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Isospin-induced effects in hot deformed A =90 nuclei
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Isospin fluctuations and triaxial deformation are incorporated in the statistical theory of hot nuclei,
and various nuclear parameters are extracted as functions of isospin, temperature, and deformation for
nuclei around Zr. Shape changes are observed with changes in isospin and temperature. Above a partic-
ular temperature the shape is found to remain unchanged for all isospins. Constant entropy lines are
drawn and yrast traps are observed. The yrast traps at the low entropy values indicate the neutron-

proton shell closure for the systems considered. A shift in the yrast minima towards lower isospin is pre-
dicted with increase in entropy. At higher entropy values yrast minima are found to disappear. The
neutron-proton asymmetry parameter calculated for A =90, 92, 94, and 96 is found to depend strongly
on deformation and isospin at low temperatures. For all these nuclei the asymmetry parameter is found
to be a maximum for isospins corresponding to stable neutron-proton combination. The single-particle
level-density parameter for A =90 extracted as a function of temperature for various isospins shows a
minimum at a total isospin of ~=5, indicating the higher stability of this isospin state. At higher tem-

peratures the empirical value of a = A /10 is reproduced.

PACS number(s): 24.60.—k, 21.10.Ma, 21.10.Hw, 27.60.+j

I. INTRODUCTION

Heisenberg [1] and Wigner and Feenberg [2] treated
neutrons and protons as nucleons in two different isospin
states and extracted many nuclear properties. Ra-
jasekaran et al. [3] studied the efFect of shell structure on
iso spin multiplets and extracted the neutron-proton
asymmetry parameter as a function of temperature, biaxi-
al deformation, and isospin.

In this work the earlier calculations [3—16] have been
extended to include triaxial deformation into the picture
and calculations are performed for the nuclei around Zr.
The reason for choosing nuclei around Zr is that experi-
ments [17] in which Zr is formed as a fused-compound
system in reactions such as Ni( Si,2pn) Zr have been
recently reported. The present work brings out the fol-
lowing important points.

(1) The neutron-proton asymmetry parameter is
strongly dependent on the shell structure, which is gross-
ly different for various deformation of the nucleus. In
fact, there is a strong possibility for the nuclei to be triax-
ially deformed, and this fact is given importance in this
work.

(2) The asymmetry energy contributions are found to
be less significant at large temperatures because of the
fluctuations in the occupation probabilities of the
different single-particle states with a consequent decrease
in the neutron-proton asymmetry parameter at these tem-
peratures. The dependence of the asymmetry parameter
on deformation is very strong at low temperatures. The
value of this parameter is approximately equal to 19 MeV

at a temperature of 0.4 MeV and is about 8 MeV for a
temperature of 1.2 MeV.

(3) The shape of the nuclei shows a strong dependence
on the isospin at low temperatures and remains
unaffected by isospin at higher temperatures.

(4) The single-particle level-density parameter is found
to approach a constant value almost equal to the empiri-
cal value A /10 [18,19] at high temperatures, irrespective
of the isospin.

II. METHOD

A. Triaxially deformed Nilsson oscillator potential

For rotating nuclei it has been assumed that the nu-

cleons move in a triaxially deformed Nilsson harmonic-
oscillator potential with the deformation described by 5
and 0. The triaxial Nilsson Hamiltonian is

I=p /2m +(m /2)(cozxz+co y2+co2zz)

+Cl s+D(l —2(l )) .

The three oscillator frequencies are given by

co„=coo[1—(25/3) cos(8 —2m. /3) ],
cur =coo[1—(25/3) cos(8+ 2m. /3) ],
co, =coo[1—(25/3) cos0],

with the constraint that the total volume remains con-
stant such that
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co coy co cop const

The deformation parameters 6 and 0 are varied in the
range 5=0.0—0.6 with 65=0. 1 and 8= —180 to —120'
with 60=20. For the Nilsson parameters x, p and for
fu'oo the following values [20] are chosen:
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~=0.093,
@=0.15,
fi8)0=45. 3 MeV/( A ' +0.77) .

(3)

The partition function in Eq. (4) does not include the
Coulomb interaction, which will be added subsequently.
The average number of particles, average total energy,
and z component of the total isospin are projected out of
the partition function by the following equations:

B. Statistical theory

In the statistical formalism, we start with the grand
canonical partition function Qo(a, P, y ) for a system of A

nucleons at a temperature T=l/P. The Lagrangian
multipliers a, P, and y conserve the total number of par-
ticles, total energy, and total isospin of the system
[24,25]:

Qo(a, g, y ) = g exp(aN; PE, +y~;—) . (4)

The single-particle levels generated with the above pa-
rameters are used for the nucleons since protons and neu-
trons are treated as nucleons in two different isospin
states. The triaxial Nilsson Hamiltonian is diagonalized
[21] in the cylindrical representation [22] using the ma-
trix elements given in Ref. [23]. The triaxially deformed
single-particle Nilsson levels are generated for N =5 and
the number of levels is found to be sufficient for the range
of temperatures used in our calculations. The necessity
of renormalizing the total energy does not arise here,
since we are interested only in the energy differences be-
tween the excited and ground states of the system and not
in the actual magnitude of the energies.

(N)=A = 8 lnQO

Ba
(5)

8 1nQO
E

ap
8 1nQO

1 (7)
ay.

The corresponding equations in terms of the single-
particle energies c,; are

(N)=A = gn;++ gn;
(E)= g (n;++n; )E;,

(r) = gn, +r++ gn, r, (10)

where n,
+ and n; are the occupation probabilities at

single-particle energies c; of neutrons and protons with
isospin projections ~,+ = + —,

' and ~, = —
—,', respectively,

n,
+ = [1+exp( —a+Pe, +y r,+ ) ]

n, =[1+exp( —a+Pe;+ye, )]

The occupation probabilities are displayed in Fig. 1 as a
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FIG. l. Occupation probabilities n; (la and 2a) for z,+ and n; (lb and 2b) for v, as a function of the single-particle energies for
A =90 corresponding to a total isospin of S. The solid curves are for T =0.3 MeV, whereas the dashed curves are for T = 1.2 MeV.
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function of c, for the two states w,
+—.

The coupled nonlinear equations (8) and (10) have to be
solved for the Lagrangian multipliers a and P for a given
mass number A, temperature T, and z component of the
total isospin r [=(N —Z)/2] of the system. The energy
of the system is then calculated using Eq. (9). The corre-
sponding excitation energy E*(r,T, 5, 8) and the entropy
S(r,E*,5, 8) are obtained using the following expres-
sions:

A=90

T=1.1 MeV

A

E'(r, T,5, 8)= g (n,++n, )e, —g e, ,

S (r,E',5, 8)=S++S
where

S+ = —g [n,+ Inn;++(I —n;+) ln(1 n;+)—],
S = —g [n; inn; +(1 n; —)ln(1 n; —)] .

(12)

(13)

(0 -10)
-'1 80

T =0.e M~V

The level densities for various excitation energies and
isospins of the system are given by

p(r, E*,5, 8)=Pexp[S(r, E',5,8)]/S,„. (14)

The normalization factor S,„depends upon the dimen-
sionality of phase space, which is the number of eigen-
states used [14].

The total energy E of the system for each temperature
T is minimized with respect to the deformation parame-
ters 5 and 8. The lines of constant entropy are then
drawn in the E'-vs-v plane for A =90, 92, 94, and 96
(the results are displayed in Figs. 6—9). Collective deexci-
tations along the constant entropy lines are possible
through the emission of beta particles.

(3-1o)
-180

T= 0.3 MeV

C. Neutron-proton asymmetry parameter

The neutron-proton asymmetry parameter a„„ is ex-
tracted using the approach given in Ref. [3]. In terms of
the isospin ~, the variation of the binding energy with iso-
spin is given by

0
0

(4-e)
0.1
(7)

0.2 0.3
I

0. 5 0.6

aa aM

LDM

= —(M„—M )
—8a„„r/A 2a, r/A '—

+a, (A —1)/A ' (15)

FIG. 2. Isospin trajectory in the 5-8 plane showing the calcu-
lated minimum-energy shape as a function of isospin for A =90,
at different temperatures. The convention used in shape param-
etrization is as follows: For 8= —180' the shape is oblate with
the nucleus rotating around the symmetry axis; for 8= —120'
the shape is prolate with the nucleus rotating around the per-
pendicular axis; and for other values, the nucleus is triaxial.

The corresponding expression in the statistical theory
can be obtained using the partition function method as

M BQ

shell

where the thermodynamical potential 0 (free energy),
which is the negative of the binding energy, is related to
the partition function as

= —Tr $ n, +(1 n,
+

).r,+2— Q = exp( —PQ) . (17)

+gn; (1 n; )r, —

—2a, r/A ' +a, ( A —1)/A 'i', (16)

The first term on the right-hand side of Eq. (16) has been
obtained from the partition function as

8(?' lnQ0 ) 8 inQ gy=T
a-

=
ar . a-
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Equation (16) gives the variation of the binding energy of
the system with the isospin ~ and can be identified with
the liquid-drop-model neutron-proton asymmetry term
8Q

$y
7 / 3 The first differential on the right-hand side is

the net isospin, as can be seen from Eq. (7). Using Eqs.
(5)—(11),we have

Bp g n;+(1 n,—+)r,+ + g n, (1 n—
, )r,

(19)

The other terms which are due to the classical Coulomb
energy of the nucleus are the same as in the liquid-drop
model. From Eqs. (15) and (16), the neutron-proton

asymmetry parameter is calculated by minimizing the to-
tal energy of the system for each temperature with
respect to the deformation parameters 5 and 0. Calcula-
tions are performed for A =90, 92, 94, and 96 (the results
are displayed in Figs. 10—13).

D. Single-particle level-density parameter

For the calculation of the single-particle level-density
parameter, the formulation of the shell correction
method of Ramamurthy, Kapoor, and Kataria [13] for
estimating the excitation energies of the system with
respect to the ground-state energies of the shell model is
adopted. The excitation energy E* of the system is ob-
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T =1.0 MeV

A=94

T = 0.9M8V
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FIG. 3. Isospin trajectory in the 6-0 plane showing the calcu-
lated minimum-energy shape as a function of isospin for A =92,
at different temperatures.

FIG. 4. Isospin trajectory in the 6-6 plane showing the calcu-
lated minimum-energy shape as a function of isospin for A =94,
at different temperatures.
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tained using the equation

E'(r, T,5, 8)=E(r, T, 5, 8) E—o, (20)

a(r, T,5, 8)=S (r,E', 5,8)I4E'(r, T, 5,8) . (21)

Calculations are performed for A =90 (the results are
displayed in Fig. 16).

A=96
T =0,7McV

where Eo is the ground-state energy of the nucleus. The
single-particle level-density parameter a(r, T,5, 8) as a
function of isospin ~, temperature T, and deformation pa-
rameters 5 and 0 is extracted using the equation

III. RESULTS AND DISCUSSION

The occupation probabilities n,.
+ and n,- for the posi-

tive and negative projections of the single-particle isospin
states in each single-particle level c; are different as the
degeneracy of the isospin states is removed because of ro-
tation in the isospin space. This is evident from Fig. 1,
where these occupation probabilities are shown as a func-
tion of c; at low and high temperatures. Curves la for
n;+ and 1b for n; correspond to a total isospin v =5 at a
temperature of 0.3 MeV for A =90. Curves 2a and 2b
correspond to a temperature of 1.2 MeV for the same iso-
spin of the system. It is evident that for a cold nuclear
system the occupation probability is unity up to the Fer-
mi level, and thereafter it is zero. With increase in tem-
perature the occupation probabilities decrease for the lev-
els below the Fermi energy and increase for the levels
above the Fermi energy. These curves help in under-
standing the way of generating the net isospin of the sys-
tem which can be obtained from the graph as

r= Jdn, +r,++.f dn, (22)

The effect of temperature and isospin on the shape of
nuclei was not studied hitherto in detail. The aim of this
work is to study the combined effects of these two param-
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I

180'
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FIG. 5. Isospin trajectory in the 5-0 plane showing the calcu-
lated minimum-energy shape as a function of isospin for A =96,
at different temperatures.
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FIG. 6. Constant entropy lines for A =90.
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FIG. 7. Constant entropy lines for A =92. FIG. 8. Constant entropy lines for A =94.

eters on the shape of nuclei in the neighborhood of Zr.
The hodographs of the deepest energy minimum of Zr as
functions of total isospin ~ and deformation parameters 5
and 0, calculated at different temperatures, are shown in
Figs. 2 —5. From Fig. 2, for A =90, we find that the nu-
cleus is prolate for isospins from 0 to 3, spherical for iso-
spins from 4 to 6, oblate for isospin 7, and it tries to
achieve a prolate shape at higher isospins. These defor-
mation fluctuations vanish at a high temperature of about
T =1.1 MeV, because of the vanishing isospin and shell
effects at this temperature. From Fig. 3, for A =92, we
note that at T =0.4 MeV the shape is prolate for initial
isospins, becomes spherical for further isospins, changes
to oblate for isospin 9, and finally becomes spherical for
isospin 10. These shrinking and stretching effects in the
deformation vanish at 1.0 MeV for Zr. Similar behav-
ior is observed for Zr, as is evident from Fig. 4. In the
case of Zr, the shape changes from prolate for lower
isospins to spherical for higher isospins, as depicted in
Fig. 5. These changes in the shape of the nuclei suggest
an impression that an interplay among isospin, tempera-
ture, and deformation is responsible for the observed be-
havior of the nuclei.

In the excitation energy versus isospin plane, constant
entropy lines are drawn and displayed in Figs. 6—9.
These curves are drawn after minimizing the total energy
of the system with respect to deformation for each tem-
perature. During isospin Guetuations [26], eolleetive
deexcitation along the constant entropy line may take

)
X

LLJ

20

S=18.5

12

S= 16

Sr@ 9

0;
0

1sospin (5)

FICx. 9. Constant entropy lines for A =96.
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place and the system may be trapped in one of the isobar-
ic states with a certain net isospin having relatively lower
energies than the neighboring states. As reported in ear-
lier calculations [3], yrast traps [26] are obtained in the
isospin space. The occurrence of these traps is due to the
interplay between total isospin, deformation, and temper-
ature. In Fig. 6, for A =90 at an entropy of S =3, the
yrast trap obtained at the isospin ~= 5 corresponds to the
stable neutron-proton combination of X =50 and Z =40.
However, in the case of higher entropy lines, the yrast
minima for isospin shift toward the lower side of the iso-
spin axis. This shift in the yrast minima may be due to
the decreasing influence of the isospin on the system at
higher temperatures, perhaps with an increasing
influence of the total angular momentum on the system,
as reported earlier in the case of Ca [15]. This is clear
from the fact that at higher temperatures the rotation of
the system plays a dominant role compared with the total
isospin, which displaces the system from the stable
configuration.

Figures 7—9 represent constant entropy lines for
A =92, 94, and 96, respectively. In all these cases the
yrast minima at lower entropy values correspond to the
neutron shell closure at X =50. But at higher entropy
values, the yrast minima indicate a shift from the stable
configuration for A =92 and 94, as in the case of A =90.
However, at still higher entropy values, the yrast minima
are found to disappear because of vanishing shel1 effects.

The variation of the asymmetry parameter as a func-
tion of total isospin and temperature is depicted in Fig.
10 for A =90. This parameter is obtained after minimiz-
ing the total energy of the system with respect to defor-
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FIG. 11. Variation of asymmetry parameter with isospin at
various temperatures in the case of A =96 for minimized total
energy with respect to deformation.
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FIG. 12. Variation of asymmetry parameter with isospin at
various temperatures in the case of A =92 for minimized total
energy with respect to deformation.

FIG. 10. Variation of asymmetry parameter with isospin at
various temperatures in the case of A =90 for minimized total
energy with respect to deformation.
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FIG. 16. Variation of the single-particle level-density param-
eter with temperature for various isospins of the isobar A =90.
The numbers on the curve refer to the net isospin of the system.

the stable configuration of Z =40, N =50 for A =90, and
Z=40, N=56 for A=96. The maximum value of the
asymmetry parameter in both cases is found to decrease
as 0 changes from —180' to —120', implying the effect of
shape transition from oblate to prolate on the asymmetry
energy.

Figure 15 shows the variation of level density as a
function of temperature and isospin for A =90. The
striking feature of the graph is that the level density cor-
responding to the total isospin ~=5 is the lowest at
reasonably low temperatures. This isospin incidentally
implies the closed shells at N =50 and Z =40. The level
density for isospins both above and below this isospin is
much higher.

In Fig. 16, the variation of the single-particle level-
density parameter a (r, T, 5, 8) with temperature for vari-
ous isospins of the isobar A =90 is depicted. The level-
density parameter corresponding to the isospin v=5 is
minimum at low temperatures, indicating the higher sta-
bility of this state compared with the other isospin values.
At higher temperatures, however, the effect of the isospin
is less significant and the curves converge to the value
predicted by experimental observation, which is given by
the empirical relation a = A /10.

We conclude that the statistical theory with the in-
clusion of isospin, shape, and temperature degrees of free-
dom with the single-particle levels as the only input pre-
dicts the most stable isobar for a given A. In the results
presented here, the interplay between the various degrees
of freedom has been clearly brought out. However, pair-
ing correlations and rotation of the nuclei may also be in-
corporated into the formalism for a complete study.
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