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We study the fluctuations in the spectrum and the E2 transition intensities of the low-lying collective
states in heavy nuclei. Using the interacting boson model we investigate the transition from rotational
nuclei to y-unstable nuclei. Near those two limits the system exhibits regular behavior but in the transi-
tion region we observe the onset of chaos where both the level statistics and the intensities statistics are
described by the Gaussian orthogonal ensemble of random matrices. The systematics of the onset of
chaos within different spin/parity classes are investigated. The quantal results agree with the classical

mean-field analysis.
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I. INTRODUCTION

Random-matrix theories [1] (RMT’s) were introduced
to explain fluctuation properties of neutron and proton
resonances in the compound nucleus [2,3]. Since the ex-
act Hamiltonian of the heavy compound nucleus is not
known, and due to its complexity and large number of de-
grees of freedom, it was natural to replace it by an ensem-
ble of Hamiltonians. One then applies an ergodic hy-
pothesis, where an average of a certain quantity over
many nuclear states is replaced by a corresponding aver-
age over the ensemble. In RMT one assumes that all pos-
sible laws of interaction are equally probable, except that
they must be consistent with the fundamental symmetries
of the system. In particular, if the system has time-
reversal symmetry, then the representation matrix of the
Hamiltonian in a ‘“real” basis is a real matrix. The
Hamiltonian’s matrices are, therefore, chosen to be real
and symmetric. Since the probability density for a given
Hamiltonian must be independent of the choice of the
basis with respect to which it is represented, this proba-
bility measure should be invariant under orthogonal
transformations. We are then led to the Gaussian or-
thogonal ensemble (GOE), whose fluctuation properties
were used to explain the neutron resonances and their
widths.

In recent years, however, a new understanding of the
use of random matrices has emerged. It was conjectured
that their validity can be extended to analyze spectral
fluctuations in quantal system with small number of de-
grees of freedom (even two), when the corresponding
classical motion is completely chaotic. This conjecture
was put forward by Bohigas, Giannoni, and Schmit [4],
based on the quantal analysis of the Sinai’s billiard which
was known to be classically chaotic. It was then
confirmed by numerous studies of systems in two degrees
of freedom [5-10]. Semiclassical arguments were used by
Berry [11] to show that the two-level cluster correlation
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function of a classically chaotic system agrees with the
predictions of the Gaussian orthogonal ensemble (GOE).
It was further shown in several model studies of classical-
ly chaotic systems that the fluctuations of the matrix ele-
ments of a generic transition operator are consistent with
the GOE analysis [12-14].

Experimentally, the most complete data available is the
nuclear data ensemble (NDE) consisting of 1762 neutron
and proton resonance energies corresponding to 36 se-
quences in 32 different nuclei [15]. These resonances are
in the region of high nuclear level density, and they show
a remarkable agreement with GOE. The question that
then arises naturally, with the new understanding of the
applicability of RMT, is whether chaos could also prevail
in the low-lying collective part of the nuclear spectrum.
A similar question was raised by Abul-Magd and
Weidenmuller [16] through the analysis of experimentally
known low-lying levels in nuclei. However, to obtain a
reasonable statistic it was necessary to group together
levels of different nuclei and of different spin/parity. The
conclusions reached were, therefore, only partial. More
recently, an attempt was done to extract the dependence
of the statistical fluctuations of the spectrum on the nu-
clear species [17]. Also here it was necessary to take lev-
els from a wide range of energies and angular momenta.
Raman et al. [18] investigated a complete set of experi-
mental levels in !'%Sn, and Garrett et al. [19] analyzed a
large number of low-lying near yrast states from nuclei in
the region 4 =155-185.

The purpose of this paper is to study the chaotic prop-
erties of the low-lying collective states of even-even nuclei
by using a realistic theoretical model [20]. It is important
to note that most studies of quantum chaos were restrict-
ed to unrealistic models in two degrees of freedom. The
only exception is that of the hydrogen atom in strong
magnetic fields [21]. A realistic description of the low-
lying part of the nuclear spectra requires a model with at
least five degrees of freedom, corresponding to the nu-
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clear quadrupole deformation. This larger number of de-
grees of freedom make the study of quantum and classical
chaos in a realistic nuclear model a much more challeng-
ing project. Furthermore, there is also a general theoreti-
cal interest in studying such systems, showing that the
connection between the eigenvalue and eigenvector statis-
tics holds even for systems with more than two degrees of
freedom.

The model that we use is the interacting boson model
[22,23] which describes well the low-energy part of the
nuclear spectrum for a large volume of heavy nuclei. In
particular, we investigate the transition between rotation-
al nuclei and y-unstable nuclei. The classical mean-field
limit of the model was discussed in detail in Ref. [24].
Here we shall do the quantal analysis. While most stud-
ies of quantum chaos are restricted to the study of spec-
tral fluctuations alone, we shall study in addition the fluc-
tuations of the matrix elements. In particular we shall
study the distributions of the E2 intensities [10]. We find
that the quantal results generally agree with the classical
analysis, and we observe the onset of quantum chaos in
the intermediate region between rotational and y unsta-
ble nuclei. There are, however, important effects which
are purely quantal and do not have a classical counter-
part.

The outline of the paper is as follows. In Sec. II we in-
troduce the quantal model that is used in our study. As
an algebraic model it has several advantages, and in par-
ticular the completely integrable limits can be related to
the dynamical symmetry limits of the model [20,25]. In
Sec. III we discuss the spectral statistics and in Sec. IV
the transition intensity fluctuations and in particular the
B (E2) distributions are analyzed. More detailed results
and systematics are discussed in Sec. V where the level
and E2 statistics are shown for various spin/parity
classes.

II. THE QUANTUM MODEL

A. Hamiltonian and transition operator

The algebraic model that we use to describe the low-
lying collective states in nuclei is the interacting boson
model (IBM). When no distinction is made between pro-
tons and neutrons (IBM-1), the model degrees of freedom
are an s boson with spin/parity 0" and five quadrupole d
bosons with spin/parity 2. In the self-consistent Q for-
malism the Hamiltonian [26] has the form

H=cyny;+c,L*+c,0%-Q0% . (1)

In Eq. (1), ¢y, ¢, and ¢, are parameters, while n,, L, and
QX are the number of d bosons, the angular momentum,
and the quadrupole operator, respectively,

nyg=d'-d , (2a)
L=v10(d"xd)" , (2b)
0X=(d " xs+s"xd)P+xd xd)? . (2¢)

We have used the operators d w

d,=(—yd 3)

—u
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which transform under rotation like d L

The quadrupole operator depends on a parameter Y
which usually varies in the range —V'7/2<y<0. Elec-
tromagnetic transition operators can also be constructed
within the framework of the model. In this paper we
shall use in particular the E2 operator, which in the self-
consistent Q formalism is proportional to Q¥

T(E2)=a,Q" . @)

The B(E?2) intensity for a transition from state i/ to state
f is given in terms of the reduced matrix element of
T(E2):

1

B(E2;i—f)=
E2%i—==5"0

[{FIIT(E2)|i)|* . (5)

The statistical fluctuations of the B(E2) intensities will
play an important role in the understanding of the onset
of chaos in nuclei.

In the present paper we shall investigate the family of
Hamiltonians (1) for ¢,=0 and —V'7/2 <y <0.

B. Algebraic structure
where  {b ! }

The 36 generators  {bb i) ;
={sT,dZ(,u= —2,...,2)}, span an algebra G=U(6).
The Hilbert space of the physical states carries a repre-
sentation of the U(6) algebra [23], and the Hamiltonian is
a quadratic function of the generators of U(6).

An algebraic model has several advantages over more
conventional models in the analysis of chaos. The first is
that the number of bound states is finite since the unitary
representations of any compact group G are finite dimen-
sional. It is, therefore, possible to diagonalize the Hamil-
tonian with no truncation errors. This is useful because
in the statistical analysis it is important to get an accu-
rate and complete set of eigenvalues. Any model of low-
lying collective states of nuclei will have at least five de-
grees of freedom, corresponding to the five nuclear quad-
rupole degrees of freedom. To solve accurately a
Schrddinger equation for that number of degrees of free-
dom and a large number of eigenvalues is a formidable
task. Already the problem of the hydrogen atom in a
strong magnetic field, which has only two degrees of free-
dom was quite difficult to solve numerically [21].

Another important advantage of an algebraic model is
that completely integrable Hamiltonians whose associat-
ed motion is regular can be easily identified. They are re-
lated to dynamical symmetries. A dynamical symmetry
[27] in an algebraic model described by an algebra G
occurs when the Hamiltonian is of the form

H=0,C(G)+a,C(G'V)+a,C(G*)+ -+, (6)
where
G=G""2G'">G¥D - ™

is a chain of subalgebras of G and each C(G'Y) is a
Casimir invariant of the corresponding algebra G'. The
Hilbert space carries a representation of G, whose basis
states can be labeled by the eigenvalues of the above
Casimir invariants. These states are eigenstates of (6) and
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the corresponding energies are found by substituting in
(6) the eigenvalues of the Casimir invariants.
The IBM-1 has three dynamical symmetries [23]

U(5)D0(5) (I)
U(6)> Su(@3) 20(3) (I , (8)
0(6)D0(5) (IIT)

which describes vibrational nuclei [chain (I)], rotational
nuclei [chain (IT)], and y-unstable nuclei [chain (III)]. In
the self-consistent Q formalism they occur as follows:
Chain (I) is obtained for c¢,=O0, since n; is a linear
Casimir invariant of U(5). Chain (II) is obtained for
co=0, y=—V7/2 since QX-QX is then related to the
quadratic Casimir invariant of SU(3). Finally, chain (III)
occurs for ¢, =0, y=0 since the respective Q¥-QX is then
a combination of the quadratic Casimir invariants of O(6)
and O(5)

Q*-QX|,_4=C,(0(6))—C,(O(5)) . ©)

To see how a dynamical symmetry is related to complete
integrability, notice that the set of Casimir invariants

{C(G),C(G),C(G™),...}], (10)

form a set of constants of the motion of H in (6), which
are in involution

[H,C(G")]=0, (11)
[C(G'),Cc(GY)]=0. (12)

To have a completely integrable system we need a com-
plete set of constants in involution, i.e., their number
should be equal to the number of degrees of freedom. If
the above set (10) is not complete, there is a missing label
in one or more of the reductions G DG *1), It is then
possible [28] to find an invariant of G 1! that is built
from the generators of G‘” and is not a Casimir invariant
of G'”. Such invariants commute with all the Casimir
operators in (10), and by adding them to (10), we get a
complete set of constants of the motion.

III. SPECTRAL FLUCTUATIONS

A. Density of states

To analyze the statistical fluctuations of the spectrum
{E;}, it is necessary, as usual, to separate its smoothed
average part whose behavior is nonuniversal and cannot
be described by random-matrix theory [29] (RMT). To
do so we construct the staircase function of the spectrum
N(E), defined as the number of levels below E and
separate it into average and fluctuating parts

N(E)=N,,(E)+ Ny (E) . (13)

The nonuniversal part N,,(E) may be found semiclassi-
cally. Here we have taken it to be the fit of a smooth
function to the staircase N(E). We have tried two classes
of fitting functions: Polynomials of degree M in E and
cubic splines [30]. Among the polynomial class we found
that M =6 is best. Figure 1 shows (left column) such a
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FIG. 1. Comparison of spectral fluctuations for two different
classes of fitting functions to the staircase function N(E): a po-
lynomial of sixth order (top row) and a cubic-spline fit (bottom
row). The levels analyzed are the J=8% levels of the Hamil-
tonian (1) with ¢;=0, y=—0.6, and N=20 bosons. Left
column: the staircase function N(E) and the fit N,,(E) (solid
line). Middle column: the level spacing distribution P(S) and
the fit with a Brody distribution (18) (solid lines) with the quoted
. Right column: the Dyson-Metha statistics A;(L) described
by the + symbols. The dashed lines are the GOE limit and the
dash-dotted lines are the Poisson statistics.

typical polynomial fit to the staircase function N(E) as
well as a cubic spline fit. The statistical fluctuations of
the spectrum are found to be quite independent of the
fitting class. In the following we shall use polynomial fits
with M =6. The unfolded spectrum is defined by the

mapping
E,=N(E,) . (14)

The unfolded levels E; have a constant average spacing,
but the actual spacings show strong fluctuations.

We note that when good quantum numbers are known,
it is important to analyze separately states that belong to
different quantum numbers. In our studies spin and pari-
ty (J7) are good quantum numbers so we analyze levels
separately within each spin/parity class.

B. Level spacing distribution

We have used two statistical measures to determine the
fluctuation properties of the unfolded levels: the nearest-
neighbor level spacing distribution P(S) and the A,
statistics of Dyson and Metha. The level spacing distri-
bution is defined as the probability of two neighboring
levels to be a distance S apart. A regular system is ex-
pected to behave by the Poisson statistics where the ei-
genvalues are uncorrelated and

P(S)=e~S. (15)

If the system is classically chaotic, we expect to obtain
the Wigner distribution

P(S)=(m/2)S exp(—mwS?/4) , (16)
which is consistent with the GOE statistics [1-3]. We
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have calculated the spacings S; from the unfolded spec-
trum

S,=E, ,—E; (17)

and histogrammed them. An example is shown in the
middle column of Fig. 1 for the J =87 levels of the Ham-
iltonian (1) with N =20 bosons, ¢;=0, and y=—0.6.
The dash-dotted line is the Poisson distribution (15), and
the dashed line is the Wigner distribution (16). In the
case shown the actual histogram is very close to the
Wigner distribution. We have fitted the level spacing dis-
tribution to a Brody distribution (solid lines in Fig. 1) of
the form

P,(S)= AS“exp(—aS'"®), (18)
where

a=T[2+0)/(1+w)]""?
and

A=(1tw) (19)

are chosen such that P is normalized to 1 and (S)=1.
The Brody distribution interpolates between the Poisson
distribution (0 =0) and the Wigner distribution (0=1).

C. A; statistics

The A; statistics was introduced by Dyson and Metha
to measure the “rigidity” of the spectrum. It is defined
by

A3(a,L)=mini fa+L[N(E‘)—(AE+B)]2dE (20)
AB L Ya

and measures the deviation of the staircase function (of
the unfolded spectrum) from a straight line. A rigid spec-
trum corresponds to smaller values of A;, while a soft
spectrum has a larger A;. In order to obtain a smoother
function A,(L), we average As(a,L) over several n, inter-
vals (a,a+L)

K3(L)=ni§A3<a,L>. 1)

a «a

The successive intervals are taken to overlap by L /2. A
useful formula to calculate As(a, L) was derived by Bohi-
gas and Giannoni [29] in terms the ordered eigenvalues
E,E,,...,E, in the interval (a,a+L). Measuring E,
with  respect to the

_ center of the interval
€,=E,—(a+L/2) we have

n: 1 |& o3 [ 2
A = _ |+ == 2
de )= e e 21 il T 21 €

n 2 1
26% +f

i=1

3 n
- S (n—2i+1) | .
L* fref
(22)

The A; statistics is related to the two-level correlation
function. The number statistics n (L) is defined to be the
number of levels in an energy interval of length L. Since
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the spectrum was unfolded, the average number statistics
(n(L))=L is independent of the spectrum. However,
the variance of n (L)

SAL)={[n(L)—{n(L))1*) (23)

does depend on the spectrum considered. For the Pois-
son statistics,

SAL)=L , (24)
while for the GOE

EZ(L)=7;22~ In(27L)+y +1+L[Si(7L)]?

- %Si(wL )—cos(27L )—Ci(27L)

2 ..
+m?L [1—=Si(27L) | | . (25)
m
J=6
P Az(L) P(s)
w=-—0.07
: x=—1.25
A e X=—1.05
L ‘ _,»r'vrb v x=-080
/',;:;,;O,‘tittnot .
| ' 0.0
-0 o7z 22 oot ou
. | “ ‘ x=—0.50
o5
,.«;‘,'M’«"u,
P
0 0.0
-0 037 - e
) : ) x=—0.15
0.0 H=—1-0.0 ¥—— 0.0 S
5 0 0 000 ; ;
Iny ’ :

FIG. 2. Spectral and intensity fluctuations for the J =67 lev-
els of the Hamiltonian (1) with N =25 bosons and various Y
values between the rotational (y=—V7/2) and y-unstable
(x=0) limits (c¢,=0). Right column: the level spacing distribu-
tion P(S) where the solid line is the best-fitted Brody distribu-
tion with the quoted w. Middle column: the A; statistics of
Dyson and Metha denoted by the + symbols. Left column: the
E?2 intensity distribution P(y) where the solid lines are y? distri-
butions in v degrees of freedom (41) with the quoted v. In all
columns dashed lines describe the GOE statistics and dash-
dotted lines the Poisson statistics.
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Here y is the Euler constant and Si, Ci are the sine and
cosine integrals, respectively. The A; statistics can be
calculated from the variance of the number statistics by

By(L)=-2 [HL3=2L% +r)3Z2r)dr . (26)
L*Yo
For the Poisson statistics
- L
=—, 7
A4(L) T 27

while the asymptotic result for the GOE is
ByL) ~ —-InL—0.007 . (28)
L>1 1r

The GOE spectrum exhibits long-range order as is
demonstrated by its low A; values as compared with the
Poisson statistics.

The A, statistics calculated from (22) and (21) is
demonstrated on Fig. 1 (right column) and is denoted by
the + symbols. The Poisson limit is the dash-dotted line,
and the GOE A; statistics is the dashed line. The actual
case shown is very close to the GOE limit, and this result
is consistent with the level spacing distribution.

D. Spectral fluctuations versus Yy

We have analyzed the level statistics within each
spin/parity class for the Hamiltonian (1) using N =25 bo-

J=26
P(y) Az(L) P(s)
v=0.24 .110d w=0.18
0.5 A o5 11070
it * ) x=—1.25
001 0.3z
0.5 - A
x=—1.05
2(5) v=0.39
: A x=-0.80
g.o v=042 . | A1
5 AN o X=—0.50
. {08 Y
0.0 0.0 42 0.0+
v=0.25 " ’_/‘: 1.0 w=-0.09
0.5 A[oe] Pt x=—0.15
x=—0.01

FIG. 3. Asin Fig. 2 but for J=26".

sons and ¢;=0. The large number of bosons is chosen to
obtain better statistics. Figure 2 shows a typical example
for the J=6" levels for which the statistics is studied
versus the parameter Y. The level spacing distribution
P(S) (right column) and the A;(L) Dyson-Metha statis-
tics (middle column) are shown for y=—1.25, —1.05,
—0.8, —0.5, —0.15, and —0.01. Near the two dynami-
cal symmetry limits (y=—V"7/2 and Yy=0) we obtain a
behavior close to Poisson as is expected for a completely
integrable system. However, as y changes away from
these two limits we observe that the statistics is gradually
changing to the GOE. This indicates the onset of chaos
and is consistent with the results of the mean-field “clas-
sical” limit N — o discussed in Ref. [23]. In the range
—0.8 Sy =< —0.4 the system is mostly chaotic.

We note that when Y is very close to one of the dynam-
ical symmetry limits (e.g., Y= —0.01) we obtain negative
values of w, and the values of A; are even larger than the
Poisson limit. This is a result of degeneracies that may
occur in a dynamical symmetry limit and are related to
missing labels. For instance, in the SU(3) limit of rota-
tional nuclei, the K quantum number is a missing label in
the reduction from SU(3) to O(3). Since X is not associat-
ed with a Casimir invariant, the energy eigenvalues in the
SU(3) dynamical symmetry limit are independent of K.
In the O(6) limit of y-unstable nuclei, there is also such a
missing label [23] in the reduction from O(5) to O(3),
which is denoted by v,.

J=5
P(y) Az(L) P(s)
o 7 4 w=-0.10
i 1.0
0.5 1 H 0.5 -
- ; x=—1.25
.ﬂ > 05 4
0.0
v=0.40 ,
0.5 1
=—1.05
0.0 . |
v=0.52 ., —
0.5_ ' ok 0.80
.,,-‘ Q. o
AR as: L R0y |
9 /4,;;,_’.‘- ----- ' i}
2-: Jp=0.47] g-g 00—
. i . A =050
A 0.5{
7 /';;"’""‘“"m 3
0.0 . | .
> = g : ‘1’,8 ] w=0.58
‘ AW, \ x=—0.15
< ,~'$;;,‘_z'.v.thx.: 0.5 _." )
h P \
: x=-0.01

FIG. 4. Asin Fig.2butforJ=5"%.
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It is interesting to observe the spin dependence of the
statistics at a given y¥. An example of high spin (J=26")
is given in Fig. 3, and an example of odd spin (J=5%) is
given in Fig. 4. At low spins (J < 10#) the statistics does
not change much with J, except that near the O(6) limit
(—0.155 xy =0) we observe more regularity with increas-
ing J. At high spins, however, we see a significant de-
crease of chaoticity as the spin increases. For example, at
x=—0.8, o drops from a value of ©®=0.96 at J =107 to
a value of ®=0.46 at J =267 (see Fig. 3). In fact the re-
gion —0.8 Sy < —0.4, which is almost fully chaotic at
low spins (J $167), becomes intermediate between the
regular and chaotic statistics at high spins. This behavior
correlates nicely with the classical results; see in particu-
lar Fig. 9 of Ref. [24].

IV. INTENSITY FLUCTUATIONS

Matrix elements of transition operators probe the
system’s wave functions so that their statistical fluctua-
tions provide additional information. It was shown that
for a classically chaotic system, the matrix elements of a
generic time-reversal-invariant operator should have the
GOE fluctuation properties [13,14].

A. Intensity distribution

To find the distribution of matrix elements in the GOE,
note that the distribution of the components a; of a fixed
vector |a) along the random Hamiltonian eigenstates is
given by [3]

P(a,,a,,...)x8

za,?—l ] . (29)

Denoting the value of a specific matrix element, say, a,,
by x we obtain its distribution P%x) from

P’(x)= [P(a,=x,a5,...)da, " . (30)

The result is

1 N—1T(N/2+]) _
PoUx)=—— —x2)N=372
(x) Ve N I‘(N/2+%)(l x°) (3D
which in the limit of large N can be written as
POx)~ (2m(x2)) "2 X" 207 (32)

The distribution of intensities y =x? is then given by the
Porter-Thomas distribution [31]

Py)=2m(y )%y " 2exp(—y /2{y)) . (33)
For any operator T, we can define the transition intensi-
ties

y =T, (34)
and construct their distribution P(y) to be such that
P(y)dy is the probability of finding an intensity in the in-

terval dy around y. To find this distribution in the GOE
limit, we define the normalized vector |a) by

la)=Tli)/¢i| T T]i ) . (35)

The distribution P (x) of Eq. (32) provides, then, the dis-
tribution of the matrix elements { f|T|i ), while the dis-
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tribution P(y) given in (33) is the transition intensities
distribution.

An alternative derivation of the Porter-Thomas distri-
bution is through the principle of maximal entropy [13].
It has a conceptual and practical advantage since it is de-
rived not for an ensemble of Hamiltonians. For a given
state |i ), the intensities satisfy a sum rule

ST P=GITIT) ) (36)
7

Rewriting (36) in terms of the amplitude distribution
P(x) we have

[ x*Pxiax =1 GIT'TIEY (37)

where N is the total number of states. The sum rule (37)
always holds irrespective of the nature of the system’s dy-
namics. To choose a distribution that is least biased
among all distributions P(x), which satisfy (37), we max-
imize the entropy

S[P]=— [ P(x)InP(x)dx . (38)

We find a distribution P%x) of the form (32) with
(x2)=—1]\7<i|TTT|i). (39)

Since the intensity y =x2, we have P(y)=2P(x)(dx /dy)
and using Eq. (32) we obtain for P%(y) the Porter-Thomas
distribution (33). Thus we may interpret the Porter-
Thomas distribution as the one that maximizes the entro-
py when no constraints are imposed, except for the ever
present sum rule (36).

P%x) is the expected distribution in the chaotic limit.
In general, however, the distribution (32) need not agree
with the data. We can then use (32) as a reference distri-
bution. The deviation of a distribution P(x) [that
satisfies the constraint (37)] from P%x) can be measured
by the difference I of their entropies
P(x)

o) dx , (40)
x

1=S[P°]—S[P]= [ P(x)In

where we have used [P (x)InP%x)= [ P%x)InP°(x)dx
[which follows from the fact that both P(x) and P%x)
satisfy the same constraint {(x2)]. The quantity [ is also
known as the information content [32] of P relative to P°.
It is always positive except when P = PO, where I =0.

When a dynamical system is making a transition from
chaotic to regular motion, we expect to find deviations
from P%x). To describe such deviations quantitatively
we have introduced the y? distribution in v degrees of
freedom [13]

P,(y)= Ay** lexp(—vy/2{y)), (41)
where
4= (v/2(y>)”2 ) (42)
T(v/2)

The Porter-Thomas distribution is obtained for v=1. We
have found [14] that the generic situation is that as a
chaotic system becomes classically more regular, the
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value of v decreases monotonically from 1 towards O.
The reason is that as the system is approaching a regular
behavior, selection rules become operative. Few transi-
tions are quite strong, while many others are very weak.

It is possible to derive the distribution (41) by imposing
the constraint

(iny)= [dyny P(y), (43)

in addition to (37). Maximizing the entropy with the two
constraints (37) and (43) we obtain the distribution (41).
The value of the constraint for the distribution P, (y) is

(In(y/{y M) =9(v/2)—In(v/2), (44)

where Y(z)=d InI'(z)/dz is the psi function. The
Langrange multiplier conjugate to the constraint (44) is
(v—1)/2 and vanishes for the Porter-Thomas distribu-
tion v=1. The quantity (44) is plotted versus v in Fig. 5.

As v decreases, the distribution (41) becomes wider for
a fixed (y ). This can be seen from the expression for the
variance of y

(=N =2(p)/v.

Figure 6 shows several x? distributions in v degrees of
freedom for v=1, 0.5, and 0.2, which have the same {y ).
To exhibit the important region of weak intensities y, we
have plotted the distribution P, (Iny), which is given by

(46)

(45)

v/2

P (Iny)<y*?exp(—vy /{y)) .

To find v for a given intensity distribution P(y), we can
minimize the information content of P relative to P,

P(y)

1= [P(y)n P.00)

dy . (47)

In practice, we find P(y) by histogramming the calculat-
ed intensities into a certain number of bins. The integral
(47) can then be expressed as a discrete sum. It can be
shown [33] that the condition of minimizing I in Eq. (47)
with respect to v is that the two constraints {(y) and
(Iny ), calculated with P (y) are equal to those calculat-

V(v/2)—n(v/2)

~10 L I I I
0 0.5 1 1.5 2

FIG. 5. The second constraint In(y /{y )) vs v [Eq. (44)].
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P(y)
0.6 -

Qny

FIG. 6. The y? distribution in v degrees of freedom P, plot-
ted vs Iny for v=1 (solid line), 0.5 (dashed line), and 0.2 (dash-
dotted line).

ed with P(y). An operational way to calculate v is then
to determine {y ) and {In(y /{y ))) from the known dis-
tribution P(y). We find v by inverting Eq. (44).

B. Secular variations with energy

The fluctuation properties discussed in Sec. IV A are
local in energy. Since in practice the final states are
spread over a wide range of energies, we expect that the
smooth envelope of the spectrum will vary with energy.
The fluctuations that we should consider are with respect
to this smooth envelope. It is, therefore, important to
scale the intensity variations by their secular, smooth
variation. This is accomplished by using Gaussians of
width y (to be chosen properly) centered around each lev-
el E;

—(E—E;)*/2y? —(E'—Ef)z/Z'yz
e

S KSITIi) %
FEE)=*

—(E—E)?/2y? —(E'—E;V /2y
e

Se

Lf

(48)

FIG. 7. The averaged E2 intensity y(E,E’) for a transition
between energies E and E’ [Eq. (48)], plotted vs E’ for E =E;
(i =100th state) and for various values of y.
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1.0

0.8 1
0.6‘1
0.4

0.2

0.0 T 1

FIG. 8. v vs spin J for y=-—1.05 (diamonds), —0.5
(squares), and —0.01 (asterisks). Notice the decrease in v (for
x=—0.5) at high spins (J =20 #).

We then renormalize the intensities y by dividing out
their smooth part

y=I{fIT\i)|*/y(E =E;,E'=E,) .
The statistics is then done on the y’s defined by (49). It is

(49)
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important to choose y properly. ¥y should be large
enough so that the fine structure of the intensities will not
show up. Yet it should not be too large so as to wash
away the secular energy variations of the average intensi-
ty.

In the analysis of low-lying collective states of nuclei,
E?2 transitions play an important role. We have chosen
T(E?2) to be the operator given by Eq. (4), and the inten-
sities y are then the corresponding B (E2) values

1
27,+1

y=B(E2i—f)= [KAITEDD . (50)

We have analyzed E2 transitions within a given
spin/parity class as well as between different spin/parity
classes.

In order to use a constant ¥ in Eq. (48), it is important
to first find the unfolded energy levels E; (which have a
constant mean spacing) and use them in Eqgs. (48) and
(49). To choose y, we calculated y(E,E’) for various 7’s.
An example is shown in Fig. 7 for the E2 transitions
8" 8" (N=25 and y=—0.5). The solid lines are

8——>6 6-——->4 4——>2 2-—-0
v=0.35 v=0.33 v=0.31 v=0.24
0.5 i 05 ft 05 !

f |ob
i x=—1.25

x=—1.05

x=-0.80

}f x=—0.50

A

0.0 =044 |%° =038 |%° =033 |°° p=o0zs

o5 4 |os5F 4 |osf A |osF A
- A i i1 | x=-0.15

0.0 P07 (%0 p=o1s |20 =015 |20 =013

o5 F 4 losF A losF 4 |os| A
A i i i x=-0.01

0.0 EEZ N g EEZ W o EEZ 5\ 0.0 5' o

-5 0 -5 0
{ny fny

Iny

-5
Zny

FIG. 9. The E2 intensity distribution vs Iny for the transitions between states with different spins (J—J —2). The dashed lines are
the Porter-Thomas distribution and the solid lines are the fit to a ¥ distributions with v degrees of freedom.
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(E,E’) versus E’ for a fixed value of E given by E =E,
(where i =100th state). The + symbols denote |y ;|* for
the same initial |i ) state and various states |f). We see
that for y =0.5 and y =1 y (E, E’) is not smooth enough.
Reasonable values for ¥y are 1.55y <2.5. We have
chosen y =2.

C. B(E2) fluctuations versus Y and spin

Using the eigenstates of the Hamiltonian (1) and the
E?2 transition operator (4) we have calculated the J"—J7
B(E2)s. We renormalized them according to the
method of Sec. IV B using ¥ =2, and histogrammed them
into 20 bins, equally spaced in Iny. The left-hand column
of Fig. 2 shows examples of these distributions P(y) for
the 67 —6™" transition (N =25) and various values of y.
The dashed lines are Porter-Thomas distributions (31)
with the same (y ) as the actual P(y) distributions. The
solid line is the fitted distribution P, (y) with v deter-
mined as explained in Sec. IVA. We see that near the
regular limits (y = —V7/2 and y=0) the values of v are
the smallest. However, in the intermediate region the
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value of v increases towards the GOE value of 1. This is
consistent with the classical calculations that suggest the
onset of chaos for intermediate values of y. The maximal
value of v (in the above example) is v=0.7 for y~= —0.6.
This suggests that for the most “‘chaotic” value of y, we
have not reached complete chaos. The classical analysis
does show that the onset of chaos is also energy depen-
dent and that certain energy regions continue to stay reg-
ular even for x = —0.6. The intensity fluctuations corre-
late well also with the spectral fluctuations as seen from
Fig. 2.

The spin dependence of v is shown in Fig. 8 for several
values of y (—1.05, —0.5, and —0.01). In the chaotic
region (Y= —0.5) we see a significant drop in the value
of v at high spins. This agrees with our conclusion from
Sec. III D that the degree of chaos is reduced at high
spins.

D. E?2 transitions between states with different spin

It is also interesting to analyze the statistics of the E2
transitions between states with different spins. These in-

6-——-5 5-——-»4 4-—>3  3-—52
v=0.29 v=0.29 v=0.22 v=0.21
o5 A |os5F A |osf A o5 A
it | x=—125
0.0 v=6.45 0.0 V=6.42 0.0 u=6.32 0.0 V=6.31
o5+ A |osF A |os|F A |os [ A
i fa &} /i | x=-1.05
7 \
A < 0 j\ 0.0 J
00 P05 |20 p=o57 |°° =040 |°° p=038
0.5 A (05 L1105 A 105 F i
i i | x=—0.80
00 P08 |°%° p=os6 |°° p=040 |°° =038
0.5 4 |05 A o|losF A |os | A
A it | x=—0.50
N LALLLA
/‘ —
0.0 02030 |%° p=030 |°%° p=o02z |90 f=oz3
0.5 i |05 | A |05 i 05 | i
it |x=-0.15
/7 A 7| LA
0.0 0.0 7\ 0.0 F—=—>340.0 F—=—-
v=0.15 v=0.14 v=0.12 v=0.12,
0.5 A lob A o5 | A o5 f
f1 [x-—oo
0.0 BN 1o EEZN o BEFSA [ EX2
-5 0 -5 0 -5 0 -5 0
4 ny Iny Iny Iny
FIG. 10. Asin Fig. 9 but for the E2 transitions J —J — 1.
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clude transitions that occur within the same rotational
band and in between different bands. Figures 9 and 10
show E2 distributions for transitions of the type
J—J—2 and J—J —1, respectively. Their dependence
on Y is consistent with all of our previous results: v is
small near the integrable limits (y=—v"7/2 and y=0)
and is closest to the Porter-Thomas value in the inter-
mediate regime (Y= —0.8 to —0.5). For a given Y, v gets
larger as the spin J increases (for low spins J <8#). Also
the transitions J—J —1 are less regular (i.e., have larger
v) than the transitions J —J —2.

V. FINITE N EFFECTS

The results of the quantal statistics discussed in the
previous sections correlate well with the classical
analysis. There are, however, several finite N effects. At
low spin (J $10) we observe a staggering effect between
even and odd spins (excluding J =3) where the even spins
are somewhat more chaotic than the odd spins (see, for
example, y= —0.8 and —0.5). This effect is easier to see
in v, for which the statistical error is much smaller than
the corresponding one for w. For example at y=—0.8,
v=0.68 and 0.72 for J=4 and 6, respectively, while
v=0.52 and 0.59 for J =5 and 7, respectively. For
higher spins this quantal effect quickly disappears.

Another peculiar quantal effect is seen for the J =0 and
J=3 (Fig. 11) statistics. Near the SU(3) limit
(x=—1.25) they are much less regular (0w=0.5 and 0.65
for J =0 and 3, respectively) than is the case for other
spins. To explain this effect, note that at the SU(3) limit
(x= —V7/2) for J =0 and 3 states there are no states
with different K’s that belong to the same SU(3) represen-
tation. For other values of J such states exist and are de-
generate, therefore causing a stronger regularity near the
SU(3) limit. For J#O0 the only allowed E2 transition in
the SU(3) limit are those that do not change the SU(3)
representation. Since for J =3 only one value of K exists
in each SU(3) representation, only the diagonal 3t —37
elements do not vanish. Thus near the SU(3) limit, there
are not enough strong 3*—3" transitions to have a
significant decrease of v from the GOE value.

Another interesting quantal effect is the saturation of
the A, statistics, namely the flattening out of the A; curve
at some nonuniversal finite L. This effect was explained
semiclassically by Berry [11] using the level density ex-
pansion of Gutzwiller [34] and Balian and Bloch [35].
According to this expansion, the zero length classical tra-
jectories contribute to p,,(E), while the fluctuating part
of the level density is a sum over contributions from finite
periodic trajectories each contributing a phase of
exp[iS(E)/#A] with S(E) the classical action along the
respective trajectory. For a given L, the periodic orbits
that contribute to A3(L) are the ones whose action
changes over the length L. They have a period
T X #ip,,/L. As L increases above the value L ,,

Lmax=ﬁpav/Tmin ’ (51)

where T, is the shortest period, all trajectories contrib-

Y. ALHASSID AND A. NOVOSELSKY .
J=3
P(y) As(L) P(s)
v=0.92 [ o065
0.5 1 0.5 1 1.0 .
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FIG. 11. The spectral and E2 intensity statistics for J =37
states. See Fig. 2 for details.

ute and A;(L) will saturate.

To find how L_,, scales with the boson number N, we
need to know the dependence of # and p,, on N. To find
#i we estimate the number of states for a system in five de-
grees of freedom by

v _ 1
27k 12004°
where V=217 /10I'(5) is the volume of the unit sphere in

ten dimensions. Since the number of states in the quantal
model is =~N°/120, we obtain

—1/5
f=10 " 063 (53)

=3

N N

Py is the average density of states for given values of the
angular momentum and its projection. Since p,, <N 3 we
obtain

Lmaxchz/Tmin . (54)

(52)

Thus the saturation length scales as N>.

VI. CONCLUSIONS

We have studied the onset of quantum chaos in the
low-lying collective states in nuclei, using the interacting
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boson model. Both spectral and E2 intensity fluctuations
were analyzed, and chaos was observed in the transition
region between rotational and y-unstable nuclei. The re-
sults are consistent with the classical analysis performed
elsewhere [24]. The connection between quantum and
classical chaos is confirmed in systems with more than
two degrees of freedom.
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