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Inelastic scattering of protons, He, and He at 30 MeV/nucleon from ' Er and ' Yb
and quadrupole moments of the optical potential
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Elastic and inelastic scattering of polarized protons, 'He particles, and He particles from ' Er and"Yb have been measured at the incident energy of 30 MeV/nucleon. Coupled-channels analyses have

been performed using the deformed optical potentials (DOP's) based on the symmetric rotational model.
The quadrupole (Q2) moments of the real parts of the DOP's for the He scattering have been found to
be larger than those of the charge distributions by about 5%. They are well explained by the folding
model calculation with the density-dependent M3Y interaction. The Q2 moments for the proton and the
'He scattering are almost equal to or smaller than the charge quadrupole moments, and are not repro-
duced by the conventional folding model. These discrepancies suggest that there are other important re-

action mechanisms not being explained in terms of the folding model with the effective interaction. For
the proton scattering, the explicit coupled-channels calculations including neutron pickup channels are
found to reduce largely the discrepancies in the Qz moments. Breakup channels are expected to give a

significant contribution to the small Q2 moments of the DOP's for the 'He scattering.

PACS number(s): 25.40.Ep, 25.55.Ci, 24.10.Ht

I. INTRODUCTION

Intensive study of the 65-MeV proton inelastic scatter-
ing from lanthanide and actinide nuclei has shown that
the multipole moment of deformed optical potentials
(DOP's) is a powerful tool to investigate nuclear reaction
mechanisms from a microscopic point of view [1—3].
These scattering data have been well reproduced by the
coupled-channels analyses using the DOP's and the mul-
tipole moments have been determined precisely. It has
been found that the quadrupole (Q2) moments of the real
part of the DOP's are larger than those of the charge dis-
tributions and that their values are well explained in
terms of the density dependence of the effective interac-
tion, which arises from many-body effects of the
nucleon-nucleon interaction in nuclei.

In considering the density dependence of the effective
interaction from the multipole moments, folding models
play an important role. If one obtains a deformed optical
potential U(r) by folding a density-independent interac-
tion V(r) over a matter distribution p„(r) of a deformed
nucleus,
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where the multipole moment of a function f (r) is defined
as follows:

ff (r)r Yzo(8)dr

ff(r)dr
(3)

The nucleon-nucleon interaction in nuclei is, however,
expressed in a density-dependent form involving many-
body properties of the interaction, and the multipole mo-
ments of the DOP's are not always the same as those of
the matter distributions. Thus, the differences between
the multipole moments of the DOP's and those of the
matter distributions reflect the density dependence of the
effective interaction, or the many-body effects of the
nucleon-nucleon interaction in nuclei.

It is important to note that Eqs. (1) and (2) hold
without any limitation on the interaction range. This
means that we can discuss the density dependence free
from the range of the effective interaction. Furthermore,
from their definition, the multipole moments of the
DOP's are sensitive to the nuclear surface region where
most of the nuclear reactions take place.

It has been shown from the ' ' Er(p, p') and the
'74'76Yb(p, p') reactions at E =65 MeV that the Q2 mo-
ments of the real parts of the DOP's are 4—6% larger
than those of the charge distributions [1]. The Q2 mo-
ments for Hf, W, U, and Th isotopes were found to be
2—4% larger than those of the charge distributions [2,3].
These large Q2 moments of the DOP's are mainly attri-

U(r)= f p„(r„)V(~r —r, ~)dr„,

the multipole moments of the folded potential and those
of the matter distribution are equal to each other [4]:
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buted to the Pauli-blocking effect involved in the density
dependence of the effective interaction. Since this effect
reduces the interaction strength when the density of nu-
cleons is high, the Q2 moment of the folded potential be-
comes larger than that of the matter distribution. In fact,
the Q2 moments of the DOP's for these reactions have
been we11 reproduced by the folding model calculations
[1—3] based on the DDM3Y (density-dependent M3Y) [5]
and the CEG (complex effective Gaussian) interaction [6],
assuming the multipole moments of the neutron density
equal to those of the proton density [7].

In contrast to the excellent explanation of the folding
model for the Q2 moments for the 65-MeV protons, it has
been pointed out recently that the Qz moments of the
real parts of the DOP's for the ' ' Er(d, d') and

Yb(d, d') reactions at Ed=56 MeV are smaller
than, or nearly equal to, those of the charge distributions
[8]. The Q2 moments for the 56-MeV deuteron scattering
from Sm isotopes are also nearly equal to those of the
charge distributions [9]. These Qz moments cannot be
explained by the folding model calculation because, as
mentioned above, the folding calculation provides the Qz
moments larger than those of the matter distributions.
There are two possibilities to explain the discrepancy be-
tween the Qz moments of the DOP's for the 56-MeV
deuterons and those of the folded potentials [8]. One is
that this is due to the effect of the breakup channels of in-
cident deuterons, which is not treated within the frame-
work of the folding model. Although there exists no ex-
plicit calculation including the breakup channels for
these reactions, this contribution is expected to be
significant in the case of the deuteron scattering [10].
The other explanation is that the energy dependence of
the effective interaction may not be correctly treated at
the 30-MeV/nucleon region. It is, however, hard to draw
such a conclusion from the experiment of deuterons
where the effect of the breakup channels is not negligible.
Therefore, these two explanations would be only qualita-
tive ones.

Inelastic scattering of other light ions at the 30-
MeV/nucleon region from the deformed nuclei is expect-
ed to provide more valuable information for the micro-
scopic study of the nuclear reaction mechanisms through
the multipole moments of the DOP's. These multipole
moments can be determined precisely because these nu-
c1ei have stable and static deformation, and the excita-
tions of the rotational levels are well described by the
coupled-channels analyses based on the DOP's. In this
work, we measured elastic and inelastic scattering of po-
larized protons, He particles, and He particles at the in-
cident energy of 30 MeV/nucleon from ' Er and ' Yb.
Since the measurements were performed at the same in-
cident energy per nucleon, the ambiguities arising from
the energy dependence of the effective interaction can be
eliminated in comparing the Q2 moments of the DOP's
for the different projectiles with each other. The inelastic
scattering of the composite projectiles wi11 give us a cri-
terion for the effect of the breakup channels on the
DOP's. He particles are, like deuterons, weakly bound
particles and the effect would be more significant on the

DOP's for the He particles than those for the He parti-
cles. For the proton scattering, discussions can be done
free from the breakup channels.

II. EXPERIMENTAL PROCEDURE
AND DATA REDUCTION

The experiment has been carried out using 30-MeV po-
larized protons, 90-MeV He particles, and 120-MeV He
particles from the AVF Cyclotron at RCNP, Osaka Uni-
versity. The data have been obtained using the high-
resolution spectrograph RAIDEN [11).

The polarized proton beam was obtained by the
atomic-beam-type polarized ion source [12] whose details
are described in our previous paper [1]. The beam polar-
ization was monitored with the sampling-type polarime-
ter [13] during the experiment. A polyethylene analyzer
target of the polarimeter was placed in the beam line for
a few seconds to measure the beam polarization with an
interval of 10—40 sec. The measurements of the position
spectra were performed only when the polarimeter was
out of the beam in order to avoid any deterioration of the
beam quality due to the polarimeter target. The spin
orientation of the incoming protons was reversed every
0.5 sec in order to reduce the instrumental asymmetry.
The typical beam polarization was 80% and the typical
intensity was 20 nA on the target. The He beam and the
He beam were obtained from the internal ion source.

The typical intensities on the target were 250 nA for the
He beam and 140 nA for the He beam. The beam in-

tensities were adjusted to keep a proper counting rate
( ~ 600 cps).

The scattered particles were detected by a counter ar-
ray [14] at the focal plane, which consists of a two-
dimensional position-sensitive proportional counter (1.5
m length), a dual single-wire proportional counter (bE
counter), and a plastic scintillator (E counter). A pileup
rejector was employed to reduce the background in the
position spectra. Event triggers were generated by the
signals from the plastic seintillator. AB the signals from
the counter system were digitized by analog-to-digital
convertors and transferred to a PDP11/44 computer
through the raw data processor [15]. All the data were
recorded on magnetic tapes in the list mode. The event
trigger signals were also counted by a 100-MHz scalar to
correct the counting losses of the data-taking system.

The targets are self-supported enriched metal foils.
The enrichment of ' Er and ' Yb in the foils are 97.69
and 96.68%, respectively. The foil thickness is 1.0 and
2.0 mg/cm for Er, and 2.0 mg/em for Yb. The foil of
1.0 mg/cm was used for the measurement of the He
scattering at the forward angles (10'~8&,b~35 ). The
efficiency of the position counter was checked along the
focal plane, by measuring the elastic scattering with vari-

ous Bp values. The efficiency was uniform within the de-

viation of 1%. For the measurement of the proton
scattering, the solid angles were set to be 1.36 msr at the
forward angles (10' 0&,b 35 ) and 2.5 msr at the back-
ward angles (35'~ 8&,b

~ 95'). The current integration has
been checked by measuring the elastic scattering from

Al at O„b=50, where the cross section is known [16].
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For the measurement of the He and the He scattering,
the solid angles were set to be 0.336 msr at the forward
angles (10 ~8&,b~ 30'), 0.840 msr at the medium angles
(30 ~8&,b & 50 ), and 1.279 msr at the backward angles
( 50' ~ 8„b~ 62').

The position spectra at the focal plane were construct-
ed employing particle identification gates using the sig-
nals of the AE counter. The overall dead-time correc-
tions have been carried out for the position spectra. Fig-
ure 1 shows typical position spectra. We have evaluated
the peak areas of the 0+ and the 2+ states by use of the
peak-fitting code developed in our previous work [2].
The g values per data point in this peak-fitting pro-
cedure were 1.0-2.5. The statistical uncertainties of the

peak sums were calculated by solving the error matrices.
The experimental cross sections and the analyzing

powers are plotted in Figs. 2 —7. The error bars on the
experimental data represent only the statistical uncertain-
ties.

III. ANALYSIS

Coupled-channels analyses [17] have been performed
for three or four members of the ground-state rotational
band using the automatic search code ECIS by Raynal
[18]. It was assumed that these states are members of a
E =0+ rotational band of the axially symmetric rigid
rotor.
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do
5 5 XQ Q32

dQ
(4)

In these analyses, 3%%uo errors were added to the statisti-
cal uncertainties in a quadratic form as follows:

2 '2 1/2

6A =+[53 ]„„+0.03

These errors are required to include unknown systematic
errors and to prevent the g search from being trapped in
unphysical local minimums. In addition to the potential
parameters described below, the common normalization
factors of the cross sections were searched for.
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FIG. 2. Measured cross sections and analyzing powers for
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curves are the best-fit result of the coupled-channels analyses
based on the symmetric rotational model. The DOP parameters
are listed in Table I.
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A. Proton scattering

The DOP is written as follows:

UDop(r, g) = Vc „](r;rc(g),ac )—Vg f(r;rg (8),ag )—iW „f(r;r „(g),a )

+4ia, W, f(r;r, (8),a, )+ V],
— f(r;r], (8),a], )rr l,1 d

where f is the Woods-Saxon form factor:

f(r;r (8),a )=(1+exp[[r rj(8—) A '~
]/a& I )

The deformed radius r (8) is expressed in the following
form by using the symmetric rotational model:

rj(8)=r)~ 1+ g P~JYqo(8)
A, =2,4, 6

where the sufFix j represents each part of the potential;
the Coulomb part (Coul), the real part (R), the volume
imaginary part (wu), the surface imaginary part (ws), and
the spin-orbit part (ls). The 0+, 2+, and 4+ levels of the
ground-state rotational band have been included in the
fitting procedure. All the geometrical parameters
( V, r, a ) and the deformation parameters (@)except for
the Coulomb part were searched for.

For the search of the deformation parameters, we

adopted the moment scaling procedure used in our previ-
ous work [1—3]. In this procedure, the deformation pa-
rameters of the real part were searched for, and the de-
formation parameters of the other parts except for the

]os

Coulomb part were adjusted so that the form factor of
the other parts may have the same multipole moments as
the real part. The deformation parameters of the
Coulomb part were adjusted so that the multipole mo-
ments of the Fermi distribution are equal to those of the
charge distribution.

B. He scattering

The analysis was made with the following DOP:

UDop(r 8)= Vc ](r'rc(8) ac) Vgf(r'rg(8) ag )

iW „f—(r;r „(8),a „)

+4ia, W, f(r;r, (8),a„, ) .d
dp

The elastic- and the inelastic-scattering data for the 0+,
2+, 4+, and 6+ states of the ground-state rotational band
have been included in the fitting procedure. All the
geometrical parameters except for the Coulomb part
were searched for. The deformation parameters of each
potential part were independently searched for because
the moment scaling procedure described above did not fit
the data well. For the Coulomb part, the same deformed
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coupled-channels analyses based on the symmetric rotational
model.
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FIG. 6. Measured cross sections for the ' Er( He, He') reac-
tion at 120 MeV. The solid curves are the best-fit result of the
coupled-channels analyses based on the symmetric rotational
model.

however, performed with the unpolarized beam. At the
30-MeV/nucleon region, no experiment has been per-
formed using the polarized He beam, and the spin-orbit
part has not yet been determined. Furthermore, the form
factors of the spin-orbit part derived from the microscop-
ic calculations [19] are quite different from the conven-
tional form determined from the 33-MeV experiments
[20]. Since both of them explain the data equally well,
there would be ambiguities in the form factor of the
spin-orbit part. Therefore, in this work, the data were
fitted using the potential without the spin-orbit part. The
DOP's are written in the same form as Eq. (9). The
elastic- and the inelastic-scattering data for the 0+, 2+,
4+, and 6+ states of the ground-state rotational band
have been included in the fitting procedure. The poten-
tial parameters were searched for in the same way em-
ployed in the analysis of the He scattering. Fitting to
the data has also been tried including a spin-orbit part
whose form factor was set to be almost the same as those
obtained from the Pb( He, He) reaction at 33 MeV
[20]. The differences between the Q2 moments of the real
parts of DOP's obtained from this analysis and those ob-
tained from the analysis without the spin-orbit part were
about 1%. The spin-orbit part is, thus, considered to
play a minor on the Q2 moments of the real part.

The solid curves in Figs. 2 —7 show the best-fit calcula-
tions to the data. The DOP parameters are listed in
Table I. Very good fits have been obtained as shown in
the figures.
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radius and the diffuseness were used as those employed in
the analysis of the proton scattering.

C. He scattering

Since the He particle has spin of —,', the optical poten-
tial should have a spin-orbit part. This experiment was,

IV. DiSCUSSiONS

In this section, nuclear reaction mechanisms reAected
in the quadrupole (Q2) moments of the DOP's are dis-
cussed.

First, the Qz moments of the DOP's are calculated and
they are compared with those of the charge distributions.
These comparisons provide us a criterion for the folding
model description of the DOP's (Sec. IV A).

Secondly, the Q2 moments of the real parts of the
DOP's and those of the folded potentials are compared.
The folding model calculation is performed using a
density-dependent effective interaction based on the nu-
clear matter calculation (Sec. IV B).

Finally, the dynamical effects of inelastic and rear-
rangement channels to the Qz moments of the real parts
of the DOP's are studied. The DOP's obtained in Sec. III
have been determined by taking into account only the ro-
tational excitations. Thus, the real parts of the DOP's
contain the dynamical effects of the reaction channels
other than the rotational excitations. These effects are
basically caused through the processes schematically
shown in Fig. 9, exciting a higher-energy state [for exam-
ple, the level "GDR" in Fig. 9(a)], and then coming back
to the ground-state rotational band. They are more or
less reflected in the Qz moments of the DOP's. Particu-
larly, the processes finally going to the 2+ state are the
most effective for the Q2 moments since the transition
strength to the 2+ state is expressed in terms of the Qz
moments.

The reaction channels that may have dynamical effects



INELASTIC SCATTERING OF PROTONS, He, AND He AT. . . 1539

nt

0
~ W

0

0
6

0

8

a5

0
0

c5

V"

8 ~
g 0
4P

cn

~ %~I Q
~ 60o

Vt

cn 0Q

c5~ 8
cnI

G4
c5

~ 8

Q
II

V
cl g
OJ

8

OJ

II

0
{Q

0
ce

C4 ~O
CP 4P

4J

CP

6 „gf

a5

04 0.

«n

Pl
05

[
c5

0
~ &
0
ag

Q

O
oo

O

O
O

VO

O

oo
O

oo
O

CV~ ~ oo m

O
Q

oo
O t OQ

oo ooOOQOO

oo oo '4) t ch
~e4e4e4M

oo
m W ~ e4 t
oo M ~ M '40

Q

O O Q O O

t 4)MW~Q oo n Q oo
V)

t
oo

t ~~Mt
'4) W O ~ ~
'40 oo ooOOOO O

O

gag

8
0

0
~ W

0
a5

Q

Q
O
Q

/

O
O

O

oo

Q
Q

O

CVl

O

CVO
O

I

O
O

O

O
O

I

O

O

O

O
O

O

oo

Q

O
O
Q

O

tv)

O

Ch
CV)

O

I

oo

O
Q

O

O
O

I

O
O

oo

Q

O
Ch
Ch
O Q

O
O

I

O

I

CV

O
Q

I

O O
I

O
I

'40
O
Q

I

Q

e4
oo

Q O Q

oo
oo
O
O

O
Q O

O
O
Q Q Q Q

C) &D CO C5
I I I

O O
I

O
Q

VO

O
O

I

oo

O

t

Q O Q

O '40

"-8I 4OOOO
I I I

c5

0
Q

80
0
V

K

4&

V5
~ M

4J

0
C4

cci
V

~ rE

Q0

0
0

ce

8 ~
0.

~ E

0
ce Q

8
g ~0

C40
~ 1++I

g

qp

crh

O
ccl g$

tD

CJ

E 8
et

~ W Q Q0
S4 0 0

~A 4



1540 O. KAMIGAITO et al. 45

on the DOP's are the following ones; vibrational excita-
tions, giant resonances, pickup channels, and breakup
channels for the composite projectiles. These effects are
not treated in the present folding model. Since the
effective interaction is based on the nuclear matter calcu-
lation, some aspects of the nuclear finiteness are neglect-
ed. For example, the folded potentials do not include the
dynamical contribution coming from the vibrational exci-
tations which is closely related to the nuclear finiteness.
Furthermore, two-nucleon correlations in nuclei are ob-
scured in the localized form of the effective interaction,
and the contributions from the rearrangement channels
and the breakup channels are not taken into account in
the folding model.

Therefore, the estimation and the elimination of the
dynamical effects in the optical potentials should be made
in comparing the Qz moments of the DOP's with those of
the folded potentials. These effects can be estimated by
the explicit coupled-channels analyses including the relat-
ed channels. In Sec. IVC, the contribution from giant
resonances is estimated for the 30-MeV proton scattering.
In Sec. IVD, the effect of neutron pickup channels is
studied for the proton scattering and also the effect of the

I

breakup channels, which is expected to be the most
significant for the composite projectiles, is discussed
through the Q2 moments of the DOP's.

The contributions from the other reaction channels can
be neglected. For example, the contribution from the vi-
brational excitations is considered to be small because
even the y vibration, which is most easily excited among
the vibrational modes, has been shown to give a negligi-
bly small contribution to the Q2 moments [21]. Further-
more, the transfer reactions of more than two nucleons
have smaller cross sections than one-nucleon transfer re-
actions, and they can be also neglected.

A. Quadrupole moments of the DOP

The Q~ moments of the real and the imaginary part of
a DOP are defined, respectively, as follows:

ff(r; r)t (8),aa )r Y2o(8)dr
Q2 ( UDop ):Ze (10)

f(r;r„(8),a~ )dr

and

f [W„f(r;r,(8),a„„)—4a, W, (d /dr)f(r;r, (8),a, )]r Y2o(8)dr
Q2™UDop ) =Ze

f [W„f(r;r „(8),a„, ) —4a, W, (dldr)f(r;r, (8),a, )]dr

where Ze is the electric charge of the target nucleus.
These multipole moments are related to those of the
matter distributions by means of the folding model [4,22],
and they are favorable for the microscopic study of the
nuclear reaction mechanisms, as pointed out in Sec. I.

In this work, the multipole moments of the point nu-
cleon density are assumed to be equal to those of the
charge distributions determined by the electron scatter-
ing [23] in the same manner as our previous work
[1—3,8]. This assumption is assured by the analysis of the
proton inelastic scattering from ' Sm and ' Yb at 800
MeV [7], which suggests that the multipole moments of
the proton and neutron distributions are almost equal to
each other.

The values of the Q2 moments obtained from the
present work are compared with those from other experi-
ments in Fig. 8 and Table II. The uncertainties of the Q2

moments of the real parts, shown by bars in Fig. 8, are
defined as the values where the total y values of the
coupled-channels analyses reach the value larger than
their minimum by 10%. These "10% uncertainties" are
not the statistical ones calculated using the error matrices
of the y fitting, but represent the sensitivities of the Q2
moments to the fitting. Although the error matrices pro-
vide quite small uncertainties for Qz (UDop)'s (about
0.2% of their values), the estimation using the error ma-
trices is not suitable in the present case where strong
correlations exist between the potential parameters.
Therefore, we have adopted the "10% uncertainties" to
represent the accuracy of the Q2 moments. Since the
common normalization factors are applied in getting the
optical potential parameters from the elastic- and
inelastic-scattering data, the multipole moments are in-
sensitive to the normalization factor. For example, the

TABLE II. Multipole moments of the imaginary part of DOP's.

Nucleus

166E

Reaction

(p p')
(d, d )

( He, He')
( He, He')

(MeV)

30
56
90

120

Q, (eb)

2.91
2.72
2.84
3.05

Q4 (eb')

0.43
—0.31

0.29
0.30

References

This work
S. Hirata [8]
This work
This work

6Yb (p,p')
(d, d')

('He, He')
( He, He')

30
56
90

120

2.78
2.95
2.99
3.00

—0.21
—0.72
—0.18
—0.60

This work
S. Hirata [8]
This work
This work
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Q2's vary within half of the "10% uncertainties" even
when the normalization factors are changed from their
optimum values by +S%%uo.

As shown in Fig. 8, the Q2 moments of the real parts
for the He particles at 120 MeV are larger than those of
the charge distributions [Q2(p,„)'s] by about 5%. We
will show that these values are well explained by the fold-
ing model calculation based on a density-dependent in-
teraction. The Q2 ( UDop )'s for the 50-MeV He particles
are also quite larger than the Q2(p, h)'s [24]. On the other
hand, the Q2 (UDop)'s for the 30-MeV protons are al-
most the same as the Q2(p, „)'s. The Qz (UDpp) for the
35-MeV proton scattering from ' Yb [25] is also nearly
equal to the Qz(p, h). The Qz moments for the He parti-
cles at 90 MeV are slightly smaller than the Q2(p, h)'s and
nearly equal to those for the 56-MeV deuterons [8].

The Q2 moments of the imaginary parts are consider-
ably larger than those of the charge distributions. This is
due to the surface imaginary part, which is large in this
energy region [26].

B. Folding model calculation

and

UsF(r) = fp„(rr )U,s'( Ir —rr I p)dr,

UD„(r)= f f p. (r&)p„(r2)

X U„( lr+r, —r, l,p)«,«, ,

(12)

(13)

where p, and p „are the point nucleon distributions of a
projectile and a target nucleus, respectively.

In this work, the density-dependent M3Y [5] interac-
tion has been used for v,z. This interaction has the fol-
lowing form:

U ff(r, p)=to(r)F(p) (14)

A single folded potential UsF comparable with the
DOP for the (p,p') reaction and a double folded potential
UDF comparable with the DOP's for the ( He, He') and
the ( He, He') reactions are written as follows, respec-
tively:

where to is written as follows in MeV units:

d56
Yb h90

cx 120
p65

I

I

I

I

I

charge

I

(

I I I I

f

I I

p30
~ DOP(rot)
& Folded
(DDMBY)

+ DOP
(rot+ GDR)

x DOP
(z ot+pdp)

e
—4r e

—2.5r

to(r) = 7999 —2134
4r 2.5r

—276 1 —0.005—5(r) .
A

(15)

E/A in Eq. (15) is the incident energy (in MeV) per nu-
cleon. The density-dependent factor F(p) is given by

F(p)=C[1+aexp( —Pp)] . (16)
p30

d56
166Er h90

+120
p65

c arge
I I I I I I I I I I I I I I t I

QZ(eh)

FIG. 8. Quadrupole moments of the real part of the DOP's
(Q2 ) obtained by the analyses based on the symmetric rotation-
al model (closed diamonds) and those of the folded potentials
based on the DDM3Y interaction (open boxes). The vertical
axis represents the projectiles: 30-MeV protons (p30), 56-MeV
deuterons (d56), 90-MeV He particles (h90), 120-MeV He par-
ticles (a120), and 65-MeV protons (p65). For the 30-MeV pro-
tons, the Q2 moments obtained from the coupled-channels anal-
yses including the GDR state (rot+ GDR) and those from the
analyses including the deuteron channels (rot+pdp) are also
shown. The error bars are defined so that the total y values of
the fit reach values larger than the minimum by 10%. The sta-
tistical errors calculated by the error matrices are quite small;
for example, 0.005 for the Q2 moments for the 30-MeV protons.
The values for the 65-MeV protons (p65) and the 56-MeV deute-
rons (d56) are taken from Refs. [1] and [8], respectively. The
dashed lines represent the values of the charge Qr moments
[23]. Some symbols are shifted vertically to be seen clearly.

The parameters C, a, and P are dependent on energy and
they are calculated to fit the density dependence of
Brueckner-Hartree-Fock calculations for the nuclear
matter [27]. The results are C=0.313, a=3.325, and
p=8. 871 at 30 MeV/nucleon. F(p) is a decreasing func-
tion of the density p. This tendency is due to the Pauli-
blocking effect which reduces the strength of the
nucleon-nucleon interaction when the density of nucleons
is high. The Q2 moments of the folded potentials based
on the effective interaction become, consequently, larger
than those of the matter distributions, as will be shown
later.

One of the possible prescriptions of the density p in Eq.
(16) is that p is the density midway between the two in-
teracting nucleons. Thus, we assumed in the folding in-
tegral of Eq. (12) that p=pz [(r+r&)/2]. In Eq. (13), we
used a more convenient form of p=p, (r&)+p„(rz) in-
stead of

p=p. [(rr+r2)/2]+p„[(rr+r, )/2] .

This substitution gives only slight changes in the Q2 mo-
ments because M3Y is a short-range interaction.

pz is assumed to have the deformed %'oods-Saxon
shape. Its parameters were derived [1] from the charge
density and they are listed in Table III. p, is taken as a
gaussian form
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l66Era

TABLE III. Matter distributions.

&76Yba He 4He

R
am

m
2
m

m
6

g, (eb)
Q4 (e b')
Q6 (e b')
Pa

6.090
0.470
0.3334
0.0171

—0.0148
2.41
0.294
0.010

6.334
0.470
0.3073

—0.0537
—0.0080

2.30
—0.013
—0.054

0.2081
1.373

0.4229
1.193

'These are point proton distributions of deformed Fermi forms derived from the charge densities ob-
tained by the electron-scattering data assuming that the diffuseness a is 0.47 fm.

r 2

p, (r) =p, exp ——
2r

where r, and p, have been adjusted to reproduce the
matter mean-square radius and the mass number of the
projectile [28,29]. Their values are also listed in Table
III.

The results of the folding calculations are summarized
in Table IV and compared in Fig. 8 with the experimental
values. As shown in Fig. 8, the Q2 moments of the
DOP's obtained from the He scattering data are very
well reproduced by the folding model calculation. The
hexadecapole (Q4) moments are also in good agreement
with the folding model. On the other hand, the folding
model calculations overestimate the Q2 (Unop)'s for the
30-MeV proton scattering and those for the He scatter-
ing by about 6%. These discrepancies suggest the pres-
ence of some characteristic reaction mechanisms that are
not included in the effective interaction or the folded po-
tentials. We will explain these discrepancies in the fol-
lowing subsections.

C. Effect of giant dipole resonance

Among various giant resonance modes, the giant di-
pole resonance (GDR) has been chosen for the study for
the following reasons: (1) The GDR is excited through
small-I transfer (b, l =1). (2) Since the transition strength
of the isoscalar giant resonances is smaller than those of
the low-lying vibrational modes, the contributions from
the isoscalar resonances cannot exceed those from the y
vibrations which have been already found to give a negli-
gibly small effect on the Qz moments [21]. (3) Consider-
ing the good agreement between the Q2 moments of the
DOP's for He particles and those of the folded poten-
tials, there seemed to be some effects of isovector excita-
tions causing the discrepancy of the Q2 moments for the
30-MeV protons.

The GDR in axially symmetric deformed nuclei splits
into two modes (the K =0 mode and the K = 1 mode). In
this work, a single doorway state of the K =0 mode,
which corresponds to the oscillation along the symmetric
axis at the excitation energy of v=80/A' MeV, has

TABLE IV. Results of folding calculations.

Target

166Er

Projectile

He

4He

Expt. '
Fplded

Expt. '
Foldedb

Expt. '
Fplded

g, (eb)

2.392(28)
2.559

2.344(40)
2.517

2.496( 33 )

2.494

Q, (e b')

0.270( 39 )

0.330

0.291(55 )

0.322

0.336(45 )

0.316

176Yb

He

4He

Expt. '
Folded

Expt. '
Folded

Expt. '
Fplded

2.290( 34}
2.437

2.250(40)
2.400

2.393(36)
2.378

—0.104(32 }
—0.032

—0.087( 50)
—0.025

—0.033(42)
—0.022

'Multipole moments of the real part of the DOP's derived from the present experiment. The symmetric
rotational model has been assumed (the conventional analyses).
Multipole moments of the folded potentials using the DDM3Y interaction.
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The processes via the intermediate deuteron channels

[(p, d,p) process] are expected to have a significant con-
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FIG. 9. (a) The coupling scheme used in the calculation in-
cluding the GDR state, and (b) the deuteron channels. The cou-
pling to the [523]— band is shown as an example for the latter
case. The transition form factors between the rotational levels
(solid lines) are expressed in terms of the deformed optical po-
tential. The coupling matrix elements indicated by the dashed
lines are given in the appendices.

been taken into account, in which the transition strength
of this state was made to exhaust all the E1 energy-
weighted sum rule.

The coupling scheme used in the present calculation is
shown in Fig. 9(a). The transition matrix elements for
the GDR have been calculated on the assumption that
the transition potential to the GDR is expressed in terms
of a deformed symmetry potential. This assumption is a
simple extension of the model proposed for the inelastic
excitations of the GDR by protons in spherical nuclei
[30]. The coupling matrix element between the levels of
the ground-state rotational band are expressed in terms
of the DOP's. These matrix elements were put into
ECIS88 as external form factors. The integrated cross sec-
tions to the GDR states are about 2.2 mb. A brief
description of the calculation is given in Appendix A. It
has been confirmed that the calculated cross section to
the GDR in the Pb(p, p') reaction at 61 MeV [30] is
reproduced in the similar manner using ECIS88.

Fitting to the experimental data for the ground-state
rotational band has been performed with the coupled-
channels calculation including the inelastic channel to
the GDR. The DOP parameters have been searched for
using the moment scaling procedure described in Sec. III.
Table V shows the best-fit parameters. The Qz moments
of the real part of the DOP's are illustrated in Fig. 8. As
shown in the figure, the values of the Qz moments rise up
and the discrepancies between the Q2 moments of the
folded potentials and those of the DOP's are reduced by
about 20%.

D. Effects of neutron pickup channels and breakup channels
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tribution to the proton scattering when the incident ener-

gy is comparable to the energy of the Fermi motion.
There are some calculations for 30-MeV protons predict-
ing that the polarization potentials arising from the
deuteron channels are repulsive and that these potentials
cause considerable effects of about 10% on the volume in-
tegral of the real part of the optical potentials [31,32]. A
typical coupling scheme is given in Fig. 9(b). The cou-
plings between the rotational levels in the deuteron chan-
nels are neglected because these transitions give higher-
order contributions to the proton channels. We have cal-
culated the coupling matrix elements between the proton
and deuteron channels, by applying the strong-coupling
limit for the internal Hamiltonian of the residual nuclei,
and by using the zero-range approximation for the calcu-
lation of the nuclear matrix elements. The transition
form factors, therefore, consist of the neutron wave func-
tions multiplied by the expansion coefficients of Nilsson
orbits, the occupation probabilities, and the geometrical
factors [33].

These calculations of the coupling matrix elements
provide a selection rule for one-nucleon transfer reactions
in the deformed nuclei. According to it, the coupling
with the inelastic proton channel takes a complicated
scheme consisting of various combinations of angular
momentum transfer (1,j). Thus, the deuteron channels
can strongly affect the Qz moments of the DOP's.

The exact coupled-channels calculation including the
deuteron channels is only made by taking into account all
the possible neutron orbits consisting of valence orbits
and core ones. Since it is extremely complicated to per-
form the calculation strictly, a selection of the neutron
orbits would be necessary. In the present calculation,
only the valence orbits of the principal quantum number
N=5 have been taken into account for the following
reasons. (1) The (p, d ) reactions mainly occur at the nu-
clear surface region where the valence nucleons are dom-
inant. (2) The valence nucleons are correlated with the
shape deformation of the nuclei, and they dominate the
rotational motion. (3) The effect of the core orbits on the

Q2 moments would be negligible because the neutron
pickup cross sections from the core orbits are quite small
and, as shown in Appendix B, the two-step amplitudes
leading to the rotational excitations via the neutron pick-
up channels from the closed-shell orbits vanish when they
are summed up in neglecting the small differences of the
reaction Q values. (4) The neutron pickup cross sections
from the N =6 valence orbits are considerably small be-
cause most of them are originated from the li —", orbit in

The one-neutron hole states of the N =5 Nilsson orbit
amount to over 20 states in ' Er and ' Yb, and the exact
treatment of all these states in the coupled-channels cal-
culations is still too complicated. Instead of the exact
treatment, an approximate prescription has been intro-
duced, with which the number of the deuteron channels
is reduced while the two-step amplitudes from the ground
state to the members of the ground band via the deuteron
channels are approximately conserved. The outline of
the prescription is given in Appendix B. It also gives a
good approximation to the (p, d) cross sections.

The coupled-channels calculations including the deute-
ron channels have been performed using ECIS88. The ap-
proximated values of the integrated (p, d) cross sections
in ' Er are 0.8, 3.7, 2.3, 3.0, 1.5, and 0.3 mb for —,

'

, and —", states, respectively. In ' Yb, they
are 2.5, 3.5, 2.7, 5.7, 2.2, and 0.4 mb, respectively.

Fitting to the experimental data has been performed
using the coupled-channels calculation including the
deuteron channels. The DOP parameters have been
searched for in the same way as that for taking into ac-
count the GDR. The data have been well fitted and one
of the results is shown in Fig. 10. The DOP parameters
are listed in Table V and the Q2 moments of the real
parts are given in Fig. 8. As shown in the figure, the
coupled-channels analyses including the deuteron chan-
nels are found to provide almost the same values of the
Q~ moments as those of the folded potentials.

The calculations in which the deuteron channels are
excluded were also done, and it was found that the 2+
cross sections are increased by about 10%%uo in the calcula-
tion. One example is shown by the dashed curves in Fig.
10. This implies the presence of the destructive interfer-
ences between the direct transition amplitude to the 2+
state and the indirect ones via the deuteron channels.
The discrepancies of the Q2 moments of the folded poten-
tials and those of the DOP's obtained from the conven-
tional analyses can be attributed to these destructive in-
terferences.
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FIG. 10. One of the results of the explicit coupled-channels

analyses including the deuteron channels at E~ =30 MeV. The
solid curves represent the best-fit calculation. When the deute-

ron channels are excluded from the best-fit calculation, the 2+

cross sections are increased by about 10% (the dashed curve).
This result implies the presence of the destructive interferences
between the direct transition amplitude to the 2+ state and the
indirect ones via the deuteron channels.
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Comparisons of the experimental results of the com-
posite projectiles ( He particles, He particles, and deute-
rons) among themselves suggest that the small Qz mo-
ments of the DOP's for deuterons and He particles are
due to the effect of the breakup channels. In general, the
projectile-breakup reactions have large cross sections for
the weakly bound particles; they amount to about one-
third of the total reaction cross sections in the deuteron
scattering, for example.

According to the CDCC (continuum-discretized
coupled-channels) calculations developed recently, the
breakup channels give a significant contribution to the
elastic and the inelastic scattering of the composite parti-
cles having small binding energies [10]. The calculations
performed for the collective excitations are particularly
interesting: The cross sections for the vibrational 2+
state in the Ni(d, d') reactions are reduced when the
breakup channels are included [10]. This result also im-
plies the presence of the destructive interferences between
the direct transition amplitude to the 2+ state and the in-
direct ones via the breakup channels, in accordance with
our results of the (p, d,p) contribution. Since the transi-
tion form factor to the rotational 2+ state has a similar
form to that to the vibrational 2+ state, we can also ex-
pect that the breakup channels reduce the cross sections
for the rotational 2+ state in the deuteron scattering from
deformed nuclei. Therefore, the coupled-channels calcu-
lation including the breakup channels as well as the in-
elastic channels are expected to reduce the discrepancies
in the Q2 moments for the deuteron and the He scatter-
ing.

For the He scattering, the dynamical effect coming
from the breakup channels on the real part of the optical
potentials is expected to be small because of the large
binding energies of the He particles. The dynamical
effect is, from the viewpoint of the perturbation, the
second-order contribution of the transition potential to
the breakup channels. Therefore, the effect strongly de-
pends on the reaction Q values and those from the reac-
tions requiring large Q values are expected to be smalL
This would be a reason for the good agreement between
the folding model calculations and the results obtained
from the conventional analyses considering only the rota-
tional excitations for the He scattering.

V. SUMMARY AND CONCLUSIONS

Elastic and inelastic scattering of polarized protons,
He particles, and He particles leading to the ground-

state rotational band of ' Er and ' Yb has been mea-
sured with the incident energy of 30 MeV/nucleon, using
the high-resolution spectrograph RAIDEN. Fitting to
the data has been performed by the coupled-channels
analyses assuming the symmetric rotational model, and
the deformed optical potentials have been obtained. %'e
have studied the nuclear reaction mechanisms through
the quadrupole (Qz) moments of the DOP's.

The Q2 moments of the real part of the DOP's for the
He scattering were found to be larger than those of the

charge distributions by about 5%%uo. They are well ex-
plained by the folding model calculation based on the

DDM3Y interaction.
The Q2 moments for the 30-MeV protons were found

to be almost equal to those of the charge distributions.
For the He scattering, the Q2 moments are found to be
smaller than those of the charge distributions. The fold-
ing model calculation, which describes well the Q2 mo-
ments of the DOP's for He particles, cannot reproduce
the results of the protons and the He particles. This
means that, in the actual reaction processes, there might
be some dynamical processes being neglected in the fold-
ing model.

Rather complete examinations have been done for solv-
ing the discrepancies of the Q2 moments found in the 30-
MeV protons scattering, and the effect of the deuteron
channels (neutron pickup channels) was found to have a
significant contribution to the Q2 moments. The explicit
coupled-channels calculations including the deuteron
channels have been found to give almost the same values
of the Qz moments of the DOP's as those of the folded
potentials. These results imply the presence of the des-
tructive interferences between the direct transition ampli-
tude to the 2+ state and the indirect ones via the deute-
ron channels.

Comparisons of the experimental results obtained from
the experiments of the composite projectiles (d, He, and
He) among themselves suggest that the small Q2 mo-

ments of the DOP's for deuterons and He particles can
be attributed to the effect of the breakup channels of the
incident particles. An explicit coupled-channels calcula-
tion including the breakup channels is expected to ex-
plain the discrepancies between the Qz moments obtained
from the conventional analyses and those of the folded
potentials for the He particles and the deuterons.
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APPENDIX A: COUPLING TO THE GDR

In this work, the GDR is assumed to be an isovector
oscillation of the rigid proton and the neutron densities
against one another. Its wave function is given in Ref.
[34], for example.

The model proposed for the inelastic excitations of the
GDR by protons in spherical nuclei [30]has been extend-
ed to those in deformed nuclei. In the spin-orbit repre-
sentation, the coupling matrix elements to the %=0
mode of the GDR are given by
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( [(Lgs)Jb, I~]J~bU~[(L s)J„Ic]J)=
1/2

NZm c g U (r)I (AI 00~I 0)

Lp L A,

(L LpOO~A, O),
c b S

X(4~) '"i ' &( —)
' ~LL J j

Jb A. J,
X '

I~ J IB (A 1)

( ) ~—
~ 3(2A, '+I)

4n.(2A, + 1)

1/2

(A2)

with

where I~ (=1) is the spin of the GDR state and IC
( =0,2, 4, . . . ) is that of the rotational state of the ground
band, and m is nucleon mass and I=&2I+1. The tran-
sition form factor U& is expressed in terms of a linear
combination of the multipole U& of the derivative of the
deformed symmetry potential,

U&(r, 8)= —Vf (r;rv(8), az)+4ia~ W (r;r~(8),a~),d
8T

(A4)

where the deformed Woods-Saxon form factor
f(r;ri(8), a, ) and the deformed radius r (8) are ex-
pressed in the same form as Eqs. (7) and (8), respectively.
We used the same parameters as those in Ref. [30]:
V=10 MeV, W=15.5 MeV Tv=1. 16 fm, av=0. 75 fm,
r~=1.37 fm, and a~=[0.74 —0.008E&+(X—Z)/3]
fm. The deformation parameters, P), were adjusted so
that each form factor may have the same multipole mo-
ments as those of the matter distributions.

Uz(r)= ( —,'~) JdQ Y~o(8) (r, 8) .4NZ, , 8 U

g 2 BT
The coupling matrix elements between the proton and

deuteron channels are given in the following form by ap-
plying the strong-coupling limit for the Hamiltonian of
the deformed nuclei, and by using the zero-range approx-
imation for the calculation of the nuclear matrix elements
[35]:

The factor &3 in Eq. (A2) has been introduced so that
only the K =0 mode may exhaust all the E1 energy-
weighted sum rule.

The deformed symmetry potential U, has been as-
sumed to be the following:

(A3) APPENDIX B: COUPLING TO DEUTERON CHANNELS

([(L s )J,I&]J~H E~[(Ldsd)Jd—,IC]J)= g 5(r& Ar, ) L„s—„fz, J (r,, )

A A A A A

p d n( )
n d B n P.L +L +L J +J+J +I +L p d n p d

(4 )1/2
T

J J J p d n
p fl

X 'I J I
' s sd s„(LdL OO~L„O),

C B J Jd J,
(Bl)

where sp (sd ), L~ (Ld ) are the spin and the angular momentum of the proton (deuteron), respectively, and Is (IC ) is the

spin of the residual nuclei in the proton (deuteron) channel. A, [=(C+ 1)/C] is the ratio of the mass number of the re-
sidual nuclei and f&„ is the radial transition form factor.

The radial transition form factor can be written in the following form when the residual nucleus in the deuteron
channel belongs to the rotational band of K [33]:

fl, 1 (r)= ( —)" P "Do~'2( —
)

" (I&J„O, K~I~& —K)rr V,z—Czz I u&l 1 (r), (B2)
sn n

where ~ and V & are the parity and the occupation
probability of the Nilsson orbit, respectively, and C~& is
the expansion coefficient of the Nilsson orbit. Do is given
by the overlap integral of the projectile wave functions.

The expansion coefficients Cz& 's have been given by

Chi [36] and the values at the deformation 6=0.3 have
been used. Do was set to be 122.5 MeV. For simplicity,
the rigid Fermi surface has been assumed. The neutron
orbits are filled up to the [523P orbit in ' Er and up to
[514]—,

' orbit in ' Yb. We have calculated the neutron
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wave functions in the real %oods-Saxon potentials using
the separation energy method [37]. The geotnetrical pa-
rameters of the potentials are ro=1.2 fm and a =0.65
fm, that are commonly used for analyses of (p, d) reac-
tions [38,39]. The deuteron potential parameters listed in
Table V are calculated based on the adiabatic model
[40,41] in which we assume that the potential parameters
of the neutrons are equal to those of the protons [41,32].
The global parameters given by Bechetti and Greenlees
[42] have been used for the adiabatic model calculation.

For the estimation of the (p, d,p) contribution in de-
formed nuclei with a coupled-channels calculation, one of
the most serious problems would be that the exact calcu-
lation requires quite a large number of the deuteron chan-
nels. Since the exact calculation is extremely complicat-
ed, we have taken into account only the neutron pickup
channels from the X=5 valence orbits, and introduced a
prescription with which the number of the deuteron
channels is reduced while the two-step amplitudes via the
deuteron channels are kept approximately unchanged, as
described below.

From Eq. (82), the two-step amplitude from the
ground state to the I+ state of the ground band via the
neuron pickup channel from the Nilsson orbit vE is given
by the following form:

To J= le I V +CNIJC+tj I&Ij'0 &Ij,—It —&G (83)

where j is the nuclear spin in the deuteron channel and G
is a factor expressed in terms of the transition form factor
and the deuteron propagator. G depends on vE only
through the Q value of the (p, d) reaction. Therefore, the
coupled-channels calculations can be greatly simplified if
(1) the separated deuteron channels with the same nu-
clear spin parity are "unified" to a single deuteron chan-
nel having a mean Q value and, (2) the transition form
factor between these "unified" channels with the nuclear
spin j and the proton channel with the nuclear spin Iz is

I

To J=G I

given by the following form:

aJ 'd '+' aJ
fL „J„(r) ( ) Do NL„J uNL„J (r)

Sn n

(84)

V,» CJJL J ", , IJt ( IJJJ„O,—K
Ij, —K ) .

vK;N=5

(85)

Comparison of Eq. (83) with (85) shows that the sum of
the amplitude To I is conserved approximately in the
calculation based on the prescription described above.
When I~ =0, Eq. (85) means that the (p, d) cross sections
are also approximately conserved.

In addition, we can show that the two-step amplitudes
leading to the rotational excitations via the neutron pick-
up channels from the closed-shell orbits vanish when they
are summed up in neglecting the small differences of the
Q values of the (p, d) reaction. From the orthogonality of
the expansion coefficient, the two-step amplitudes satisfy
the following relation when G is replaced by G which is
independent of vE:

v:closed v

(86)

where the summation is taken over the orbits belonging
to a closed shell (core orbits). Furthermore, with the help
of the property of the Clebsch-Gordan coefBcient,

under the condition that the coefBcients CNI'- 's satisfy the
following relation:

~0 ' ~Igy J
NL J

K =1/2, . . . ,j v:closed K=1/2, . . . ,j
=0 for I =2,4, 6, . . . ,

which means that the summation of the two-step amplitudes vanishes under the condition mentioned above.

(87)
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