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For the problem of interaction between the lightest p +d, d +3He nuclei supermultiplet expansion of
the reaction amplitude T, is proposed. We have disclosed the nonpotential character of channels with
S=1, where the scattering amplitude is written as a superposition of the potential amplitudes 7}/} with

different symmetries [f].

We have constructed the interaction potentials V}/), [f]=[21], [3] and

[£1=[32], [41] for p+d and d +’He, respectively. The differential cross sections for p+d inelastic
scattering with the deuteron spin-isospin flip, which correspond to the available experimental data in the
low-energy region, are predicted at higher energies and also for the d +>He system in a broad energy in-
terval. The potential-model approach well describes quantitatively the photonuclear *Hey —p +d and
d +*He—"Li y processes in a broad photon energy range E, =30 MeV.

PACS number(s): 24.10.—1, 25.10.+s, 25.20. —x, 24.50.+g

I. INTRODUCTION

The objective of the present paper is to elucidate new
possibilities of the potential-model description of the in-
teraction between lightest nuclei p +d, d +>H(*He) and
others. In this case, by the potential-model description,
we imply a theoretical treatment, based on local or quasi-
local (i.e., dependent on orbital angular momentum pari-
ty) potentials, which enables one to obtain the energy
dependence of scattering phase shifts in a fairly wide en-
ergy range. This treatment generalizes the traditional
optical-model description.

The main expedient of describing the interaction be-
tween light nuclei such as d +t¢, d+*He, N+*He,
SH+3He, and others has long been so far the resonating-
group method (RGM) [1,2], which leads to the nonlocal
and energy-dependent interaction. This was quite con-
sistent with the familiar Feshbach formalism [3] for treat-
ing the optical potential of nucleon-nucleus scattering,
which also predicts a nonlocal and energy-dependent
nucleon-nucleus interaction potential.

In contrast with this common viewpoint, the optical
potentials of the interaction between nucleons (deuterons,
helions, and alpha particles) and medium and heavy nu-
clei, which have been found and well grounded in the last
two decades, turn out to be practically local with a rather
weak energy dependence [4]. In quite the same way, the
interaction potentials between light clusters such as
‘He+“*He, *H+*He, d +*He, and others also turned out
to be local (or quasilocal with some even-odd splitting
[5,6] and also with a weak energy dependence. The Pauli
exclusion principle in the above potentials manifests itself
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through the occurrence in them of deeply lying nodeless
bound states which simulate the states forbidden by the
Pauli exclusion principle [5]. Owing to the hermiticity of
the Hamiltonian, the scattering wave functions turn out
to be orthogonal to the wave functions of the forbidden
states, which agrees with the Pauli exclusion principle.
This description, based on the concept of deep
forbidden-state attractive potentials, generalizes the pre-
vious important step—the orthogonality condition model
of Saito [7].

The question arises as to the interrelation of these two
approaches, i.e., microscopic and phenomenological.
The common viewpoint adopted in the literature is that
both the local optical-model interaction potentials and
cluster interaction potentials are phase-shift equivalent
potentials for complicated nonlocal and energy-
dependent microscopic potentials (see, in particular, Refs.
[8,9]). Indeed, the solution of the inverse scattering prob-
lem, as given by Newton [9] and Chadan and Sabatier [9],
makes it possible to construct a purely local potential at
fixed energy for any set of partial phase shifts {§,}. And,
thereby, the only problem that remains is that the local
potentials, constructed at different energies (from some
not too broad interval), turn out to be fairly close to each
other, which is most likely due to weak dependence of
nuclear dynamics on energy outside the resonance region.

In this context, the idea is tempting of extending this
potential-model approach to include the interaction be-
tween lightest nuclei such as p +d and d +>H(*He). At
first glance it seems also that the potential-model ap-
proach is hardly possible and fruitful because exchange
effects are strong and the deuteron is loosely bound. It
will be shown, however, that if one separates out chan-
nels with different permutation symmetries [f;] of the
spatial part of the wave function, then one can construct
a local potential in each channel [ f;] so that the scatter-
ing amplitude in the channel with a given orbital angular
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momentum L and spin-isospin ST is a superposition of
the potential scattering amplitudes corresponding to
different values of [ f;]. We base our analysis here on the
well-known fact that supermultiplet symmetry for the
lightest nuclei is a good quantum number.

Attempts have been made in the literature to construct
a local potential for the p +d and n +d interactions
[10,11], but with neglect of the supermultiplet structure.
We introduce a supermultiplet description of scattering
for different cluster systems, construct its own potential
for each channel [f;], and verify these potentials in in-
elastic scattering accompanied by the transition of the
deuteron to the singlet state (TS =10) and in photonu-
clear processes.

Indeed, because of the substantial supermultiplet split-
ting of the above-mentioned potential, the high inelastici-
ty of scattering in the doublet channels (at low L values)
follows from the theory which is opposite to the quartet
channels whose elasticity is still preserved. This explicit
property of scattering is quite in correspondence with the
present-day experimental evidence for the d +p system
and predicted in the case of the *He(¢)+d system. As re-
gards photonuclear reactions, our theory predicts that,
say, in the case of *He(y,p)?H electric dipole photoab-
sorption, the final-state interaction is defined by the shal-
low p-d potential exhibiting the lowest spatial symmetry
[f1=[21] reconstructable just from the quartet phase
shifts.

So, thereby, calculating the 3He(y,p)2H and
3He(d, v )°Li photonuclear reactions fits the experimental
data quantitatively and enables one to predict the cross
sections for any energy E, =30 MeV.

The present paper is organized as follows. In Sec. II
we give a general description of supermultiplet symmetry
manifestations in the interaction between the lightest
clusters. Section III describes a formalism for summing
up the amplitudes in terms of the super-multiplet model
and for calculating the inelastic cross sections. Section
IV examines the p +d and d +>He interactions. The final
Sec. V contains a detailed analysis of such photonuclear
processes as *He(y,p)*H and *He(d,y)’Li. In conclusion,
some perspectives are outlined.

II. GENERAL CONSIDERATION
OF THE SUPERMULTIPLET SCHEME

At present, use is widely made of the potential-model
description of mutual scattering of light clusters such as
‘He+*He, “He+°H(’He), and d-+*He (see Refs.
[5,6,12,13]). The microscopic basis of the potential-
model approach are RGM investigations [8]. Actually,
the RGM is a certain model approach where, for exam-
ple, the effective nucleon-nucleon interaction involved is
far from being the free NN interaction, thereby implying
the importance of the virtual excitations of interacting
clusters [14]. At the same time, the RGM treatment
proves to be of assistance because it permits a careful ex-
amination of the total antisymmetrization. The relevant
studies have shown that the interaction between heavy
clusters, e.g., '°0+1°0, are substantially nonlocal [15].
This is exhibited by strong damping of the oscillations of

the wave function for the relative motion of clusters in
their overlap region. At the same time, in the case of
light clusters, there is practically no damping of oscilla-
tions, and the description of interaction using the local
potential is adequate. Such a description made it possible
to invoke the powerful results obtained in potential
scattering theory and to show that the E dependence of
phase shifts 6,(FE) obeys the generalized Levinson
theorem [16]: All the significant phase shifts at not too
small energies are positive, starting at E =0 from
different values of (n +m)w (where n is the number of
bound states observed and m is the number of bound
states present in the potential, but forbidden by the Pauli
exclusion principle) and, as the energy FE increases, reach-
ing eventually the common region of Born values
5. (E)<1.

For all that, the potential-model description, practical-
ly very efficient, was not used for a long time to describe
scattering of lightest nuclei such as p(n)+d, d+d,
d +3H(*He), etc., in a wide energy range. Recently, it
has been remarked [17,18] that here it is necessary to un-
dertake a new important step, namely, to introduce into
the channels with the minimum possible total spin S the
interference of several potential amplitudes which corre-
spond to possible permutation symmetries of the system
with various Young schemes [ f], the potentials for which
considerably differ from each other. This comes from the
important circumstance that the nucleon-nucleon in-
teraction is of Serber character, i.e., strong in even waves
and rather weak in odd ones. As a result, a pronounced
supermultiplet structure [19,20] is peculiar to the lightest
nuclei which is characterized, for example,, by the fact
that for the breakup of the “He nucleus, possessing space
symmetry [ f]=[4], a high energy of AE =20 MeV is re-
quired, while the "He or ®Be nuclei are unbound. The
significant role of this circumstance in the theory of nu-
clear reactions with clusters was repeatedly analyzed else-
where [21-23].

The use of symmetry quantum number [ f] in scatter-
ing theory is supported by the fact that the J splitting of
phase shifts is minor in the case of mutual scattering of
the examined lightest clusters. The observation [23] that
some compound states of °Li-’Be nuclei exhibit a strong
mixing of symmetries [ f] cannot be an argument against
considering relatively fast processes. Indeed, e.g., the iso-
spin T is a rather bad quantum number for some ®Be
long-living compound states [24], but is quite perfect in
the case of direct nuclear reactions on light nuclei.

The key point is that if the scattering wave function of
two clusters can have two possible permutation sym-
metries (i.e., the Young schemes [ f]), then, owing to the
strong supermultiplet effects mentioned above and to the
different numbers of even and odd NN pairs for different
[f), the corresponding interaction potentials ¥}/ should
also be essentially different. A particular great difference
between the potentials corresponds to the nucleon “quar-
teting” break [41]«>[32] for td scattering, [4]«>[22] for
even-wave dd scattering, [4]«>[31] for #p scattering, etc.

Based on the results of previous investigations [17,18],
we introduce a scattering amplitude with fixed total
Young scheme [ f], assume that this scattering amplitude
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is a potential one, and make a natural step forward,
namely, represent the total scattering amplitude as a su-
perposition of the potential amplitudes with different
Young schemes [f]. We shall see that the elastic scatter-
ing becomes nonunitary.

In fact, for example, only one permutation symmetry
[f]1=[44] is characteristic of the system “He+*He and
all the orbital angular momenta L are even [5]. For the
‘H+*He system, there is, also, only one symmetry
[f1=[43] permissible, but possible now are both even
and odd orbital angular momenta L, and in this case the
potential is splitted with respect to parity L (similarly, for
the d +*He system) [6]. This even-odd effect, as a rule,
causes an increase in the cross section in the backward
hemisphere [25]. Even more interesting is the *H+*He
system [6], where even values of L are assigned to the
Young scheme [ f]=[42] and odd ones to [ f]=[33], but
here to the channel with the given values of L and S cor-
responding to only one Young scheme [ f] too.

We now turn to the p +d system. In this system we
are faced with the most complicated and interesting situ-
ation: In each of the channels with § =1, two Young

schemes [ f]=[21] and [3] are now possible. Indeed,
[(2]X[1]=[21]+[3].

Both even and odd values of L correspond to two possible
Young schemes [f]=[21] and [3]. It is important that
the scattering amplitude in the channels with § =2 is un-
itary because only the Young scheme [f]=[21] is per-
missible, and consequently, the given scattering ampli-
tude T} g—3,, is determined by the interaction potentials
VE”, with L even and odd. We take phase shifts in these
channels, required to construct the above potentials from
the experiment [26], shifting them up by n7 in accor-
dance with the number of forbidden states. At the same
time, in the channels with S =1, we have a superposition
of the potential amplitudes 7T}/ with symmetries
[f1=[3] and [21]. This creates a very fruitful situation
which has not been discussed previously. Specifically,
there appears coupling with the inelastic channels of the
spin-isospin flip p +d —p +d;, the d;-singlet deuteron
with S=0 and T =1, and of the charge exchange
p +d —pp +n. The amplitudes of these inelasticities, as
will be seen, are proportional to T}*)—T}*!). For not too
small energies E =5 MeV (hereafter E is the energy in the
c.m. system), the elastic nonunitary amplitude 7} ,,, for
the lowest partial waves L may be small because of de-
structive interference of the potential amplitudes T}*) and
TP”. As a result, the use of the law of the composition
of phase shifts for elastic doublet scattering, which could
make it possible to determine the phase shifts 8’} from
the experimental phase shifts 8, ,,, and 8L,3/2589}”,
needs some caution in this region. Nevertheless, the po-
tential VL”, with even L, is determined sufficiently reli-
ably from the photonuclear data (disintegration of *He
and radiative capture p +d —>He+7y), as well as from
the known binding energy of the *He nucleus and from
the momentum distribution of nucleons in it. The poten-
tial V}31}, is determined more or less reasonably from the
differential cross sections of the spin-isospin flip reaction
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p +d—p +d,. From this standpoint the d +d system
has been considered preliminary [17]; however, it is
characterized by a fairly high inelasticity threshold
d +d—d +d; equal to 446 MeV. At the same time,
our treatment implies that the inelasticity is “soft”; that
is, the scattering energy E significantly exceeds the above
threshold. By virtue of this, the singlet channel of the
d +d system may be considered only at energies of
E =10 MeV. Unfortunately, the only attempt to use the
phase-shift analysis [27] covers a narrow energy interval
E=4-6 MeV, and there are no data whatever on inelas-
tic scattering and charge exchange. In this respect the
p +d system has a considerable advantage: The phase-
shift analysis for it has been made in a broad energy re-
gion E=0-30 MeV (see Ref. [26]), the inelasticity
threshold p +d —p +d; is equal to 2.23 MeV, and the
differential deuteron breakup cross sections
p +d—np+p have been measured [28].

It would be of interest to discuss in general terms the
possibility of the potential-model description of the in-
teraction between light composite particles in systems
such as p +d,d +d, d +3He, and others. From the gen-
eral principles of the many-body problem (the Faddeev-
Yakubovsky formalism for the p +d or d +d system
[29]), it follows that, generally speaking, the interaction
should be nonlocal and dependent on energy and orbital
angular momentum L. However, there are no theoretical
estimates as yet which would allow one to understand
just how important this nonlocality is. At the same time
the reconstruction of the potentials shows that the L and
E dependences of potentials are weak, and consequently,
the potential is quasilocal. Recently, Tomio et al. [10]
have undertaken an attempt to give a potential-model
description of p +d scattering in the low-energy region
E <2 MeV according to the conventional viewpoint, im-
plying asymptotic behavior of the potential in the region
of large distance, explanation of the Phillips plot, etc. A
similar attempt for n +d scattering has recently been un-
dertaken by Petrov [11] who used the results of theoreti-
cal calculations by Faddeev equations with separable po-
tentials. These above-mentioned authors have demon-
strated that for both the p +d and n +d systems it be-
comes possible only in a very limited energy region E =3
MeV and for the lowest partial waves to obtain effective
local potentials which not only reproduce well theoretical
phase shifts at low energies, but also describe rather ade-
quately the other properties of interaction, in particular,
the vertex constant of the virtual decay SH—n +d of the
3H ground state. In our treatment of the p +d system,
quartet scattering is considered at all energies, while the
description of doublet scattering is valid starting from en-
ergies a few times above the threshold. However, elastic
scattering is considered jointly with inelastic scattering
(and with the photodisintegration process *He y —p +d)
in a wide energy range which is bounded above only by
the general conditions for applicability of the potential-
model description.

Note that the p +d system is an ideal subject for using
the Faddeev formalism [29], which enables one to de-
scribe both elastic and inelastic scattering, including the
three-particle breakup [30]. And this circumstance
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makes it possible to investigate in detail the correspon-
dence between the accurate many-particle and effective
potential-model descriptions. In this way, in particular,
the notion of forbidden states is well resolved [5], which
is important for our approach. At the same time the
solution of Faddeev equations is extremely difficult to
find for systems with the Coulomb interaction. Our gen-
eralized potential-model description enables one to eluci-
date in a simple manner the physics of the processes un-
der consideration and to give a quantitatively correct
description of both elastic and inelastic scattering (ex-
cluding the truly three-particle breakup) and of photonu-
clear processes.

The outlined scheme is suitable for describing the mu-
tual scattering of other pairs of lightest nuclei such as
p+°Li, d +°Li, d +Li, etc.

J

.= X

s,0,t,7,[f]

III. SUPERMULTIPLET DESCRIPTION
OF SCATTERING

Consider the mutual scattering of two nuclei 4 and B,
which are described by the wave functions
la[f41S40 4t474) and |B[Fp1SpoptpTy ), respectively,
where S;, t;, and [ f;] are, respectively, spin, isospin, and
spin-isospin Young scheme of the nucleus i, and a and B
characterize spatial parts of the wave functions. In view
of the small splitting of phase shifts with respect to the
total angular momentum J for the p +d and d +*He sys-
tems, we use the supermultiplet scheme of calculation
[22,23,31]. In the supermultiplet notation [20,32], the
partial scattering amplitude in the 4 + B system is writ-
ten as

(t47 4,375t TNS 40 4,80 5|STN[F 4184t 4, [ F51Satsl[F1St) TH ) a,B)

XCFIStIF 1Syt [FalShtp N SalS o', SpopNerlt! v g, thty) . (1)

where ([ 1S 4t4,[f51Sstg|[f1St) are the isoscalar factors of the SU(4) group [29], and S, ¢, and [f] are spin, iso-
spin, and spin-isospin Young scheme of the compound A4 +B system. The partial amplitudes T, occur in the expan-
sion of the total scattering f (6) in terms of orbital angular momenta L:

f(e)z—_i__

(2L +1)T; P; (cos0) ,
2p0 T Lor

where p is the momentum of the relative motion of 4 and B particles in their c.m. system.
The cross section, averaged over the initial orientations of spins and summed over the final ones, is of the form

da 1

= 0 2,
aa'? (25 +1)(2S5+1) 2 ,lf( | (2a)
0 4,0p5,0 4,0p
49 (g)=—L_ 3 B,P(cosh) (2b)
dQ 4p3 5! ’
1 o L+1 02 | |
B, = (2L +1)(2L"+1)(L0,L"010) (247 4stgTpltT) e 7 gty leT)
! (2S,,+1)(2SB+1)LE;'OL,:%_,J [f%ﬂ AT4°BTE AT4TBTE
FLe7
X (t4T 45 tgTg |t TNty Ty 57 17D (28 + DTH] (0, B TH ) ((a,B)]*
S
X [T 418424, Fp1Sptpl[F1S)X[f 418t [ F51Sptpl[F'1St')% . (2¢c)

Considering the values of the isoscalar factors of the
SU(4) group [33], outlined in Appendix A, we find that in
the doublet (S =1) channels of the d +p and d +°He
systems the partial scattering amplitudes are determined
by the interference of potential amplitudes,

TH1=T[Na,B)=exp2i8}/N)—1, 3)

with two different permutation symmetries [f,;] and

[fZ]a

T n =T 1S 4t 4, [ F5 1851|071 14 )21,
= = [f,]
+([F 418424, Fp1Sptal (/215 $0°TL %, 4)
whereas the quartet channels (S =2) are unitary and are

described directly by the potential amplitudes T[[‘f‘ ].
Here [f,]=[21], [f,]=[3] for p +d and [f,]=[32],
[f,]=[41] for d +3He. Note that Eq. (4) is valid even in
the presence of absorption in the channels with fixed [ f].
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In such a case the phase shifts 8)/! in (3) are complex. As
will be seen below, the account of such inelasticities is im-
portant for the quantitatively correct description of mu-
tual p +d scattering. At this point we suggest, for the
sake of simplicity, that the phase shifts 8{/] are real.

Turning to the partial S matrix for elastic scattering,
we have

Selastlc—nLSexp(zlSLS) T;s+1, (5)
81127 [f‘ 18 ’ ©
5, 3/2_5[f1 ’ 7
IRV A = |cos( S[fl S[fz ) ®
M3n=1. ?

The nonunitarity of the scattering amplitudes in the
doublet channels (8) is due to the inclusion of spin-isospin
flip p +d —>p +d,, d+3He—d,+>He and charge ex-

J

(28, +1)(28,+1
do gy 1 25415 ])

a0 T 2 s, T s, r ) AT

tB'rB|t7'

change p +d —pp +n,d +3He—pp +3H:
SE = 10l -1l

arli gl

(10)
)

[the coefficients are the Clebsch-Gordan coefficients of
the SU(2) group]. The full S matrix is unitary:

ISfﬁs;ich**|S1‘,1,ill)/2|2+isffll%c|2:1 , (1)

sgags =1
Thus we obtain the natural generalization of the known
approach of Lane [34] to optical scattering where the iso-
spin term (TX7) connected the charge-exchange cross
section and corresponding contribution to the elastic-
scattering amplitude. On this basis it is possible to pre-
dict the cross sections for charge exchange or spin-isospin
flip processes:

X | B L 1P (cosO([] 418 4240175 15ta L1 ISOCIT 4 1840/, [T 51505117115 T2 il

+([Fal1Sat 4, [F31Sptp [ 2SO 4 1Syt [ F

where Sp=1, S;=0, =1, [fz]1=[2], 15=0,
(7pl=12F  S,=%  Si=t t,=h 1,=1
(f =10 1=11] =1, r=1 S=1; 7/ =1 7,=0 for

the deuteron spin-isospin flip without charge exchange
p+d—p+d, and d-+°He—d,+’He, and 7,=1

753 =1 in the case of charge exchange p +d —pp +n and
d +°*He—pp +°H.

IV. RECONSTRUCTION OF THE POTENTIALS

Here we discuss the problem of reconstruction of the
potentials which correspond to various permissible space
permutational symmetries in the pd and dh systems.

A. Analysis of pd scattering

For this system there exist extensive experimental data
on the scattering phase shifts 8,5 and the reflection
coefficients (inelasticity parameters) ;¢ in a broad ener-
gy range (up to 30 MeV) and for a large set of partial
waves L =0-8 (see Ref. [26] and references therein). On
the other hand, the properties of the pd system are well
described in calculations based on the use of Fadeev
equations [35]. The binding energy of the *He nucleus
[35], the phase shifts [35], the pd elastic scattering cross
sections [36], and the differential pd —3Hey cross sec-
tions [37] are well reproduced with the aid of the
nucleon-nucleon separable potentials. We do not intend,
of course, to compete with the three-body theory, but

[f;) )2,

B I1Sptpl[fr1St) Ty (12)

f

demonstrate the efficiency of a much more simple
potential-model description which interconnects the elas-
tic and inelastic scattering with the deuteron spin-isospin
flip into the singlet state (which has not so far been con-
sidered in the Faddeev approach), as well as the above-
mentioned photonuclear reaction. In this connection the
problem of obtaining the effective potentials of p +d and
d +3He interaction is possibly one of the most significant
applications of three-body theory [38].

In analyzing the experimental data, we revealed sub-
stantial inelasticity of the doublet channels (1, ,,,=0.5
at E=7 MeV) and unitarity of the quartet channels
(n.,3,,=1 throughout the energy range), which corre-
sponds well to our approach (8) and (9). Furthermore, of
interest is the behavior of S- and D-phase shifts in the
quartet channels: The D-phase shift is negative at small
energies (=~ —10°) and next it changes sign, and the S-
phase shift is characterized by an abrupt decrease as the
energy increases. This indicates the presence of the peri-
pheral repulsion which is connected with nucleon ex-
change (the influences of this exchange is well studied in
the reactions with heavy ions [25]). The corresponding
potentials are constructed as

VI UR)=V exp(—a,R*)+ V,exp(—a,R) , (13)
where the exponential addition models the repulsion in
the periphery. The conclusion that the peripheral repul-
sion need be allowed for in certain n +*He scattering
channels has been made in Ref. [39] too. In our view the
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peripheral repulsion in the n +*He system is far less than
those in some channels of the p +d system. In construct-
ing the potentials we allow for their splitting with respect
to parity of the orbital momentum L (see Ref. [5]).

When we reconstruct the potential ¥V}?!) with L even,
we proceed from the fact that it should have, by the Pauli
exclusion principle, a forbidden S state since the symme-
try [f]=[21] is realized starting with the configuration
0s(1p)>. In the fractional parentage expansion of this
three-nucleon configuration into the product of the
deuteron (0s)? state by the y(R) function of the p-d rela-
tive motion, the latter contains, owing to conservation of
the number of oscillator quanta, the dominating nodal 2S
component so that the nodeless 0S component turns out
to be forbidden by the Pauli principle. In the potential-
model description of the N-d interaction, this nodeless 0S
state manifests itself as a deeply lying eigenstate of the
N-d Hamiltonian so that the continuum wave function
X(k,R) in this channel will be orthogonal to the wave
function of this nodeless state (see also Ref. [38]). In oth-
er words, the forbidden state shows itself as a node of the
S-wave function which was previously perceived as the
repulsive core [5]. A very interesting circumstance is
that in the rigorous three-particle theory of scattering it
becomes possible [6,40] to give an interpretation of these
forbidden states in the form of so-called ghost states.

Table I lists the parameters of the potential ¥}*!! (with
L even) which was reconstructed from the experimental
quartet phase shifts taken from [26] [the parameters are
given in the form of (13)]. Figure 1 shows the calculated
scattering phase shifts for the potential V}?!), L even,
with allowance for the Coulomb interaction in the p +d
system.

The potential ¥'}?!) with L odd evidently has no forbid-
den states. The phase-shift behavior [26] permits the po-
tential to be chosen as attractive in the Gaussian form.
Figure 1 shows the phase shifts for this potential with al-
lowance for the Coulomb interaction. All the potentials
V}2!] found here resemble qualitatively the quartet poten-
tials of Ref. [38] produced within the schematical three-
body approach.

In going over to nonunitary doublet channels, we see
that the potentials V]! cannot be reconstructed directly
from the experimental phase shifts since in the N-d
scattering experiment the states with pure symmetry,
[f1=[3], are not realized. Using, however, the super-
multiplet approximation (6) and identifying the phase
shifts 8[?!! with the quartet ones, we can, at energies E a
few times above the threshold, separate out “pure” phase
shifts 8}%], i.e., the ones which should be used for the
reconstruction of the potentials ¥'}*). Besides, we should

GENERALIZED POTENTIAL-MODEL DESCRIPTION OF . ..

1517

Phase shifts (deg)
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s =20 o5
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FIG. 1. Phase shifts for the potentials V'}?!} (with allowance

for the Coulomb interaction). The points show the experimen-
tal phase-shift values, taken from Ref. [26].

make allowance for the inelasticity of the doublet chan-
nels for the lowest partial waves L <2, caused by the re-
markable influence of the three-body breakup
p +d—p +p+n, comparable in magnitude with the
inelasticities due to deuteron spin-isospin flip in the sing-
let spin state, and the charge exchange. The influence of
this three-body breakup can be allowed for by introduc-
tion of an imaginary part Wexp(—a;R?) into the in-
teraction potentials ¥}’! for L even and odd. Because of
the increased number of parameters in the reconstructed
potentials, it is necessary to use, in addition, other in-
dependent data, in order to determine unambiguously the
potentials ¥f3l. For example, in the reconstruction of the
potential VP] for L even, we used the momentum distri-
bution of nucleons in the *He nucleus [41] and also the
differential cross sections for photodisintegration of the
He nucleus (see Sec. V). The potential ¥}*! for L odd
does not prove to be sensitive to photonuclear data, and
therefore, the reconstruction of this potential should be
directly based on the inelastic cross sections for the
deuteron spin-isospin flip into the singlet state [25]. To
reconstruct the potential V, 31 with L even, one should
take into account that the S state in this channel is the
ground state of the *He nucleus as the bound p +d sys-
tem with binding energy E=~5.5 MeV and the well-
known momentum distribution. The parameters of the
potentials VP I'are listed in Table I and the corresponding
phase shifts are shown in Fig. 2 (with allowance for the
Coulomb interaction). The calculated phase shifts show
reasonable stability. For instance, the 5-10 % variation
of the potential parameters produces only 2°—5° change
of S- and P-phase shifts. Figure 3 presents the reflection

TABLE 1. p +d interaction potentials.

V, a V, a, W, a;

No. A L (MeV) (fm™?) (MeV) (fm™1) (MeV) (fm~?) Power
1 21 Even —57.0 0.37 7.2 0.36 —53
2 21 Odd —8.8 0.06 —73
3 3 Even —55.8 0.31 —17.0 0.43 —90
4 3 Odd —13.8 0.16 1.6 0.09 —5.24 0.33 —30
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FIG. 2. Phase shifts for the potentials V}*! (with allowance
for the Coulomb interaction).

parameters for the lowest partial waves L =0,1,2 that
were calculated by expression (8). As is seen from Fig. 3,
nonunitarity of the elastic channel §=1 is the most sub-
stantial in the lowest partial waves L =0,1. Figure 4
shows the form factor of the 3He nucleus as the p +d sys-
tem. The experimental values are taken from Ref. [41].

Note that the phase shifts of the potential V[l (L
even), which describes well, simultaneously, the binding
energy of *He, the p +d momentum distribution in this
nucleus, the inelastic-scattering cross section for the
deuteron spin-isospin flip into the singlet state, and also
the  photonuclear  processes °Hey—pd —>Hevy,
represent qualitatively the behavior of the phase shifts
that were obtained by expression (6) from the experimen-
tal doublet and ?uartet phases [26]. The phase shifts of
the potential ¥J3! for odd L behave analogously.

The differential cross sections for elastic scattering of a
proton on deuteron [Eq. (2)] for four scattering energies
E=10.83, 11.4, 12.35, and 13.28 MeV are shown in Fig.
5 as compared with the experimental data [36]. Figure 6
illustrates the results of our calculations of the differential
cross sections for the deuteron spin-isospin flip into the
singlet spin state at energies E =10.83, 11.4, and 13.28
MeV. The normalization of the density function of the
final states of the deuteron is here the same as in Ref.
[28]. Note that the experimental data are available in the

1
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FIG. 3. Inelasticity parameters 7, in the doublet channels of
the p +d system, calculated by (8).

4
1

o 1 2 3 jl S
a(fm™)

FIG. 4. Form factor of the *He nucleus as a p +d system.
The experimental values, marked by the points, are taken from
Ref. [41].

angular range which does not cover the characteristic dip
in the cross section in the range of 6=120°. It would be
highly desirable to carry out more complete measure-
ments in this region.

Thus we have obtained the interaction potentials and
corresponding p +d scattering amplitudes in all allowed
channels with S =1 and 2 and [ f]=[3] and [21]. The re-
liability and effectiveness of the obtained dp interaction
potentials will be studied in Sec. V as applied to the *He
photodisintegration.

B. 3He+d interaction

Here we proceed to analyze the d +°He system. In
view of the insufficient accuracy of the experimental data
on the elastic-scattering cross section and polarizations,
the phase-shift analysis for this system was made only in
the low-energy region of E <3.4 MeV and the results
turned out to be ambiguous [42]. When we reconstruct
the interaction potentials in unitary quartet channels

i4 1l
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1
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10 |
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=) a0 =} a[20 180
e (deg)

FIG. 5. Differential cross sections for elastic p +d scattering
at (a) E=10.83, (b) 11.41 MeV, (c) 12.35 MeV, and (d) 13.28
MeV. The experimental points are taken from Ref. [36].
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(§=32), we rely, to a significant extent, on the phase
shifts obtained in Ref. [42]. In nonunitary doublet chan-
nels (S=1), however, our description is applicable in
the region of energies a few times above the
d +*He—d, +°He inelasticity threshold, and in virtue of
this, we have to base our analysis directly on the experi-
mental data for the differential elastic-scattering cross
sections [43] and also for the phase shifts calculated with
the resonating-group method in Refs. [44,45].

In constructing the potential ¥V}3?! with L even, we
proceed from the fact that it should have by the Pauli
principle, a forbidden S state since five nucleon states
with the Young scheme [f]=[32] are realized starting
with the configuration sp2. The lowest observable
positive-parity state, which has the symmetry [32], is the
known resonance J"=21" (E =0.26 MeV) in the d +°He
system [44]. This resonance has recently attracted gen-
eral interest in connection with the problem of thermonu-
clear synthesis [46]. In our formalism we describe
correctly the position and reduced width of the %* reso-
nance and, moreover, obtain its wave function. The pa-
rameters of this wave function, which is represented as an
expansion in 15 Gaussians,

#(R)=T c;exp(—a;R?), 0<R <10 fm ,

are listed in Table II.

Using as an initial approximation the quartet phase
shifts calculated in the RGM [44,45], we next determine
more accurately the potentials V}*?] directly from the
differential cross sections for elastic scattering d +>He

] (a)

% 1

-1

1n- l‘ll‘l

1so0

ds
o (mb/st)
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a1 O

{ ‘-
T

I 3 Il
pARR AR
O(deg)
FIG. 6. Differential cross sections for the reaction
p+d—p+d; at (a) E =10.83, (b) 11.4 MeV and (c) 13.28 MeV.
The points show the experimental values of the cross section for
E =11.4 MeV (see Ref. [28]).
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TABLE II. Wave function of the J”=32% resonance in

2

d +°He system which is represented as an expansion in 15
Gaussians x(r)=3 1 cexp(—a;r?), 0<r <10 fm.

a; ¢
No. (fm™?) (fm—372)

1 0.003417 —2.301717
2 0.017955 4.177 554
3 0.039 508 —8.331693
4 0.067 745 15.640023
5 0.103 600 —26.106954
6 0.149 069 36.436111
7 0.207 570 —38.517836
8 0.284 846 36.156042
9 0.390891 —24.335301
10 0.544 294 11.987 791
11 0.783 179 —5.376 892
12 1.197 688 1.268938
13 2.053673 —0.443513
14 4.518988 —0.091 352
15 23.741958 —0.121243

(see Ref. [43]). The resulting scattering phase shifts for
the channels § =3 with L even and [ f]=[32] are shown
in Fig. 7, and the potential itself is given in Table I. The
energy of the forbidden states of this potential is equal to
—4.61 MeV. For the potential V}3?! with L odd, we al-
low for the presence of the forbidden P state (lowest al-
lowed configuration, s*p*). The parameters of the poten-
tial ¥}3?) for L odd are given in Table I, and the corre-
sponding phase shifts 6&32], L odd, are shown in Fig. 7.
We now turn to nonunitary doublet channels. Using
expression (6), we reconstruct the phase shifts 8}*!) corre-
sponding to the Young scheme [f]=[41]. In recon-
structing the potentials ¥}*!), we shall proceed from the
fact that the potential VF” with L even possesses a for-
bidden S state and the potential V}*!! with L odd—the
observable bound P state corresponding to the °Li ground
state J"=3", which is bound in the d +3He channel with
the binding energy E ~16 MeV (see Ref. [47)). The °Li
state J7=2" decays through the p +*He channel with a

Phase shifts (deg)

1
v T

ot
o s 10 s

3
L

T

=
E(MeV)
FIG. 7. Phase shifts for the potentials ¥}’ (with allowance

for the Coulomb interaction). The points show the RGM phase
shifts from Ref. [45].
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large spectroscopic factor S,~1 (see Ref. [24]). Note
that we do not discuss the possible resonance J ”=%+
since it is below the inelasticity threshold
d +*He—d,+°He in the doublet S channel where our
treatment is not valid. The energy of the forbidden S
state of the potential ¥'}*!! for L even is equal to E=—6
MeV.

The parameters of the present potentials V}*] are list-
ed in Table I, and the corresponding phase shifts are
shown in Fig. 8 (with allowance for the Coulomb interac-
tion). Here again the peripheral repulsion for L odd
plays the significant role. This accounts for the intricate
behavior of the S-phase shifts and negative values of the
D-phase shift at low energies, which changes sign as E in-
creases (see Fig. 8). By comparing the theoretical result
with the phase shifts of Vi‘”], inferred from the RGM
calculations, we note that we have got 1, ; , <<1 (Fig. 9)
and that our microscopical approach seems in this case to
be in advance of the RGM where the given property is
reflected as a purely phenomenological strong absorption.

As one can see from Fig. 10, the phase shifts obtained
in our approach lead to a good description of the
differential elastic-scattering cross sections. This figure
shows the differential cross sections for elastic scattering
of deuterons on *He for energies E=8.64, 10, and 13.8
MeV and, also, the experimental data of Ref. [43]. Fig-
ure 11 presents our predictions for the inelastic cross sec-
tions for spin-isospin flip reaction d+’He—d, +3He,
measured by means of the triton (or pp-pair) registration.
Setting up this experiment would be very desirable.
Above, we everywhere neglected the coupling of channels
d +3He and p +*He. For the quartet channels this as-
sumption is justified and confirmed by the RGM calcula-
tions [44,45]. In doublet channels this coupling can be al-
lowed for by the introduction of a small imaginary part
into the corresponding potentials 4% ] but in fact, it ap-
pears to be practically unnecessary; i.e., the deuteron
spin-isospin flip exhausts the inelasticity here.

In going over to the potentials v}/1 (Tables I and III),
we note that the potentials, which correspond to different

2a0

Phase shifts (deg)

{1
E(MevV)

FIG. 8. Phase shifts for the potentials V}*!! (with allowance
for the Coulomb interaction). The points show the values of the
“pure” phase shifts that were obtained according to (6) from the
RGM phase shifts of Ref. [45].
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FIG. 9. Inelasticity parameters in the doublet channels of the
d +*He system.

space symmetries [f], differ in power very remarkably.
It is convenient to define this power using the following
integral:

WLf,]’s=fV£{F,],S(r)r dr .

This power decreases substantially in going from the
states with a more symmetric Young scheme [f] to the
states with a less symmetric scheme, and as a result, the
scattering amplitudes for different [ f] are very different.
This effect is particularly strong in the case of the *He+d
system where the symmetry [ f]=[32] vs [41] is charac-
terized by a broken ‘“quarteting” (a clustering). That is

+ (a)

d
dgénb/sr)

"‘f,,;.:,,g..:.;..
o a0 180
Edeg)

FIG. 10. Differential cross sections for elastic d +°He
scattering at (a) E =8.64 MeV, (b) 10 MeV and (c) 13.84 MeV.
The experimental values of the cross sections, marked by points,
are taken from Ref. [43].
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FIG. 11. Differential cross sections for the reaction

d +3’He—d;+°He at (a) E=8.644 MeV, (b) 10 MeV, and (c)
13.84 MeV.

why the deuteron spin-isospin flip amplitude is so large
here that it exhausts the inelasticity (see the above discus-
sion of d +p scattering). As a result, the *He(d,y)Li
photonuclear cross sections can be calculated without
any free parameters in the entire energy range mentioned
in the Introduction; similar features should be also
characteristic of the d +d and ¢ +p systems (see Refs.
[17,48] for some tentative estimates). All these cir-
cumstances justify the employment of the supermultiplet
scheme despite its approximate character.

Our results clarify why the attempts to describe dou-
blet channels in the p +d system with a unique potential
Vis=1,, (see Refs. [10,11]) encountered severe
difficulties.

V. PHOTONUCLEAR PROCESSES
IN THE p +d AND d +*He SYSTEMS

The photonuclear reactions in systems of lightest nu-
clei, starting from the paper by Gorbunov [49], has been
the subject of interest to both experimentalists [SO] and
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theorists [51,52]. The theoretical description is, as a rule,
based on the use of composite many-particle wave func-
tions for the ground states of nuclei [51] or is made in the
framework of microscopic approaches of the RGM or
K-harmonic type [53]. These approaches enable one to
understand some characteristic features of the
phenomenon, but at the same time possess strong limita-
tions. For example, the approach based on the use of
many-particle wave functions [51] fails to give a practical
recipe for how to allow for the final-state interaction and,
hence, cannot pretend to quantitative description. The
microscopic calculations [53] do not include the coupling
of the elastic-scattering channels and the inelastic ones
[Eq. (10)] in the final state. This coupling, as was shown
in Sec. IV, plays a significant role, defining the form of
the corresponding potentials and wave functions. That is
why we use the above-mentioned potential-model ap-
proach and consider the photonuclear processes in two
aspects: (1) as a good test of the constructed interaction
potentials, especially off shell, and (2) per se, i.e., trying to
construct a quantitatively exact and at the same time sim-
ple formalism for describing photonuclear processes of
given type.

Note that our approach is to some extent close to the
approach used in Ref. [54] for studying ®Li electromag-
netic form factors in the framework of the antisym-
metrized multicluster dynamical model with Pauli projec-
tion. The main point of our approach, as opposed to the
RGM, is “the antisymmetrization after variation” when
the dynamical problem is first solved which does not in-
clude explicitly the antisymmetrization (but allowing for
it through the effective potentials and orthogonality con-
ditions to the forbidden states). Next, in calculating the
electromagnetic transitions, the complete antisymmetri-
zation of the initial- and/or final-state wave functions is
carried out. This approach is much more simple and
physically lucid.

The supermultiplet quantum number [ f] has long been
known to be a rather efficient tool for describing the clus-
ter decay properties of giant dipole resonance on the
lightest p-shell nuclei [55,56].

A. Two-particle photodisintegration of *He

We shall use here a standard formalism [57]. The
differential cross section for two-particle photodisintegra-
tion of *He, which is averaged over the projections M, of
the total nuclear momentum J, the photon polarizations
A==1 and summed over the spin orientations of final
particles o', and o'} is of the form

TABLE II1. The d +>He interaction potentials.

v, a, v, a
No. LA L (MeV) (fm~?) (MeV) (fm™1) Power
1 32 Even —50.0 0.15 —167
2 32 Odd —73.1 0.23 18.1 0.56 —123
3 41 Even —57.0 0.16 8.4 0.21 —138
4 41 Odd —69.0 0.14 —246
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dg o MPo 1
dQ drk, 20 +1

0’40,

b Kf1O1i 2, (14)

MM,

where u is the reduced mass and p, is momentum of final
particles in their c.m. system.

Among the possible multipole transitions which pro-
duce the photodisintegration of *He, the electric dipole
E1, electric quadrupole E2, and magnetic dipole M1 play
the main role in the energy region E, <30 MeV (see, for
example, Ref. [49]). The matrix elements of the corre-
sponding one-particle operators

W=—V2/3k, 2 Y (Q, ), (15)
j=1

tR———L 2 550y, (0

2 5v'6 nglejrj a ',-)’ (16)

M1 _ 1 k. i 5

T e yljgl/-‘jaj}» (17

are calculated in the long-wave approximation. Equa-
tions (15) and (16) are written in the form prescribed by
the Siegert’s theorem [58].

As the wave function of the ground state of *He we use
the cluster wave function of p +d the system

li)={@(23)x00o(R) Yo QI PI[3]40L L), (18)

where the curly brackets mean the symmetrization of the
J

1 2°

(NBIy¥=
9 k,k'=1

spatial part of the wave function; |[ f]So¢7) is the corre-
sponding spin-isospin function of the *He nucleus. It ap-
pears to be sufficient to take the deuteron wave function
@(23) in the simplest form [17]:

3/4

2

exp(—tardy), @=0.154fm™2. (19

@(23)=

It is assumed that the deuteron is made up of nucleons
with indices 2 and 3.

The relative motion function Yy(R) is determined as a
result of the variational numerical solution of the
Schrddinger equation with the V}3),., potential. Further-
more, it is expanded in terms of the sum of Gaussians:

15
XoolR)= 3, crexp(—a, R?) . (20)
k=1

Symmetrization in (18) is realized by means of Young
projection operators in the nonstandard basis [32] corre-
sponding to the reduction chain U(3)—U(1)XU(2):

PRy =HE +Pp+P3) 21)

where P;; is the permutation of nucleons with indices i
and j.

Note that as a result of antisymmetrization the normal-
ization parameter of the wave function (18) is changed
and this should be taken into account when calculating
the cross section (14). A normalization parameter is easi-

ly calculated:

3N2 +=—(am)’? E cpcp([10a+9a,.)2a+a,. +4a, ) —(3a, —2a)?] 7372

+1{(4a+ta +a;)[4a+9(a; +ap)]—9a,—a )} 7). (22)

The final-state wave function has the asymptotic behavior which corresponds to an ingoing spherical wave [59]; in
the partial-wave expansion

If)z¢;,0_)=47rzilexp( —i8,) Y},
Im

This function is not antisymmetric with respect to all possible permutations of nucleons. We can antisymmetrize it in
two stages. At first, we symmetrize the spatial part of the wave function (23) by virtue of Young projection operators
(21) and

PR =12E—P,—Py3) . (24)

(Q, ) Y1y (g Wt (PoR)@(2D)[ 11504 5 $)1[2]10500) (23)

Second, we construct the spin-isospin part of the wave function (23) corresponding to the representation of the SU(4)
group with total Young scheme [ f] ([f]) conjugated to [f]):

T1lo’ L DI[2]1000)= 3 ([T]L4,[2]10|(F]1St)

s,0,47,[f]
X (10’4, 105|S0)(L L,00(t)|[T]Lo” 1 5[2]1000:[f1SotT) (25)
where the total isospin ¢ =1, its projection =1, and total spatial Young scheme [ f]=[21] or [3].
Hence the total antlsymmetrlc wave functlon of the p +d system is written as
=3 47712 i'exp(—i8)) Y/ (R, )Y} (g W (PoR p(23) |V
X{[1) 4, [2110][F1S4) Loy, 10518 [T1Lo’ L £5[2]10300:[ f1SoL 1) . (26)
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The functions X,,;(poR) are determined as a result of the
accurate numerical solution of the Schrodinger equation
with the potentials ¥'}/1 of Sec. IV. To carry out the an-
tisymmetrization of the complete wave functions (26), the
relative motion functions y,;(poR) are expanded in an
analytic basis of the form

K
Xu(R)=R'S &.(polexp[ —«;(pg)R?], 27
k=1

using a convenient net of scale coefficients §; and k;. In
the series of our previous papers (see, for example, Ref.
[60]), we used the Tchebycheff discretization net

2%k —1 HQ

T ’
4K

k

=12,...,K, (28

K (po)=k(py) [tan

which proved to be rather economical in the sense that a
moderate number of basis Gaussoids is required to ap-
proximate exactly a very wide class of wave functions. If
we approximate the functions on the finite interval (even
large), then it does not matter which asymptotic charac-
ter of the wave functions is considered. Here it is to be
noted that in the calculation of the transitions with high
multipolarity (staring from E2) the requirements to accu-
racy of the expansion (27) in the asymptotic region be-
come more stringent. Therefore, to provide the accept-
able accuracy of calculation of the matrix elements, it is
necessary to take for the exact approximation a rather
wide interval of R: 0<R <20 fm. Appendix B gives the
expressions for the corresponding matrix elements of the
operators (15)-(17).

Figure 12 shows the differential Hey —p +d cross
section at the ejection angle of proton 6=90° in the labo-
ratory frame for proton energies E, from the reaction
threshold up to 30 MeV. The choice of the angle is con-

120
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FIG. 12. Differential cross sections for the reaction

SHe y —p +d at 8*=90°. The experimental data A, X, and O
are taken from Refs. [37], [61], and [62], respectively.

ditioned by the available experimental data [37,49,61,62].
It is to be noted that the experimental data for the reac-
tion under consideration consist of two very different
groups (see Fig. 12). Our results lie between the experi-
mental points of these groups.

Here we analyze the angular distributions. Using the
detailed balance ratio [63]
Ky

ky

2 do.photodisint
dQ

d ocapture _ 2

a0 3 (9), (29)

we get the angular distributions for the p +d —°He y re-
action. Figure 13 shows the calculated results and exper-
imental data [64] for proton energies E, =12.1 and 15.3
MeV. As one can see, the calculated results are in
reasonable agreement with experiment.

The E1 transition is dominant in the energy region
E, =30 MeV. The contribution of the E2 transition to
the total cross section makes up, according to our esti-
mates, 5—-8 % and the transition itself shows up mainly
through the interference with the E1 transition which
leads to a certain asymmetry of the angular distributions.
The M1 transition in our model is absent.

B. Radiative capture d *He—°Liy

The calculation of the differential radiative capture
cross section is in fact analogous to the calculation of the
differential two-particle photodisintegration cross section.

1.8
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FIG. 13. Angular distributions of the p +d —>He y reaction
products at (a) E, =12.1 MeV and (b) 15.3 MeV. The points
show the experimental data from Ref. [64].
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Therefore, we shall make only brief comments on the

initial- and final-state wave functions used in the calcula-
tion.

In order to prepare wave functions of the needed sym-

_J

metry, we shall use, just as in the calculation of the two-
particle photodisintegration of *He, the projection Young
operators in the nonstandard basis which corresponds to
the reduction chain U(5)—U(3) X U(2):

PRIy = 5 (6E —2P 1, —2Pyy — 2Py, —2P 5 —2P;s—2P35+ Py Pys + Py P15+ Py Pys+ Py Pis+ Py Pys+ Py Pos)

(30)

P[%m]m =4(6E+P |+ Py +Psyy+Ps+Pys+Pys—2PyPys—2PyyPs—2P,Pys—2P3P\s—2P, P35 —2Py, Pys) .

(31)

Using these operators, we prepare the functions with the needed symmetry from the nonsymmetrized initial- and final-

state wave functions:

li) z¢;,0+’=47r2 i'exp(i8, VY iy (R, )Y 1 (Qp Xt (PoR )P 4( 123)|[3140 41 1) @p(45)|[2]10500) , (32)
Im
Y =Pl 30219 4 (123095 (45)x 1 (R)Y 1 (Q)|[31]40 L 1) (33)

Here it appears again sufficient to use the simplest inter-
nal wave function of the *He nucleus [65], but not the
functions (18)-(20):

25°

77_2

3/2

p4(123)= exp[ —B(3r, +pM)]

$=0.385 fm~!, r,=r,—r,, (34)
p=+(r,+r)—r1;.

Figure 14 shows the angular distributions of the reac-
tion d +°He—>Liy for three excitation energies of
°Li: E,=E,+Q=19.9, 20.7, and 23.2 MeV. The ex-
perimental data are taken from Ref. [47]. Note that the
electric transitions involving changes of the space sym-
metry [ f] provide the main contribution to the cross sec-
tion. The contribution of the transitions, which give an
increase in the total momentum of the system J, is some-
what smaller in the low-energy region (E, =3.9 MeV) as
compared with the transitions which produce a decrease
in J [this situation is depicted in Fig. 14(a)]. The opposite
is the case in the region of high energies [Figs. 14(b) and
14(c)]. Figures 14(d) and 14(e) present our predictions for
p +d—’Hey angular distributions at E, =24 and 26
MeV, respectively. The electric quadrupole transition E2
is weak, and the resultant asymmetry of the angular dis-
tribution is small.

The energy dependence of the differential cross section
for the reaction d +3He—’Liy at 6=90° is shown in
Fig. 15. The experimental data are taken from Ref. [47].
Just as in the case with the angular distributions, the
agreement with experiment is reasonable too.

It is very easy now to calculate the differential cross
section at any energy E, below 30 MeV. We repeat that
we have no free parameters here—potentials are defined
entirely from the scattering data.

As a general conclusion, let us note two points.

First, the definite spatial symmetry [ f] of the total sys-
tem has sense only if there is a multiplicate nucleon ex-
change between clusters. It means that the energy E_

4 L T (0)
2 A
o f +
al | (b)
= 1
o t :
al (c) ]
3 E/\N
X
D
'J% o % }
| (d) ]
E;/\
o + +
al (e) |
2 .
°a E‘cT ‘feLn 180

“"(deg)

FIG. 14. Angular distributions of the d +°He—’Liy reac-
tion products at (a) E, =19.9 MeV, (b) 20.7 MeV, (c) 23.2 MeV,
(d) 24 MeV and (e) 26 MeV. The experimental data are taken
from Ref. [47].
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FIG. 15. Differential cross sections for the reaction

d+°He—’Liy at 6=90".
from Ref. [47].

The experimental data are taken

must be comparable to the value of 7w, (practically,
probably, E_ . =30 MeV).

As a second remark, we note that our supermultiplet
approach can be probably of interest also in the theory of
baryon-baryon collisions at the intermediate energies,
where the quark permutational symmetry quantum num-
bers [ f1x, [flcs, etc., are widely used [66]. In particular,
the “‘soft” spin-isospin flip process looks like
N +N — A+ A with the further possible generalization of
isospin SU(2) symmetry to the flavor SU(3) [67] and so
on.

APPENDIX A

In the calculations of the elastic p +d and d +°He
scattering, we used the following values of the spin-
isospin fractional parentage coefficients [32,33]:

1525

(2110, (114 42114 D) =V1/2,
(2110, [T14 431 1) =V172,
([2110,[3]1 1[[32)3 1) =—1,
(12)10,(3}4 41[4133 H) =0,
([3110,[3)L LI[32)L 1)=V1/2,
([2110,[3]4 £I[4T1L 1y =—V1/2

To calculate the differential cross sections for the deute-
ron spin-isospin flip and charge exchange, the following
nonzero spin-isospin fractional parentage coefficients are
needed [32,33]:

APPENDIX B

The matrix elements for the E1, E2, and M1 transi-
tions in the photodisintegration of *He are the following:

|
2 2 172
(fITE i3] ——91’— 3| ke expisPhY (0, )30, 101 40)
20372 | 2a—3kf2!) 30372 2a—3kf2!
X Pl 21]+ gl2tn(21] a 21][21]
2 Cleld 72 |7 10a+ 93! £88 27172 10+ 9«j3! o
(B1)
(fITH i)y = 27\/ k2eyn(n RETORE AR
3/2
XY cf? |2 exp(i85?1) |2 2'1+ zmlﬂl +2£3lexp(i85*) 2251 — 7 mB (B2)
k. k'
FITRB) = (B3)
where
2 18 38a—9x}!
M= (. f_ 7
2a— 3kl 10a+9KLf 78y -8Y! ] 2 —3K§g,‘1%5 10a+9K§(f%
2a— il 2a— 3k}
1lf) 4 150/ 10[/f)
(10a+9«i1)? |~ 102+ 9« 2|88+ 3¢ 8Y (B4)
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and
R (2a—3ki/h)?
Ule 7™ gegp | — L 34 L
B, fo yiexp 2 20+4a [+l 100+ 9x}/)
Rmax (2a - 3‘(5(['] )2
1= q - Sl 77 K
W= [, e | =g (100t 9n 2a+4af+ i)

Rmax

8‘[1f]=f0 y9expl — L (10a+9«i)y21dy
Rmax

Of1= [ ™y%exp[ —}(2a+4al 1 +uy?dy

Rmax
?E[f]=f0 ylexp[ — (a1 +xfhy?1dy .

yildy, (B5)
y?ldy , (B6)
(B7)
(B8)
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