including an effective
scattering cross section o and nuclear matter density no.
This combined with Noerenberg s formula yields a diffu-
sion coefficient

Dr =T/& (17)
68o'vF noT

P =
F

The last equation is the Einstein relation. The above
equations can be derived from the purely diffusive dy-
namics discussed in the Introduction by making the rate
I' proportional to the density of final states p, with p
depending on the excitation energy of the system at
fixed deformation. One then obtains Eqs. (16) and
(17) [24], but with T in the Einstein relation given by
T i(E, n) = p iBp(E, n)/BE. Thus the Einstein rela-
tion should be applicable to the extent that T may be

I

This has the same functional dependence on T and A as
Eq. (15) and is numerically quite similar, if the parame-
ters are given their usual values: o = 40 mb, vF ——0.28c,
no —0.16 fm

We note that an equation similar to Eq. (2) has also
been derived by Ayik [27], who started from a different
point of view. Following the technique of Ref. [22], he ob-
tains an expression which treats the nucleon interactions
as scattering between particles in plane-wave states,

(dP i'
2 2Dp =

~ ~

dld2d3d4 (EI&q) (v( fi f2(1 —fi)(1 —fg)(2s) b(pi + p2 —p3 —p4)b(Ei + tg —Es —E4)(dKq )
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Here the e and p are the energies and momenta and f
is the Fermi distribution function. Making a simple esti-
mate of the collision integral, he finds a, formula similar
to Eq. (17).

We next compare with the numerical calculation of
Ref. [6], which follows the linear response technique. The
authors consider the fission of an A = 212 nucleus at a
temperature of T = 2 MeV. The average friction coeffi-
cient from their Fig. 6 is about y = 300h, when converted
to our coordinate. The corresponding diffusion coefficient
is about a factor of 2 larger than the microscopic calcu-
lation or the Noerenberg estimate, as may be seen in
Table V. To make their estimate, the authors of Ref. [6]
assume a single-particle damping rate somewhat smaller
than in Eq. (3), so naively one would expect a lower dif-

fusion coefficient. Perhaps, like in Eq. (8), an imperfect
overlap between transitions equilibrating the shape and
transitions damping the single-particle motion produces
an overestimate.

B. Comparison to experiment

We first consider the experimental information on dy-
namic eff'ects in fission. In Ref. [29], prescission neutron
emission was analyzed to determine the magnitude of
the reduced friction coefficient Py. This is defined by

Pf —g2/Mq. It has units of inverse time, and from the
experimental data of Ref. [1]an upper limit of 5x 10~i s
was found. The mass parameter for the quadrupolar dis-
tortions in the o.~ coordinate of Table IV is given in Ref.
[25] by Ms ——3mARp /10, where m is the nucleon mass
and Ro is the nuclear radius. Then the friction coefficient
in our units has the bound y + 60h. To find the diffusion
coefficient we also need the temperature. The excitation
energy of the system studied, Er, was about 180 MeV,
corresponding to a temperature of about 2.5 MeV. From
the Einstein relation, Eq. (17), one finds the bound on
the difFusion coefIicient given in Table V. It is an order
of magnitude larger than our calculation.

There is also information about the friction coeffi-
cient from the energy dissipation as the fissioning nucleus
moves from the saddle point to scission [30]. In Ref. [25],
the extracted friction coefficient has a value g = 30h in
our units, which is well within the bound obtained from
the prescission neutron data. However, the diffusion time
scale plays no direct role in the energy dissipation past
the saddle point, and without a definite temperature it is
not clear how to relate this information to the diffusion
coefficient.

The analysis of the shape of the giant dipole in hot
nuclei in Ref. [31] found that dynamic shape fluctuations
were not required to fit the data for the nucleus for rare-
earth nuclei such as Er. From Ref. [4], this implies that
the friction parameter y is greater than about 50h. On
the other hand, the data on tin nuclei favored a motional
narrowing efFect with y 30h. Here the temperature
of the system was about 2 MeV, which corresponds to a
diffusion coefIicient

which is once again a factor of 10 larger than our esti-
mate.

V. CONCLUSION

We see that our model seems to make nuclei less Huid
than the available experiments indicate. We believe that
our treatment of the diffusion due to two-body interac-
tions is done well enough so that one must find another
mechanism to explain the data.

In looking for a way out of this quandry, one possibil-
ity is that the dominant diffusion mechanism could occur
entirely by single-particle motion, i.e. , within mean-field
theory ignoring the residual interaction. Note that the
sd-shell calculation given in Table II showed that the
one-body Hamiltonian produced a larger diffusion coef-
ficient than the two-body interaction. At low excitation
the mean-field configurations seem to be rather frozen,
but it is not clear what would happen at higher energy
when artificial symmetry constraints are dropped from
the time-dependent mean-field calculations. It would be
interesting to follow an ensemble of highly excited con-
figurations within the time-dependent theory to answer
this question.

We should remember also that the analyses of the ex-
periments depended on the existence of a linear frictional
dissipation. This is by no means obvious, and it has been
suggested that a cubic friction force might be better jus-
tified [8]. In this case the fluctuation-dissipation theorem
gives a diffusion coefIicient which would increase as the
square of the temperature, assuming the friction coefIi-
cient to be independent of temperature. However, it is
also clear from the analyses of [6, 7] that one may expect a
linear friction with a quadratic temperature dependence.

It should be possible to reanalyze the fission data on
prescission neutrons entirely in terms of a diffusive pro-
cess, thus avoiding the uncertainties of connecting the
coefficients to friction. It might be worthwhile to do this
to confirm that the difFusion is indeed faster than the
two-body mechanism allows.
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APPENDIX: N-BODY HARMONIC
OSCILLATOR MATRIX ELEMENTS

We want to calculate the integral of N harmonic oscil-
lator wave functions:

dz g;(z)

Dp(A = 110,T = 2.0 MeV) 70 keV where
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the H„are Hermite polynomials, and the b are the os-
cillator lengths. These integrals are of interest because
we are using a harmonic oscillator basis for the Nilsson
calculation and our residual interaction is a two-body 6

I

function. We use the fact that the Hermite polynomials
can be expressed in terms of a generating function [32]:

OO

exp(2(z —z ) = ) ,
H—„($)

n=0

so that I is the coefficient of P, & z,"'/n;! in

N Aj

dz . z
' —z- /

I~;) i=1

bi
exp2"'n I

where B =
z Q, b2 We .can expand the exponential in terms of the z;

-N/4

to identify

i ' k

+P,
2~;fn,. t ~ -~ - k! g! B&

geary era) (Pi PN j "."
(a;,P;)

—N/4

such that n; + 2p; = n;, 2k = p, n;, and E = p,. p;. (The large parentheses are multinomial coefficients. ) Note that
the only selection rule that holds for N ) 2 is that Q; n; be even (i.e., parity is conserved).
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