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Three-body electrodisintegration of the trinucleon system
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A theoretical description of the electron-induced three-body breakup process is presented. The con-

tinuum wave functions for three outgoing nucleons are determined exactly by solution of the Faddeev

equations. A local s-wave spin-dependent potential, described by a separable form, is used as two-

nucleon input. The response functions of the mirror three-body nuclei are calculated as a function of the

energy transfer at momentum transfer values of 300, 400, and 500 MeV/c. It is in particular found that

the predictions of the longitudinal response function are well in accordance with the experimenal data

when the final-state interactions are taken into account.

PACS number(s): 21.45.+v, 25.30.—c, 25.30.Fj

I. INTRODUCTION

In the past decade inclusive and (semi)exclusive inelas-
tic electron scattering experiments on nuclei have provid-
ed interesting information about nuclear structure. The
weak electromagnetic interaction may be treated pertur-
batively in very good approximation, which allows a
clean separation of the leptonic and hadronic com-
ponents of the breakup reaction. The theoretical analysis
of the nuclear structure is complicated by the presence of
nucleonic final-state interactions (FSI), tneson-exchange
current contributions to the nuclear current (MEC), and
the aspect of off-mass shell scattering of the electron on
the nucleons in the nuclear bound state. In this respect,
the A =3 system is especially attractive since for this sys-
tem the nuclear quantum dynamics can be solved in an
exact way, at least in the nonrelativistic regime. Conse-
quently, the effect of FSI on observables related to the
breakup reaction can be accounted for properly which
enables a much more accurate determination of micro-
scopic properties of the trinucleon bound state, such as
the single nucleon momentum distribution.

Recently the nuclear response functions RL and RT of
the mirror three-body nuclei He and H have been mea-
sured at various values of the momentum-energy transfer
[l]. Theoretical predictions in the widely used plane-
wave impulse approximation (PWIA) have not been very
satisfactory [2,3]. In particular, the longitudinal response
functions are generally overestimated by the calculations.
The primary objective of this work is to investigate the
effect of FSI on the trinucleon response functions.

The calculation of the response functions requires
knowledge of the entire spectrum of final states of three
nucleons. In addition to the two-body breakup contribu-
tions, which are discussed in detail in a previous paper
[4,5], we have to know the three-body breakup contribu-
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tions. In particular, the 3—+3 scattering wave function
describing the transition from three off-shell nucleons to
three nucleons in the final state is required to determine
the electromagnetic three-body breakup amplitude. The
construction of such a wave function is discussed in detail
with special emphasis on the features in which it differs
from the 3N ~Nd scattering wave function needed in the
two-body breakup analysis.

Like in the analysis of the two-body breakup process
we have taken the local s-wave spin-dependent Malfliet-
Tjon interaction as N %input [6]-. For technical reasons
we adopt a separable approach of this interaction by
means of the unitary pole expansion (UPE) [7]. The
reproduction of the trinucleon bound-state energy and
Nd scattering observables up to 150 MeV in the laborato-
ry system are shown to be quite satisfactory [4]. The ac-
tual calculations are mostly done with the first term of
the UPE, i.e., the unitary pole approximation (UPA).

The nuclear response functions depend on the
momentum-energy transfer and do not contain any infor-
mation about the nuclear final state. Only the isospin of
the nuclear system enters to label the target state. In
(semi)exclusive studies some degrees of freedom of the
final nuclear state are measured; for example, in a three-
body electrodisintegeration experiment one or two of the
outgoing nucleons are detected in coincidence with the
outgoing electron. Experimentally an exclusive study is
significantly more complicated than an inclusive mea-
surement. Only relatively small cross sections are ob-
tained due to the coincidence nature and the weak elec-
tromagnetic interaction. Theoretically there are no con-
straints. Starting with unambiguous amplitudes for the
two-body and three-body breakup processes each
kinematically complete inelastic process can be calculat-
ed. Subsequent summations over unobserved degrees of
freedom of the nuclear final state yield (semi)exclusive or
inclusive cross sections. At present no kinematically
complete experimental data exist for the three-body
breakup process. An exception is formed by exclusive
3He(e, e'p)pn data taken at Saclay [8,9]. However, these
data are not very useful for an exclusive analysis, since in
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fact semi-inclusive data are presented which result from
an integration of the exclusive cross sections over the
missing energy in order to obtain the three-body breakup
momentum distribution of He. Furthermore, the second
experiment [9) was taken at large missing momentum,
such that d waves in the N-N input are needed to explain
the results. Therefore, we have selected a number of in-

teresting kinematic situations for which we calculate
(semi)exclusive cross sections or related observables,
without making an effort to compare the predictions with
experimental results.

II. ELECTROMAGNETIC FORMALISM

where crM, «=4a E,, cos ( —'8, )/q„, and 8,. is the scat-

tering angle, cos0, =k,"k, between the incoming and
outgoing electron with momenta k, and k, . Information
about the nuclear structure is contained in the functions
8', while the electron-photon part is described by the
functions U. In order to analyze the coincidence cross
section in detail we use the frame of reference introduced
by de Forest [10]. The orientation of this frame is deter-
mined by the momentum transfer Q and momentum pN
of the outgoing nucleon:

n, =Q

ng =Q X PN /IQ X p'N I,
nJ XQ/lug XQI

(2)

In this frame the electron-photon factors U can be written
as

ut =(q„/Q )

ur =
—,'q„/Q +tan —,'0, ,

us=(q„/Q )cos /+tan —,'8,

ui =(q~ /Q )(q„/Q +tan —,'8, )' cosP,
where q„=(Q;ice)is the four-momentum transfer and P
is the angle between the electron plane and the nucleon
plane, cosP=n~. (k, Xk, . )/~k, Xk, , ~. The nuclear struc-
ture functions W are expressed as products of the various
nuclear current components. In shorthand notation we

have

The unpolarized semi-exclusive (e,e'X) reaction can be
expressed in terms of four nuclear structure functions. In
the one-photon exchange formalism and treating the elec-
tron ultrarelativistically, the cross section takes the form

d 0
(u, Wc+ur Wr+ us Ws+ut

dEe dAe dpi'

where conservation of the nuclear current Jz =(J~;ipz )

is used to eliminate the nuclear current component Jz in
Z

favor of the nuclear charge density:

The 8' functions depend on four kinematic variables, the
momentum-energy transfer Q —co, the outgoing nucleon
momentum PN, and the angle y between Q and pN. In
the adopted frame of reference information about the an-
gle P is factored out and absorbed by the functions u.

Apart from the kinematic variables, the 8'functions also
depend on the isospin components T' of the target nu-
cleus and t& of the detected nucleon.

For the trinucleon system the shorthand notation from
Eq. (4) stands for

&JN &
——& & I' '&PNsNtN, &fflJN I+rjr'rr&l'

JZ f ~Z

d2%

dE, .d 0,.

4 2
2 ~

=crM„, 4 RL+ 2
+tan —0,. Rz-

Q4 2Q~ 2

X5(co+E; Ef ), —

where E, and Ef are the total energies of the initial and
final nuclear systems in the laboratory frame. Further-
more,

~

'P rJz Tr' & is the antisymmetrized trinucleon
bound state with angular momentum component Jz and
isopsin component Tr, while ~pNsNtN, pff &' ' describes
the off-shell scattering of three free nucleons into a final
state in which one nucleon has momentum pz, spin sz,
and isospin t~, while the remaining two nucleons have to-
tal momentum p=Q —pN. The spin-isospin quantum
number f together with Pf characterize either a deuteron
state or a scattering state.

Our main interest in this work is to determine the
three-body breakup nuclear structure functions. Concep-
tually these functions are closely related to the corre-
sponding two-body breakup contributions, but the three-
body breakup process is much harder to deal with in
practice due to the continuum spectrum of pair subsys-
tem states ~Pf &. The evaluation of both processes is en-

tirely equivalent with respect to the structure of the elec-
tromagnetic nuclear current and the form of the trinu-
cleon bound state, and for a detailed treatment of these
aspects we refer to our analysis of the two-body electrodi-
sintegration of He.

Once the nuclear structure functions 8'are known it is
straightforward to determine the trinueleon response
functions R. They are related to the inclusive scattering
cross section according to

w, =&p' &,

W, =2&J„' &,

~1 &PN~N~~ & & JN ~PN &

(4)

(7)

Here, RL and R~ denote, respectively, the longitudinal
and transverse response functions. They can in principle
be separated experimentally by means of a Rosenbluth
plot: For fixed values of Q and co two measurements are
performed at two different electron scattering angles 0, .
It is clear that the response functions are independent of
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the final nuclear states, while the isospin of the target nu-
cleus is the only remaining nuclear degree of freedom.
The response functions can be expressed in terms of the
nuclear structure functions 8' according to

RL (Q, co; Tr ) Jdp~ Wc

1
Rz(Q, co; Tr' )=-dpi'(ur 8'r+us W's),

Vz-

(8)

where both the two-body and three-body breakup contri-
butions have to be included in Eq. (8). For the nuclear
current we have only considered one-body components,
Jz =g; ~j;, for which we have taken an on-mass shell

form

III. THREE-BODY BREAKUP ANALYSIS

A. Three-body final state

j„=i[y„(F,+xF2)+i(p+p') IrF2/2MJv ] .

For the electromagnetic form factors F„wehave used
those of Hohler et al. , set 8.2 [11].

er, in the actual calculations it is sufficient to consider
only one component of the final state

~f ) ", provided the
target state ~%z. ) is explicitly antisymmetrized and the
electromagnetic operator is symmetric in the nucleon la-
beling. Since ~f )" is constructed by applying the an-
tisymmetrizer A from Eq. (A7) to an unsymmetrized
final-state component

~f ), i.e., ~f ) "=A
~f ), we may as

well write

where the antisymrnetrizer A is absorbed in the target
state giving rise to a factor v'6 due to the asymptotic nor-
malization of ~f )". Of course, ~f ) still is an eigenstate
of the Hamiltonian H =Hp+g3

& V; at energy s,
To describe the three-body breakup process we use a

complete set of three-particle states in momentum-spin-
isospin space. The notation of these states is given in Ap-
pendix A. Since the nuclear wave functions are solved
with nonrelativistic kinematics, the center-of-mass
motion can be taken out from the problem. In terms of
the Jacobi rnomenta pf and qf the amplitude M„canbe
written as

The essential difference between two-body breakup and
three-body breakup is the treatment of the final state of
the pair subsystem. The deuteron state present in the
two-body breakup process is an isolated bound state in
two-nucleon Hilbert space with a definite internal energy.
In the three-body breakup process the pair subsystem is
in a continuum state with an internal energy e23, which
can vary from the absence of relative motion (e23=0) to
absorption of all the relative kinetic energy s, available
in the center-of-mass frame of the three-nucleon system.
To determine the three-body breakup amplitude we have
to find the solution to the 3%~3%scattering process.

Before we discuss these aspects in detail we formulate
an explicit expression for the three-body breakup ampli-
tude M from which the nuclear structure function can be
calculated. The general form of the amplitude is

(10)

where the nuclear states are fully antisymmetric. Howev-
I

M ( Q, s, ;pf, qf ', Sr, Tf )

=&6' '&& pfqfPfl J~ lq rSr'Tr ), (12)

where pf represents the spin-isospin quantum numbers
according to Eq. (A18).

A kinematically complete, but unpolarized, experiment
yields a quantity I which is proportional to the squared
amplitude summed over all possible polarizations of the
final state. This can be done straightforwardly since the
spins in pf form a complete set. The isospin, however,
requires a more careful evaluation, since it does not in-
volve a summation. In a complete experiment we must
decide which nucleons are to be detected. Each choice,
such that t; + t 2+ t 3

=T', is equivalent, but must remain
fixed. It implies that we have to project the isospin states
contained in ~pf ) on the single-nucleon isospin states

~ t;t zt 3; T') . The corresponding quantity I takes the
form

I(Q&s& m &Pf &qf prfrzr3& Tr) 5(Hp(Pf &qf ) s+ ~ )

1 Z Z Z ZZZ 2x g —g g M„(Q,s. ;pf, qf Sr' TT)f&(rp rq )TfTflrfr2r3)
s ,Sf)Sf S7 P ' fPf

where

(13)

Throughout the analysis, it is assumed that nucleon 1 is
the spectator nucleon, t

&

= tq.

B. Kinematics

The nuclear dynamics related to the construction of
the trinucleon wave functions is treated fully nonrela-

tivistica11y. For reasons of consistency it would be prefer-
able to describe the motion of the three outgoing nu-
cleons by nonrelativistic kinematics as mell. However, it
turns out that the high end of momentum-energy transfer
at which the experimental data are taken requires a
theoretical description which goes beyond a purely non-
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s, +3M~=+(co+MT) —Q (14)

where MT is the mass of the trinucleon bound state. The
particle momenta k' "' in the target rest frame are deter-
mined from the momenta k, in the final state by
k' "'=k; —Q, k,""'=k,, and kI,'"'=kk, where we have tak-
en particle i as the electromagnetically active nucleon.
Since the target rest frame is equivalent to a c.m. -frame,
we can directly derive the corresponding Jacobi momenta
which are used as input in the determination of the
three-nucleon bound-state wave function. This aspect of
relativity, which is essential in order to match the posi-
tions of the quasielastic peaks, implies a slight
modification of the purely nonrelativistic prescription
given in Ref. [4] to link Jacobi coordinates of the final
and initial states. In fact, it is used in a similar way to
calculate the contributions from the two-body breakup
process to the response functions.

The last step is to connect the essentially nonrelativis-

relativistic treatment. In the analysis of the two-body
process [4] relativity is only used to describe the motion
of the final N-d state in the laboratory frame and to con-
nect the four-momentum of the transferred photon to the
three-momentum of the electromagnetically active nu-
cleon. This procedure was sufticiently accurate to de-
scribe the relativistic kinematics of exclusive two-body
breakup measurements. In a previous letter [12] we
found a significant discrepancy in the positions of the
quasielastic peak of the experimental result and the
theoretical predictions. The shortcoming certainly had
to be ascribed to the use of nonrelativistic kinematics in
the description of the three-body breakup process. The
discrepancy was resolved by imposing an ad hoc method
of so-called PWIA kinematics, where the positions of the
quasielastic peaks were matched. Hereafter, we will
present a more systematic way to connect the relativistic
kinematics of the freely moving nucleons with the essen-
tially nonrelativistic momentum arguments of the trinu-
cleon wave functions. The advantage of this prescription
is that it not only resolves the above-mentioned
discrepancy in a natural way, but it also accounts for the
proper relativistic phase space factor of the three-body
breakup contribution to the response functions. The
latter aspect is described in detail in Appendix B. The re-
sults of Sec. IV A show that the use of a relativistic phase
space factor leads to significant enhancement of the
response functions.

Relativistic kinematics is introduced in the following
way. In the center-of-mass frame of the final state of
three free nucleons the energy s, is related to a relativ-
istic expression for the kinetic energies Ho(pI, qI) of the
particles according to Eq. (B9). [Use Eq. (A4) to substi-
tute the Jacobi coordinates. ] The current matrix ele-
ments are calculated in the laboratory and in order to
know the final-state momenta k; of the nucleons, we ap-
ply a Lorentz boost to the c.m. -frame momenta k,"
using the inverse of the transformation in Eq. (B9). In
this scheme the energy transfer co and the center-of-mass
energy s, are essentially related by the invariant mass
formula,

Here we identify the energy s, with the quasielastic
point, which is defined by the Jacobi coordinates p&=0
and q& =q,

&
with q, &

@=+I,such that

s, ~ =Q'3M~q, )+M~+2Q 'M~—q, , +M~ . (16)

An expression for q, ~
as a function of s, is found by as-

sociating q, ~
with q, „

from Eq. (B9).
A nonrelativistic expansion of Go in terms of the off™

shell momenta p and q, and the quasielastic momentum

q,&, yields

G
—1 p2+ 2 2 (17)

which is the nonrelativistic propagator for a system with
an effective nonrelativistic energy s, defined by

2
c.m. ~ el

In the following we will use this effective energy s, as
the energy parameter present in the three-particle final-
state wave function. Clearly, in a fully nonrelativistic
analysis s, is equal to s,

The three-body breakup nuclear structure functions 8'
and the three-body breakup contributions to the nuclear
response functions are simply formulated by subsequent
integrations over the Jacobi momenta:

W(Q, s, ;q~', t~, Tf )

J)Jq
dp&I(Q, s, ;p&, qf t ftft3 Tf), .

ny
(19)

n
R (Q,s, ; Tf. )= dqI W(Q, s, ;qI , tv, Tf ) . . (20)

2

The factors J, and J2, together with a phase space fac-
tor k&, which arises when the energy conserving delta
function present in the I function is removed by an in-
tegration over the length of p&, are derived in Appendix
B.

The factor nI accounts for the identity of two of the
three outgoing nucleons. When the nucleons of the sub-
system are identical, t2 = t 3, a factor —,

' appears in front of
the functions 8'. Otherwise it appears in front of the
response function, reAecting that the spectator nucleon is

1

2 +
3

1

O, ,
3

1

O,
LJg ()

FIG. 1. Diagrammatic representation of the first few terms of
the 3N~3N multiple scattering series.

tic energy parameter in the three-nucleon final-state wave
function with the relativistic energy s, , which is relat-
ed to the energy transfer in the laboratory frame accord-
ing to Eq. (14). To determine this connection we start
from a propagator with relativistic expressions for the en-
ergies,

Go '=Ho(p, q) —s, i—e .
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nf =1 if t1=+T',
nf =2 if t1= —T' .

(21)

identical with one of the nucleons in the pair. Thus, the
possible values for nf are

C. The scattering wave function

The scattering state corresponding to the transition of
three ofF-'shell nucleons to three free nucleons in the final
state can be expressed in terms of the three-nucleon T
matrix according to

lpfqfpf &'i '=IpfqfPI &i
—g f dpdqlpqP&«GO(s. }«&pqPIT(s. . )lpfqfPf)i .

P

(22}

Here Go(z) denotes the resolvente operator (Ho —z) . To determine the free-free T matrix we explicitly make use of
the Faddeev equations. Assuming that the potential Vis constructed from two-body potentials,

V= V1 + Vq+ V3

and decomposing the T matrix as

T=T'+T +T

(23)

(24)

the equation for the components T' can be written as

T'(z)=t;(z) t;(z)GO—(z)[TJ(z)+T"(z)] (i' AkAi), (25)

where t, (z) represents the two-body T matrix in the subsystem of particles j and k. With the expression for the Faddeev
components T, (z) we can represent the scattering state of Eq. (22) in diagrammatic form. The first few terms are shown
in Fig 1. T. he first diagram refers to the pure plane-wave state on the right-hand side of Eq. (22). The next three dia-
grams each have one nucleon which remains unaffected by FSI. These are called the Born disconnected diagrams and
like in the two-body breakup analysis they are treated separately from the fully connected diagrams, of which the last
diagram in Fig. 1 is the first representative. The Born disconnected terms can be singled out by applying one iteration
to the T matrix of Eq. (22),

3 3

«&pqplT(s, . )IpfqfPf &i= g «&pqplt, (s. . )Ipfqfpf &i g g «&pqPIT(s, )Go(s )t (s, , )lpfqfPf &i .
n=1 n =11%n

(26)

The subindex k in Eq. (22) may be chosen in such a way that it refers to the subsystem where the first nucleonic interac-
tion takes place. However, as is pointed out before, the subindex 1, which labels the final state, must remain fixed, and
we need to insert an additional complete set of states in order to recouple to contributions where nucleon 1 is involved
in the last nucleonic interaction. In this way the T matrix piece in the second term on the right-hand side of Eq. (22)
becomes

g fdpdqlpqP&««&pqPIT(s. )Ipiqfpf &i

3= g g fdp'dq' g fdpdqlpqp)„„&pqplt„(s, }Ip'q'p')„„&p'q'p'lpfqfpf )i
n=1 P'

—g f dpdqlpqp&««&pqpl g T(s,. )Gp(s . . )t (s . . )Ip'q'P'&. „&p'q'P'IpfqfPf)]
P lAn

(27}

The integrals J dp'dq' in Eq. (27) are formal and the mo-

menta (p', q') are replaced by the momenta (pf, qf ) as-
n n

sociated to the set (pf, qf) using Appendix A. Further-
more, we must know the spin-isospin recoupling elements
„&P'le), (see also Appendix A).

The disconnected part of the scattering wave function
is calculated straightforwardly. The complications arise
in the analysis of the connected part. To determine the
multiple scattering series for the 3N ~3N scattering pro-
cess we follow the analysis of the related 3N ~Nd
scattering process as close as possible [4,13]. The scatter-

ing problem of the latter process is solved by iterations of
the subsequent scattering terms, starting from the double
collision term or rescattering term. For a sufficient num-
ber of iterations, in general less than 16, the full solution
was determined using the technique of Pade approxi-
m ants.

To solve the 3N~3N scattering problem it turns out
that the double collision term is no longer suited to serve
as a driving force for the multiple scattering series. This
is due to the presence of logarithmic singularities, which
are related to the absence of a deuteron state in either the
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initial or final state. Fortunately, the triple collision term
appears to be sufficiently smooth to act as the starting
term for the iterations. Apart from these modifications,
the procedures to construct 3N ~3N and 3N ~Nd
scattering series are very similar. The only additional
technical problem that remains to be solved is the calcu-
lation of the triple collision term. This requires a very
careful numerical analysis, which is described in detail in
Appendix C.

Once all components are known we can proceed with
the calculation of the electromagnetic amplitude M„of
Eq. (12). As N Ninp-ut we have used the local s-wave in-
teractions of Ma16iet and Tjon. In both spin-isospin
channels it is described by a spin-dependent Yukawa in-
teraction

FIG. 2. Diagrammatic representation of the various contri-
butions to the electromagnetic three-body breakup process. Set
(a) represents the PWIA-type diagrams, while (b) implies the
direct knockout of a correlated pair. The connected diagrams
consist of the rescattering contribution given by (c), and all the
higher-order diagrams given by (d).

V(r)= — + (28)

Like in the study of the two-body breakup process we
have employed the UPE to facilitate the numerical evalu-
ations. In this work we have mostly considered only the
first term of the UPE series. In momentum space the
UPA s-wave matrix element of a local potential is given
by

V(p, p') = —~g(p)g(p'), (29)

with

T(p, p', z) =g(p)r(z)g(p'), (30)

r(z)= — A,
'

4m I—dpp
0 p z

(31)

A detailed discussion on the validity of the UPE method
to N-d scattering and trinucleon bound-state energies can
be found in Ref. [4].

D. Electromagnetic amplitude

The various diagrammatic contributions to the elec-
tromagnetic amplitude are shown in Fig. 2. The dia-
grams in Fig. 2(a) represent the process of direct nucleon
knockout, while the direct knockout of a correlated pair
is contained in Fig. 2(b). The latter diagram is equivalent
to the direct deuteron knockout in the two-body breakup
process. The diagrams in Figs. 2(c) and 2(d) represent the
connected part of the amplitude. It is reminded that each
diagram where the photon couples to a nucleon in a
correlated pair in fact represents two processes. In addi-
tion, the total number of diagrams is three times larger,
since the outgoing spectator nucleon can be either nu-

I

where the nucleonic form factor g (p) is the solution of
the Lippmann-Schwinger equation which corresponds to
the leading eigenvalue. In this approach the two-particle
T matrix also separates and takes the analytic form

cleon 1, 2, or 3.
Thus, for a set of six diagrams the probed nucleon is

directly knocked into a final plane-wave state. As is well
known, the evaluation of these diagrams becomes partic-
ularly simple, since the electromagnetic structure can be
factorized from nuclear overlap. This set is referred to as
the PWIA amplitude, although the convenient way to
calculate the PWIA cross section requires an additional
assumption.

In the direct amplitude, which is represented by the
left-hand diagram in Fig. 2(a), the final state is a pure
three-nucleon plane-wave state. Consequently, the calcu-
lation of the direct amplitude involves no integrations,

3
M' '"""=&6(,grSr T') g I'"' ~pfqfP ), .

n=1
(32)

In addition to its simple and fast evaluation, the direct
amplitude offers an excellent opportunity to check explic-
itly whether the numerical representations of the elec-
tromagnetic operator and the trinucleon bound state
satisfy the symmetry properties required in the derivation
of Eq. (12). It should be stressed that this test is impor-
tant and must be fulfilled, otherwise the numerical results
may be senseless. In order to calculate M' '""' a com-
plete set of states +&fdp'dq')p'q'p')„„(p'q'p') is in-

serted in Eq. (32), with the index n taken equal to the ac-
tive nucleon number n. The desired symmetry test is ob-
tained by inserting the complete set either prior to or
after the electromagnetic interaction in Eq. (32). Concep-
tually, both ways of calculation are completely equivalent
and must yield the same result for each set of final-state
quantum numbers, regardless of the value of the momen-
tum transfer. In practice, however, the computational
schemes are quite different, due to the way the trinucleon
bound-state wave function is formulated (see Ref. [4]) and
identical results can only be obtained if the symmetry re-
quirements are properly satisfied.

The Born disconnected amplitudes are calculated ac-
cording to

3 3
M' "" '"'"'=&6 g g fdpdq(gzSz T'I p I,"' Ipqp)„GO(s, )„&pqpl)t„(s, )l)pfqfpf)& .

n=1 P

(33)
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The only modification with the two-body breakup analysis is the replacement of the deuteron state by the two-particle t
matrix in the continuum sector:

1(p}~ 2 2 t(P pf, z=pf) .
P Pj lE,

(34)

The pole in the three-particle propagator is removed using the standard subtraction technique. Of course, the three-
body breakup Born amplitudes are complex valued. In contrast to the deuteron case, both spin channels in the two-
body sector are accessible. Special care should be attended to the virtual deuteron state in the So channel just above
threshold. The connected amplitude can be written as

3 3M'""'=&6 g g fdpdq(grSfT'~ g-I",f' ~pqp)kG (s, )k(pqp~ g T'(s, )G (s, )t„(s, )~pfqfpf )]
n=1 P j=1 IAn

(35)

where the index k is chosen in such a way to match the first interacting pair. The wave-function coefficient represents
the first rescattering term as well as the account due to the remaining multiple scattering. The structure of these free~ free scattering terms is analyzed previously and in terms of the corresponding wave functions, the scattering matrix
element takes the form

(pqplGp($ } g T($ )Gp($ )t (s, . }Ipf qf pf &, =8'"(pqplpf qf pf )+F(pqplpf qf pf } .
l&n

(36)

Explicit forms of the functions 8"' and F are expressed in Eqs. (C2) and (C22).
The evaluation of the multiple scattering amplitudes requires a fivefold numerical integration, since the integration of

one azimuthal angle can be carried out analytically. This is described in detail in Ref. [4]. An additional complication
arises due to the presence of logarithmic singularities in the spectator momentum dependence of the rescattering wave
function 8'". In the q integration these poles are removed by means of a subtraction technique. If we construct the
function 8]"with the slightly different approach summarized in Eqs. (C20) and (C21), the only logarithmic dependence
in the integrand of Eq. (4) is contained in the Qp Legendre functions. If we split off a regular coefficient f(q}, the in-
tegral over the logarithmic contribution can be written as

q

f dq [f (q)gp(& (q, qf ))—0.Sf(q )ln(q q)+0. Sk,f—(q„)ln(q—
q )] (37)

1

q„=—,'[qf ++3(s, —
qf )],

(38)

where qf is related to pf, qf according to Eq. (A13). [In
the notation of Eq. (A13): j ~n;i ~1.] The pole posi-
tion x, is expressed in Eq. (C10), the variable k, corre-
sponds to the sign of x, at threshold according to Eq.
(C10).

The subtraction integrals appearing in Eq. (37) must
be compensated, which can be done analytically:

q

f dq ln(q —q)
co

l

q

f dq ln(q —
q }

cc]
l

' = (q —q„)[ln(q —
q ) —1] .

(39)

In the actual calculation of Eq. (35), the contributions
from the rescattering term and the remaining part of the

where we have subtracted the singular terms. The posi-
tion of the logarithmic points q„and q is known as a

CO) 2

function of the associated spectator momentum qIn

q, =
—,
'

Iqf +3(s, —qf2 )I

multiple scattering series are separated according to Eq.
(36). Except for the account of the logarithmic contribu-
tions, which are only present in 8'", the evaluation of
both terms is equivalent.

The relative phase between the various amplitudes is of
course of importance. Due to the form of the Green's
function the real part of subsequent terms in the Faddeev
equations [Eq. (5)] have alternating signs. Similarly, the
direct amplitude D and the Born disconnected amplitude
8' ' have opposite relative sign, which is consistent with
Eq. (1). The same is true for 8' ' and 8'", respectively,8'" and F. However, in the latter case the factor —1 is
already absorbed in 8' ', since the driving term is con-
structed directly from the expression for B"'.

E. Three-body breakup spectral function

In PWIA it is assumed that the detected nucleon is
directly knocked out into a plane-wave state without be-
ing affected by the remaining nuclear system. Conse-
quently, the electromagnetic interaction and the compli-
cated overlap of nuclear wave functions factorize, which
makes the calculation of the knock-out process
significantly simpler.

In order to calculate the breakup observables with
PWIA it is customary to introduce the concept of the nu-
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clear spectral function. In the discussion of the PWIA-
type amplitudes among the various diagrams in Fig. 2 we
already mentioned that it is convenient to make one fur-
ther assumption. In a true PWIA analysis the overlap
between contributions with a different active spectator
nucleon are neglected. However, the different final states
are not orthogonal, which property is expressed by the
nonvanishing recoupling coefficients. One consequence
of this simplification is that the reduction from a fully an-
tisymmetrized final state to just one component, like in
Eqs. (10) and (11), is no longer valid. But we may hope
that the overlap contributions are very small compared to
the squared terms. In checking this assumption we found

I

that the size of the overlap was indeed very small, less
than l%%uo, which is comparable to the numerical inaccura-
cy. In this approach the PWIA nuclear structure func-
tions reduce to merely the sum of three equivalent contri-
butions, which contain the spectral function as a factor.

In the three-body breakup process the spectral func-
tion measures the probability to find one nucleon t', with
missing momentum q, leaving the remaining two nu-
cleons in an unbound but correlated state with energy
E23(f ) =E . Here, we have redefined the missing energy,
such that E =0 indicates the three-body breakup
threshold. According to this definition the spectral func-
tion can be expressed as

s(q, E;t'I TT)= g-,' g l3/3&PTsTTTlq s'I, &23f ~1 fi(E e23(f»
S

If ST

(40)

The correlated two-particle state i/23) is antisymmetrized and is assumed to have the same asymptotic normalization
as a plane-wave state. The summation index f labels the unobserved quantum numbers of the residual state, i.e.,
gf ~g, 1 d pf Th. e energy s23(f ) is the internal kinetic energy of the subsystem, s23(f ) =pf . Substituting explicit

23

expressions for the trinucleon bound state and the disconnected final states, the spectral function takes the form

1 1S(q,E;t;,T')= g J dQ~ g 6 QT(pf, qf, pf) dpgT—(p, q;Iaf)
P Pf lC

1 pf Pf

Xg(p;pf)r(pf 13f)g(pf 13f)

X,((tp tq )Tf T ltIt2t3) (41)

where t1, t2, t3 form an arbitrary but fixed set of isospin
quantum numbers, such that the isospin factor
I((tz t& )TfT'ltIt2t3) has a definite value. The factor

Pf
3/6 reflects that only one of the six final-state components
is used in the actual calculation. The spectral function is
normalized in such a way that at fixed values for q and
E the probabilities to find a nucleon with isospin t', = T'
or t; = —T' become equal if we assume a spin-
independent N-X interaction. The spectral function can
be connected to the electromagnetic process by the miss-

ing Jacobi coordinate q . It is related to the final

momentum of the active nucleon according to
q =

—,'Q3/MIv(Q —p'Iv). In PWIA the nuclear struc-
ture functions are simply obtained from

PrpwIA(Q ~ p& y. tz Tz)

N
ti

g co, (Q, co,py;t. I )S(q, E, ;tI, T'), (42)
n=1

where the quantities co (j=C, T,S,I) are the correspond-
ing single-nucleon functions. N, denotes the number of

nucleons with isospin t1. The PWIA response functions
can be calculated by a subsequent integration over pN ac-
cording to Eq. (8) or (20).

In PWIA, the missing momentum and missing energy
dependence of the three-body part of the spectral func-
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FICs. 3. The left-hand part shows the three-body breakup
momentum distribution p3 of 'He calculated in UPA. The
figure on the right-hand part shows the function P(E ), also for
'He. The solid line corresponds to a spectator proton, the
dashed line to a spectator neutron.

I

tion directly determines the three-body breakup nuclear
structure properties. To see the form of this dependence
we have plotted in Fig. 3 the proton and neutron three-
body breakup momentum distribution p3(p;t', ) for He.
This quantity results from an integration of the spectral
function over the missing energy in the continuum range,
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p3(q;t;)= f dE S(q,E;t'„T'=—,') .
0

Also shown is the less convenient quantity

I'(E;t&)= dq S(q,E;t'„T'=—,'),. ~ = 1

4m.

(43)

(44)

1.2

1.0—

0.6-

Q = 500 MeV/c
I ' ' ' '

I
' ' ' ' I

from which the missing momentum dependence is re-
moved. The figures clearly show that the spectral func-
tion is a rapidly decreasing function of both the missing
momentum and missing energy. For more details about
the spectral function, such as a two-dimensional plot, the
reader is referred to Ref. [2].

Knowledge of the behavior of the spectral function is
essential when one wants to calculate the exact nuclear
response functions by integrating the squared invariant
three-body breakup amplitude ~M ~

over the Jacobi coor-
dinates pf and qf. Appendix D provides a detailed
description of the integration procedure.

IV. RESULTS
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A. Trinucleon response functions

Recently inelastic inclusive cross sections of the mirror
nuclei He and H have been presented by the Bates
group [1]. From these measurements the trinucleon
response observables are determined as a function of the
energy transfer cu in the target rest frame at fixed momen-
tum transfer Q. The experimental data taken at Q =500
MeV/c are shown in Figs. 4 and 5. Our theoretical pre-
dictions obtained with the use of relativistic kinematics
are also shown in Figs. 4 and 5. The energies co and s,
are linked according to the invariant mass formula from
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FIG. 4. Longitudinal response functions for He and H at
Q =500 MeV/c. The solid curve represents a full calculation.
The dashed curve shows the PWIA result, while the dotted
curve includes all disconnected contributions. The experimen-
tal data are from Ref. [l].

FIG. 5. Transverse response functions for He and H at

Q =500 MeV/c. The various curves are the same as in Fig. 4.
Data are from Ref. [1].

Eq. (14), where we have taken —7.0 MeV for the value of
the trinucleon binding energy.

The full calculation of the longitudinal response turns
out to give a reasonable description of the experimental
data. The result for the transverse response is less satis-
factory. Its prediction underestimates the experimental
data throughout the entire quasielastic peak. A possible
reason for this discrepancy may be the presence of
meson-exchange currents, which will predominantly
affect the transverse component of the nuclear current.
Another possibility might be the absence of d-wave com-
ponents in our initial- and final-state wave functions,
which is an unlikely cause in view of the PWIA analyses
of the Hannover group [2] and the Rome group [3]. In
their studies of the response functions with the Reid soft
core potential, including d-wave N-N interactions, a simi-
lar inadequacy of the calculated transverse response was
found.

The figure clearly shows that the addition of the direct
knockout of a correlated pair [Fig. 2(b)] to the PWIA
contribution [Fig. 2(a)] leads to a significant enhance-
ment of the response functions. However, this effect is
entirely canceled by the addition of the connected ampli-
tudes of Figs. 2(c) and 2(d). In fact, the inclusion of FSI
results in a sizable reduction of the response relative to
PWIA for values of the energy transfer throughout the
quasielastic peak. Only at low energy transfer Anal-state
effects tend to increase the PWIA response, while at ener-
gy transfer values beyond co=200 MeV the effect on the
response functions becomes negligible.

This result does not support the findings of Schiavilla
et al. [14],who used the method of correlated basis states
to account for some final-state effects. The entire
response peak in their full result is shifted towards larger
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energies with respect to the result obtained in impulse ap-
proximation (IA). Consequently, the full response is
enhancing the IA response at energies beyond the quasi-
elastic peak, despite the fact that the strength of the peak
is decreased by about 15%. It should be noted, however,
that their uncorrelated result in principle corresponds to
only the first diagram of Fig. 2.

To see the effect of relativistic kinematics as described
in Sec. III B and Appendix 8, we have also calculated the
response using purely nonrelativistic kinematics. Results
for the longitudinal response obtained with both kinemat-
ics are shown in Fig. 6. The effect of relativistic kinemat-
ics is clearly visible, both to the size of the response func-
tions and to the position of the quasielastic peak. The
enhancement found is entirely due to the relativistic
phase space factor. The shift of the quasielastic peak to
lower values of the energy transfer is primarily induced
by the way the relativistic nucleon momenta of the final
state is linked with the nonrelativistic nuclear dynamics
of the trinucleon wave functions as has been described in
Sec. III B.

The top of the quasielastic peak is roughly located at
the point where the energy transfer satisfies the relation

co+MT=+Q +M„+2M~ . (45)

1.0
Q = 500 MeV/c

I ' ' ' '
I

' ' ' ' I

This point corresponds to a kinematic situation where all
nucleons are at rest prior to the e.m. knockout, such that
the nuclear spectral function gives a maximal contribu-
tion. Using relativistic kinematics this point is found at
co= 131.6 MeV, whereas in the nonrelativistic approach
the top shifts to co=140.2 MeV. Still, the response func-
tions obtained with relativistic kinematics appear to be

slightly to the right of the above-mentioned figure. This
is due to the fact that the phase space factor is a rising
function of the energy transfer. In Fig. 6 only the effect
of relativity to the full results is shown. It turns out that
in going to relativistic kinematics the various approxima-
tions show a similar shift and enhancement, such that the
relative shapes and positions of all calculated results
remain the same in both kinematics. This is of course not
surprising, since in both kinematics the nuclear dynam-
ics, in which the full result and its approximations differ,
is treated nonrelativistically.

In Refs. [4] and [5] it is verified that use of the unitary
pole approximation (UPA), i.e., the first term of the uni-
tary pole expansion (UPE) series, leads to realistic results
in the calculation of exclusive two-body breakup cross
sections. It is important to establish whether such a
statement holds in the analysis of three-body breakup
processes and hence in the calculation of the response
functions. We have therefore studied the sensitivity of
the nuclear response functions on the number of eigenval-
ues retained in the UPE series. Using the notation of
Ref. [4] the results for the He longitudinal response
function obtained with UPA, (1111)-UPE, and (2222)-
UPE are listed in Table I. The ratio of (2222)-UPE re-
sults and the UPA results for the various response func-
tions are tabulated in Table II. In this notation UPA is
equivalent to (1010)-UPE. In Ref. [4] it is found that the
observables calculated with a (2222)-UPE analysis, i.e.,
with four terms in each two-nucleon channel, have al-
most converged to the same value obtained with a calcu-
lation based on the corresponding local potential. So
keeping even more eigenvalues is not necessary. We have
selected three kinematic points, one on the high-energy
transfer side of the response (kinematics I), another point
at the top of the quasielastic peak (kinematics II), and a
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FIG. 6. Longitudinal response functions for He and 'H at

Q =500 MeV/c obtained with relativistic and nonrelativistic ki-

nematics. The relativistic result is represented by the solid
curve, which is the same as in Fig. 4. The dashed curve shows
the full result obtained with the use of purely nonrelativistic ki-
nematics. Data are from Ref. [1].
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FIG. 7. Longitudinal response functions for 'He and H at

Q =300 MeV/c. The various curves are the same as in Fig. 4.
Data are from Ref. [l].
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TABLE I. Longitudinal response function of He (in units of 10 MeV ') at three kinematic points
obtained with a UPA and with two high-term UPE calculations. Apart from the response function we

have also listed two-body breakup and the three-body breakup contributions to the response function
separately. We have tabulated the results of a PWIA calculation together with the results of a full

analysis including FSI.

Rl. - He
Two-body breakup

PWIA +FSI
Three-body breakup

PWIA +FSI
Total breakup

PWIA +FSI

UPA
(1111)-UPE
(2222)-UPE

Kinematics I: Q=300 MeV/c, s, =80 MeV, to=100.9 MeV
0.2595 0.1520 0.2279 0.1390 0.4874
0.2476 0.1514 0.2201 0.1366 0.4677
0.2466 0.1461 0.2198 0.1353 0.4664

0.2909
0.2880
0.2815

UPA
(1111)-UPE
(2222)-UPE

Kinematics II: Q=500 MeV/c, s, =80 MeV, co=128.3 MeV
0.5702 0.5257 0.2232 0.2057 0.7934
0.5872 0.5392 0.2241 0.2034 0.8113
0.5876 0.5430 0.2241 0.2100 0.8116

0.7314
0.7426
0.7530

UPA
(1111)-UPE
(2222)-UPE

Kinematics III: Q =500 MeV/c, s, =20 MeV, co=70.7 MeV
0.0240 0.0592 0.0098 0.0346 0.0338
0.0222 0.0549 0.0091 0.0315 0.0313
0.0220 0.0568 0.0091 0.0338 0.0312

0.0938
0.0863
0.0906

point on the low-energy transfer side of the response
curve (kinematics III). Table II shows that the response
function results obtained with a full analysis including
FSI with either UPA or (2222)-UPE do not differ more
than about 3%, except for the transverse response func-
tions in kinematics III which differ around 5%%uo. Further-
more, the (2222)-UPE response curves have a larger max-
imum and are steeper than the UPA response curves.
The differences in the PWIA calculations are a bit larger,
with the overall effect that changing from UPA to
(2222)-UPE tends to lift the curve corresponding to a full

calculation relative to the PWIA result by a few percent.
However, this is a very small effect, and comparison of
the numbers listed in the last two columns of Table I
shows that the role of final state interactions remains al-
most unaffected in turning from UPA to (2222)-UPE. In
view of these aspects we conclude that it is indeed
justified to consider UPA as a very useful tool in the
analysis of the three-body response observable. The re-
sults for the two-body breakup and three-body breakup
contributions to the response function are listed separate-
ly, showing that neither one nor the other breakup pro-

TABLE II. Ratio values of the response functions obtained with a high-term (2222)-UPE calculation
and with a UPA calculation at three kinematic points. Remaining details are explained in the caption
of Table I.

Two-body breakup
PWIA +FSI

Three-body breakup
PWIA +FSI

Total breakup
PWIA +FSI

RL- He
RL- H
RT- He
RT- H

Kinematics
0.951
0.930
0.948
0.950

I: Q=300 MeV/c, s, =80 MeV, co=100.9 MeV
0.962 0.964 0.974 0.957
1.068 0.978 0.969 0.978
0.941 0.969 1.000 0.960
0.936 0.974 0.995 0.969

0.967
0.971
0.978
0.983

RL- He3

RL- H
RT-'He
RT- H

Kinematics
1.034
1.019
1.030
1.030

II: Q=500 MeV/c, s, =80 MeV, co=128.3 MeV
1.033 1.004 1.021 1.023
1.060 1.016 1.025 1.016
1.031 1.008 1.024 1.021
1.030 1.013 1.021 1.019

1.030
1.026
1.028
1.025

Rl - He3

RL- H
RT- He3

RT- H

Kinematics III: Q=500 MeV/c, s, =20 MeV,
0.918 0.961 0.935 0.977
0.912 1.037 0.948 1.016
0.919 0.951 0.940 0.938
0.919 0.949 0.945 0.950

co=70.7 MeV
0.923
0.947
0.927
0.935

0.967
1.026
0.946
0.949
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FIG. 8. Transverse response functions for 'He and 'H at

Q =300 MeV/c. The various curves are the same as in Fig. 4.
Data are from Ref. [1].

FIG. 10. Transverse response functions for 'He and 'H at

Q =400 MeV/c. The various curves are the same as in Fig. 4.
Data are from Ref. [1].

cess is particularly sensitive to the number of eigenvalues
retained in the UPE series. With a few exceptions, the
(1111}-UPEresults are between the UPA and (2222)-UPE
results.

The calculation of the response functions has also been
done at a momentum transfer of 300 and 400 MeV/c.
The results are shown in Figs. 7—10, together with the
experimental data from Bates [1]. Again relativistic kine-

0.8
Q = 500 MeV/c

. R —He 2-body .. R —He 3-body .
L L

0.6-

matics is employed. In view of the lower momentum
transfer, however, the effect of relativity is smaller than
found in Fig. 6. Similarly to the previous analysis the
description of the longitudinal data appears to be quite
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FIG. 9. Longitudinal response functions for He and H at

Q =400 MeV/c. The various curves are the same as in Fig. 4.
Data are from Ref. [1).
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FIG. 11. Two-body and three-body breakup contributions to
the longitudinal response of He and H separately at Q =500
MeV/c. The solid curve represents a full calculation. The
dashed curve shows the P%IA result, while the dotted curve in-

cludes all disconnected contributions. The dash-dotted curve
in the figures corresponding to the three-body breakup contri-
bution indicates a calculation including a11 disconnected ampli-

tudes and the lowest-order connected amplitudes.
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12
Q = 500 MeV/c

reasonable. In particular, the He data are accurately
reproduced. However, the calculated tranverse response
falls again well below the experimental data.

It is interesting to see the two-body and three-body
breakup to the response functions separately. They are
shown in Figs. 11 and 12 for the longitudinal response
only. A number of features are worth mentioning. The
H longitudinal response is entirely determined by the

three-body breakup part. The two-body breakup PWIA
contribution to this response function is negligible. How-

ever, it turns out that final-state interactions do not affect
this result significantly, except for low values of the ener-

gy transfer. Furthermore, the two-body breakup discon-
nected contribution is almost completely determined by
the PWIA amplitude. Although direct deuteron
knockout is the dominant process in antiparallel kinemat-
ics [4], the PWIA peak in forward direction is generally
much more pronounced. A similar behavior of the vari-
ous disconnected amplitudes is found in the three-body
breakup process. However, as both figures clearly show,
the Born disconnected contribution to the response is
considerably enhanced relative to the PWIA contribu-
tion. This can be partly ascribed to the enlarged accessi-
ble phase space for three outgoing particles compared to
the two-body breakup process. There are three PWIA re-
lated peaks, which are very narrow like in the two-body
breakup process. The gamma-correlated-pair contribu-
tion, however, is more spread than its two-body breakup
counterpart. Another effect is the nonvanishing overlap
between the three nonorthogonal final-state components.
It turns out that in a calculation with only disconnected
amplitudes these interference terms amount for 10% to
20go of the response.

Final-state effects always decrease the disconnected
response. For the three-body breakup process, shown in

the right-hand side of Figs. 11 and 12, we have plotted a
curve, which results after truncating the scattering series
at the first rescattering term. For all energies, the discon-
nected result is considerably affected by the addition of
the rescattering term, and it is evidently wrong to ignore
the lowest-order connected diagrams. At low energies,
however, the truncation of the diagrammatic series at the
rescattering term leads to a striking enhancement of the
response. In this energy domain one is forced to include
the remaining terms of the multiple scattering series in
order to describe the experimental data reasonably. In
particular, for the case of the low momentum transfer the
addition of the remaining multiple scattering effects has
dramatic consequences for the approximate response up
to the order of the rescattering contribution. At increas-
ing energy transfer the difference between the full result
and the result up to first-order connected diagrams is
gradually decreasing. For the Q =500 MeV/c kinematics
the difference becomes less than 1% beyond co=175
MeV; however, for the Q=300 MeV/c kinematics the
difference is still 10%%uo at this value of co. Similar figures
can be drawn for the tranverse response; however, the
effect of final-state interactions to the PWIA and Born re-
sults is much smaller than it is for the case of the longitu-
dinal response, which can already be seen in Figs. 4 and
5, respectively, Figs. 7 and 8.

B. Exclusive kinematics

Instead of the integrated response observables we may
consider the nuclear structure functions from Eq. (4), cor-
responding to the (e,e'p)NN reaction, in order to get
more insight in the importance of FSI. In terms of
center-of-mass kinematic variables it is a function of the
relative kinetic energy a=+I, —

qf of the outgoing
pair and the relative angle Hf =qf Q. The presented re-
sults are obtained with relativistic kinematics. Figure 13
displays a contour plot of the ratio Wc/Wz ' for He
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FIG. 12. Two-body and three-body breakup contributions to
the longitudinal response of 'He and 'H separately at Q =300
MeV/c. The various curves are the same as in Fig. 11.

FIG. 13. Contour plot of the ratio W&/W& ' of the longi-
tudinal nuclear structure functions corresponding to the coin-
cidence tie(e, e'p) reaction. The momentum transfer Q is 500
MeV/c, while the center-of-mass kinetic energy f, is 90 MeV.
The relative kinetic energy c of the unobserved pair is in units
MeV.



1476 E. VAN MEIJGAARD AND J. A. TJON 45
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10' 8 = 120'
f

in this two-dimensional space. The momentum transfer
is 500 MeV/c and for the energy we have taken s, =90
MeV, which is close to the quasielastic point. The main
contribution in the region at c=0 and cosO = —1 is duef
to the PWIA-type diagrams, in which the measured pro-
ton is the knocked-out nucleon. The second region, where
a PWIA contribution is important, is located at c.=—,'s,
and cosOf = 1. Near this kinematic point we are in a typ-
ical quasifree situation, where one of the unobserved nu-
cleons is knocked out directly. In both regions, inclusion
of the additional disconnected amplitude from Fig. 2(b)
together with the connected amplitudes from Figs. 2(c)
and 2(d) leads to a reduction of the PWIA contributions
[(Fig. 2(a)], which show up as strong and narrow peaks
in the three-body breakup nuclear structure function Wc.
Off the quasifree kinematic regions, the process of direct
nucleon knockout is suppressed and Wc is mainly deter-
mined by the remaining diagrams of Fig. 2.

In Fig. 14 the absolute values of the nuclear structure
functions are shown as a function of c at some values of
0f. The pronounced PWIA contributions are clearly
present in the plots for (anti)parallel kinematics. In the
same subplots the Born calculation has a secondary max-
imum, which corresponds to the direct knockout of a
correlated pair. But these maxima are not pronounced;
in fact, they are not significantly larger than the maxima
in the off parallel plots. From this it may be understood
why the Born response, which results from an integration
over c, and 8f, is so enhanced compared to the PWIA
response. Furthermore, it may be concluded that in gen-

eral none of the various truncations of the diagrammatic
series of Fig. 2 are reliable approximations of the full re-
sult. Only in kinematic regions near the quasielastic
point does PWIA lead to a satisfactory description.

In order to study final-state effects in even more detail
we have also considered a number of completely exclusive
kinematic setups for the (e, e'2N) breakup reactions. The
choices of the kinematic configurations were inspired by
previous studies of breakup into three free nucleons in nd
scattering [15]. In all cases we have restricted ourselves
to in-plane reactions. In particular, we have considered a
momentum transfer Q =300 MeV/c and a center-of-mass
energy s, =30 MeV. In the first example the kinemat-
ics is chosen such that in the c.m. frame of the three-
nucleon final state the nucleons come out with the same
energy and with a relative angle of 120'. It is closely con-
nected to the symmetric, constant-relative-energy (SCRE)
loci studied in some detail in nd breakup reactions. With
the above constraints the only free kinematic parameter
is the overall orientation of the triangle of final momenta
in the reaction plane with respect to the momentum
transfer.

In Fig. 15 the results are displayed as a function of this
orientation. We see that the full calculation seems to be
somewhat out of phase with the PWIA result. The
reason the latter is so small is related to the fact that this
kinematics is not even close to a quasielastic point. Once
more this is an example where the Born and rescattering
approximations lead to results quite different from the
fu11 result, in this case one order of magnitude too large.

As a last example Fig. 16 shows the results for the
H (e, e'np)p cross section at the same values for Q and

s, as in Fig. 15. The different kinematics, however,
corresponds to the situation of quasifree scattering in nd
scattering, if one would assume that the triton consisted

10 '

10
I) 10-3.

/

10-4.
I 3

)
O

101 I I I

(D 10'

o10 '

10

1O-'

10-4
/

/
/

10
—5 I ~ I I I I I I I I I I I I I I I

0 20 40 60 80 0 20 40 60 80

C

pMMp
0

CP

E &O'

- 10
0

D
Ld

b
~ 10

0

LC

pMMp
360

I

3
He(e, e'np)p

I

90
I

180
I a s

270
8 (deg)

'n

360

„MMp pMM
120 240

e (MeV)

FIG. 14. The longitudinal nuclear structure functions 8'c
corresponding to the coincidence 'He(e, e'p)pn reaction as a
function of the kinetic energy e of the unobserved pair at a num-
ber of proton angles Of. The various curves are the same as in
Fig. 11.

FIG. 15. The exclusive He(e, e'np)p breakup reaction at
Q =300 MeV/c and s, =30 MeV as a function of the orienta-
tion of the triangle in the reaction plane. The kinematic situa-
tion is such that in the c.m. system of the three outgoing nu-

cleons, the three nucleons come out under 120' and have equal
energy. The various curves are the same as in Fig. 11. The
electron parameters are E,&

=500 MeV and 0,&

=36 .
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found to play a significant role in renormalizing the
PWIA description for the longitudinal response, while
the effect of FSI is less pronounced in the calculation of
the transverse response. For each of the momentum
transfer values the transverse response data are substan-
tially underestimated by a full calculation, which might
be ascribed to the absence of meson-exchange currents in
this analysis.

In addition, we have studied semi-exclusive (e, e N)NN
and exclusive (e, e'NN)N reactions for some specific kine-
matic situations. In order to describe these reactions
properly one must take into account contributions from
the complete multiple scattering series, since the analysis
of the various truncations of this series in general leads to
quite different results.

0 5 10 15 20 25 30 35

E lab
( MeV)

FIG. 16. The exclusive He(e, e'np)p breakup reaction at
Q =300 MeV/c and $, =30 MeV as a function of the labora-
tory energy of the observed neutron. The various curves are the
same as in Fig. 11. The electron parameters are the same as in
Fig. 15.

of a deuteron and a nucleon after the photon is absorbed
by the nucleon with the deuteron at rest. The observed
proton and neutron come out in the target rest frame
with different energies, but symmetrically under 30' with
respect to Q. The PWIA result exhibits a peak at an en-
ergy of the detected neutron which corresponds to the
situation where the relative momentum between the non-
symmetrically moving neutron and the observed neutron
almost vanishes. In the full calculation a second max-
imum is present at higher neutron energy. This structure
already shows up when the photon-correlated-pair dia-
gram is included. This kinematic point corresponds to an
almost quasifree situation, i.e., in the target rest frame
the nonsymmetrically moving neutron is parallel to the
photon momentum and nearly at rest, while the symme-
trically emitted nucleons have the same kinetic energy.

V. SUMMARY

In conclusion, we have presented the analysis of the
electron-induced three-body breakup process of the trinu-
cleon system. Within the nonrelativistic approach the
dynamical equations for both the ground state and the
final state have been solved exactly for s-wave N-N in-
teractions. In order to compare the calculated results
with the experimental data it is found necessary to intro-
duce relativistic kinematics. A prescription is formulated
to link this aspect of relativity to the nonrelativistic nu-
clear dynamics. It is furthermore verified that UPA can
indeed be considered as a valuable tool in the actual cal-
culations of the three-body breakup process.

Results for the trinucleon response functions are
shown at three values of the momentum transfer, i.e.,
Q =300, 400, and 500 MeV/c. In general, a full calcula-
tion gives a reasonable description of the experimental
data for the longitudinal response. Final-state effects are

In a nonrelativistic theory, three particles, each with
spin —,

' and isospin —,', can be represented by normalized
states

lk]k2k3$]$2$3t]t2r 3 ) (A 1)

where k; denotes the momentum of particle i and s, t,.
' la-

bel the spin and isospin component of particle i. The ki-
netic energy of this state is

Eo=k]/2M]+k2/2M~+ks/2M~ . (A2)

Hereafter, we only consider nucleons with equal mass
Mz. To split off the center-of-mass motion we introduce
the relative momenta

K=k)+kq+kq,

k~ =
—,'(kJ —kk),

l

kq =
—,'(k, +kk —2k;),

(A3)

where (ijk) is a cyclic permutation of (123). It is con-
venient to eliminate the masses from the energy of the
relative motion by introducing scaled relative momenta

1
k and q,. =—=1 3

k . (A4)
i 2 M~

PI

In this way the kinetic energy becomes

E = K2+ p2+ q2
1

6M~
(A5)

where indices on p and q would be redundant.
Throughout the entire paper, we use the so-called Jacobi
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APPENDIX A: NOTATION
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coordinates of Eq. (A4). If we consider only the rnomen-
ta, the relevant part of Eq. (Al) becomes

(A6)

I= &fdpdqlpqP&;;&pqPI,

I=l Xf dpdqlpqP);";"&pqpl
(A12)

33= A2 P, , (A7)

with

1
P, = —(e+P »2+P3i2)

3
(A8)

Since there are three particles, Eq. (A6) represents three
equivalent states, and as mentioned before p; +q; does
not depend on the label. It is essential to note that the in-
dices i in Eq. (A6) have different meanings. The index on
the ket I ) refers to the coupling scheme adopted in Eq.
(A3), i.e., first j +k~(jk) and then (jk)+i ~(jk)i,
whereas the index on the momentum just expresses that
particle i has a momentum k, .

Since we are dealing with identical particles, the three-
nucleon wave functions must be antisymmetric with
respect to a permutation operation

p total p space p spin p isospin
i I I

The operators P; (i = 1,2, 3 ), which interchange the labels
of particle j and k, form the odd elements of the perrnuta-
tion group S3. The even elements of S3 are the identity e,
and the operators P k; and Pk;, which perform a cyclic
shift of the arrangement (ijk) Fro. m the elements of S3
we can construct the antisymmetrizer

From Eq. (A3) it is obvious that the momenta (p, , q, )

form three dependent sets for the values i =1,2, 3. The
relations are linear and we can construct a 2X2 matrix
o. ,- such that

T

pg pi.

q j' q,-
(A13)

with (ij k) cyclic. In case of the above choice of relative
momenta we have

1

2

1+3
+-,' v'3

1

2

(A14)

with properties deta = 1,(a; ) = I, (a~;. )
' =a; . The sets

(pi, qj) and (p, , q;) are called mutually associated mo-

menta.
Furthermore, we have to consider the nucleonic spin

and isospin degrees of freedom. At this level these quan-
tum numbers are entirely independent, and complete
quantum states are found by taking the direct product of
spin and isospin states. Although the set of spin states
Is', s2s 3 ) in Eq. (Al) forin a complete set, it is convenient
to introduce orthonormal states

and l(s sk)s s;SS');, (A15)

A = (1 P) . —1
2. Q2 ! (A9)

IpqP&;"=A IpqP&;,

IaqP&,"=A, IaqP&, .
(A10)

Here a labels a two-nucleon bound state and p represents
all remaining spin-isospin quantum numbers Since the
basis states Ipqp), . and Iaqp), . are normalized to "one,"
the partially antisymmetrized states from Eq. (A10) have
the normalization

,
"

& pqPlpqP');"=5«5(q —q')

P, antisymmetrizes a three-nucleon state that is antisym-
metric in at least one pair. Such a state is constructed by
A2 operating on an arbitrary three-nucleon state. The

l

operator A 3 does not depend on the index i'.

At this point, it is straightforward to introduce a new
set of basis states which are antisymrnetric with respect
to at least one pair:

where s~ is the spin of the spectator particle i and (ij k)
again forms a cyclic order of (123). S and S' denote the
total spin and spin component of the three-nucleon state.
The spins coinbine to S=—,

' (doublet) or S=—', (quartet).
The spin number s arises from coupling the nucleon
spins s and sk. It either takes the value s =0 (singlet) or
s =1 (triplet). The combination s =O,S=—', is excluded.
Equation (A15) represents three spin states, if we ignore
the magnetic spin component S'. In analysis with only S-
wave N-N interactions, this is a valid assumption and ac-
cordingly we introduce an abbreviated form of Eq. (A15):

(A16)

where r takes the values doublet or quartet and m takes
the values singlet or triplet. Since the nucleonic spin and
isospin are both —,', treatment of these quantum numbers

is entirely equivalent, and we introduce isospin basis
states

(A17)

where the meaning of the labels is similar to Eq. (A16).
To represent the spin-isospin states, we will often use the
shorthand notation

X[5(p—p') —( —1) ~5(p+p')j,
(A 1 1) IP); = l(s sk )s s SS', (r rk )r / TT'), . (A18)

; & aqPla'q P'),"=25ii&5(q —q')5

The effective closure relations are

The three-body analysis requires knowledge of the spin-
isospin recoupling matrix elements & p'

I p);. In the
recoupling, the total spin (isospin) is conserved. For the
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spin-doublet state we obtain with the aid of Edmonds'
general recoupling coefficient [16j

where m, m'=(s, t), and (ijk) is a fixed cyclic permuta-
tion of (123). To rule out any confusion, we explicitly
state that in the chosen convention

, &x' Ix" &;=
1

2 +-,'&3
1

2

(A19)
&x,'Ix,'& = —

—,'&3 . (A20)

The complete spin-isospin recoupling matrix restricted to
pure doublet states therefore is

1

4

—3
4

—3
4

1

4

(+3 1

4

3
4

1

4

(A21)

where both the row and the column sequence of spin-
isospin states is given by y, g„y,p„y,g„y,g, . The ma-
trix BJ,. has the same properties as aj' The spin-quartet
recoupling is considerably simpler, since it involves only
one channel

(A22)

I

is satisfied. In practice we cast Eq. (Bl) into an integral
over the Jacobi coordinates pf and qf. First we intro-
duce the corresponding center-of-mass rnomenta by
means of a Lorentz transformation,

k(c.m. ) k +Py Y P.kl l l l

In the entire analysis we will regard particle 1 as the
spectator particle, unless mentioned else.

e(c.m. ) y(s P.k )
(B2)

APPENDIX 8: RELATIVISTIC
PHASE SPACE FACTOR

Invariance of four-momentum transfer links the energy
transfer co to the total kinetic energy s, in the c.m.
frame,

In order to derive the relativistic phase space factor re-
lated to the three-body breakup contribution to the
response functions we start from an integral in the labo-
ratory frame. Hereafter the spin-isospin dependence is
omitted, as the phase space factor has a purely kinematic
origin. This factor arises in the integration of the
squared amplitude over all possible values for the particle
rnomenta in the laboratory frame:

R=f gdk5(' gk; —Q
i=1 i=1

(s, +3M)v) =(co+MT) —Q (B3)

Consequently the transformation velocity p and the relat-
ed quantity y = 1 W 1 —P are given by

co+MTP= and y=
co+Mr s, +3M~

(B4)

The center-of-mass momenta are chosen as the new set of
integration variables in Eq. (B1), which gives rise to a
Jacobi factor

3
X5 g e; —co —M, IMI (B1)

p.k ( c.m. )

J)= yP 1+
( )i=1 l

(B&)

where e; =/k 2+M)v is the relativistic energy of particle
i. Of course, the quantity R is related to the response
function, while M corresponds to the three-body breakup
amplitude. The 5 functions restrict the phase space to
the regions where conservation of momentum and energy

I

In the next step we replace the center-of-mass momenta
by the relative rnomenta k and k and by the total
momentum K from Eq. (A3). After some rearrange-
ments we find that the quantity R from Eq. (Bl) can be
written as

R =fdk dk dK J
I

)MI5' '(K )5"'(yK'+yPE" '—Q)5'"(yE" '+yPE' co M)——(B6)

where E" '=+3 )e('.' '. While the integration over the transverse components K~ to the momentum transfer can be
done trivially, the integral over the longitudinal component K requires some more attention. First it may be rewritten
as

(B7)
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with

f(Kz E(c.m. )
) y(Kz+PE(c. m. )

) Q

g ( K z E ( c.m. )
) y (E (™) +PK z

)

and

fo=Q/y PE—"
g()=(co+MT)/y E"—'/P .

Elimination of the energy E" ' shows that the solution K'=0 is the only common root of the 5-function arguments.
Therefore the integral in Eq. (B7) over K' yields

J2=y p5" {H (k, k )
—s, )~y[1+p((3H /BK'), ]y[(r)H /r)K'), +p]~

where the kinetic energy Ho is given by
3

H()(kq kq) pe' )(kp k ) 3M~ '1/kq+MN+g(kp+ ~ikq) +M~++( kq+ ) kq) +M~

(B8)

(B9)

The derivative factor becomes

(aH, /aK'),
—

—,'k z ( —,(kp+ —,'kq) z

(c. m. )
+ ''

(c. m. )
C1 2

(
—

—,'k +—,'k ) z
+

&(c.m. )
E,3

(B10)

In terms of the Jacobi coordinates pf =k /QM)v and qf =
—,'k Q3/M)v from Eq. (A4) the result for Eq. (Bl) is

R =(2M&/&3) fdpfdqf J)JzlM{pf qf'Q s . )~ ~{HO(pf qf )

The energy conserving 6 function is removed by integrating over pf. This gives rise to a phase space factor

()Hp( pf qf )

kf =pf
~Pf Ho =s,

In the relativistic case the solution for pf is given by

(s, + 3M)v E) E —3M—)v-
p (q, x )=(s, +3M)v E)—

4M (s +3M E) —(4M— x ) /3N c.m. N qf N~f pfqf

(B1 1)

(B12)

(B13)

where E =+4M&q&~+M~~ and x =pf qf. The corresponding phase space factor takes the form
qf 3 N f N pfqf f f '

—1

p+qfx~ q
/&3 p —qfx, , W'3

kf pf +
Ql+(pf+qf/v'3) /M)v Ql+(pf —qf/&3) /M&

(B14)

The accessible phase space is bounded by the rectangle
[(O,p,„),(O, q,„)],with

Moreover, Eqs. (B12)—(B15) are replaced by the much
simpler results

p,„=s, (1+—,'sM ),
( i+ i~SM+ 4SM+ 48SM )

max Sc m

(B15)
2= 2

Pf c.m. 'Vf
kf Pf

2
P max c.m.

(B17)

(B18)

(B19)

where sM =s, /MN.
In the nonrelativistic limit the above relations simplify

considerably. We have in this case J, =J2=1, so that
Eq. (Bl 1) becomes

R =(2M&/&3) f dpfdqf ~M(pf, qf, Q, s, )~

2
~ max Sc.m. (B20)

In summary, the quantity R from Eq. (B1) can be
rewritten in terms of an integral over the Jacobi coordi-
nates according to

R =(2M)v/V3)3 f dqfdA~ J(J2kf ~M(pf, qf;Q, s,
X ~(pf +9f sc.m. ) (B16) (B21)
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APPENDIX C: TRIPLE COLLISION TERM

In 3N ~Nd scattering the momentum of the spectator
particle is fixed by energy conservation to

qf =s, —Ed)s, . The rescattering term 8'" con-
tains the deuteron wave function which is regular in the
variable p. Therefore the function 83N' Nd is smooth
and can serve as the driving term for the 3N ~Nd
scattering series. The 3N~3N double collision term
takes a similar form. It is proportioanl to the free three-
particle propagator, from which we may deduce its ana-
lytic structure. In UPA we would have the form

0(&)~ 3N~3N
Nd

g(p) .
P +qf Sc.m.

(C1)

Since the outgoing pair is in a continuum state with
pf')0 and consequently the spectator momentum
qf'=s. —pf' & s. we see that the propagator
(p +qf —s, )

' can become singular. The integration
over the variable p gives rise to logarithmic singularities
in the q dependence of the double collision term. Al-
though their position as a function of the final spectator
momentum qf is precisely known, due to the logarithmic
structure it cannot simply be used as the driving term to
generate the 3N~3N multiple scattering series. Howev-
er, the once more iterated term, i.e., triple collision term
8 3N 3N is sufficiently smooth to be used as the driving
term. Hence, once the triple collision term is obtained
with sufficient accuracy we may simply use the standard

I

where we have used relativistic kinematics to describe the
motion of the three outgoing particles. The quantities J„
Jz, and kf are expressed in Eqs. (B5), (B8), and (B14).
Nonrelativistically, we find a similar expression with
J, =J2=1 and kf according to Eq. (B18). The limits of
integration for the qf variable also slightly change in
turning from relativistic to nonrelativistic kinematics.

iteration scheme as for the Nd case to calculate the multi-
ple scattering series. From this the solutions to the con-
tinuurn Faddeev equations are obtained using the Pade
approxirnants of the series.

We now describe in detail how the triple collision term
is constructed from the double collision term. Employing
the separable s-wave UPA to describe the N-N interac-
tion the 3N ~3N can be expressed as

(p]q]P] l pfq fPf ) =
p +q —s —ic

Xg (p];P] )~(s, —q, ;P, )

x q "'(q]p] Iqfpf }

Xr(s, qf pf—)g(pf pf) . (C2)

Here pf, qf are the Jacobi coordinates of the final state,
while p&, q& form a set of off-shell mornenta. The cornpli-
cated part of8"' of course is the spectator wave function

At this point we observe that 4"' is nothing else
than the half-on-shell part of the kernel E which governs
the iterations of the scattering series. In fact, we can just
copy E from the 3N —+Nd scattering analysis. More
specifically, we have

+"'(q]p] lqf pf )=2K(q,p, lqf pf ), (C3)

where the factor 2 accounts for the relative weight of the
rescattering diagrams compared to the disconnected dia-
grarns. The kernel E can be partial wave expanded ac-
cording to

K(q]P] lq3P') = g(2I +1)P](x]3')K](q]',P] Iq3 P )
1

(C4)

with x &3
=q, q3. The corresponding partial wave

coefficients can be expressed like

4 g((2f&3)lq3+-,'q]l; p)&]pl p' )3g((2f3 3l)q]+-,' qI3;p')
K](q],'Plq3 P ) dx]3P](x]3)

3 3 —', (q, +q3' +q, q3«]3) —z
(C5)

In the numerical evaluation of Ki standard subtraction techniques are used to remove the propagator singularities in
the integrand. To anticipate the construction of the triple collision term we restate the expression for E& as

q qf K]( q 'P, I qfPf ) =z, ( q P, I qfPf ) + w] ( q 'P, I qfPf ) +]J]( q P, I qf Pf )

where the real-valued functions R, 8' and I are given by

f x q, q';PP' f x, q, q';PP')—
—1 X X~

W, (qPIq'P') = —g]~(x, )f(x, (q, q');PP'),

J](qPlq'P') = ,'~J dy &](y)f(—y(q,q');PP')&(y —«, ),
with

(C7)

(C8)

(C9)

4sc m
X

qq
(C10)
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and

f(x(q q'»pp'}=g &- lq'+ —,'ql;p i&pip'&3g —Iq+ —,'q'I;p'1
2 (Cl 1)

Th«un«ion &i Is obviously restricted to the three-nucleon region enclosed by the curves x, (q, q') =+1. In the expres-
»on «r Wi we have introduced the principal value of the Legendre function of the second kind Q, defined as

+i Pi(x)
Q, (y)= —,'P f dx

y —x
(C12)

It compensates the subtraction term in Rr, which is added in order to obtain a regular principal value integral. At
threshold the Q& functions contain logarithmic singularities. The threshold curve x, (q, q') =+I is displayed in Fig. 17.
The corresponding threshold function q'(q) is given by

q'= —
—,'[q —+3(s —

q )] x =+1

q'= —,
' [q ++3(s, —q~)]

x, = —1 .
q' =

—,
'
[q —+3(s„. —

q ~) ]
(C13)

The free scattering space is enclosed by the square (q, q')=([0, +s, ], [0,+s, ]), the area to which the subtraction
is confined. The contribution I& is limited to the area enclosed by the threshold curves x, (q, q).

To calculate the triple collision term we introduce the convolution Kt ' of two double collision terms Kt according to

( ', )'qqf&i"-'(qp; Iqfpf) = 2 f dq( ,'qq)&i(-qp; lqp)r(s. q'p)( ', q—qf)pi"(-qplqf pf) .
P

We rewrite the right-hand side of Eq. (C14) in order to single out the logarithmic contribution

2 2 f dq [[&i(qp; lqp)+&~~(q;p; Iqp)]r(s, q';p)[~, (—qplqf pf )+ir, (qplqf pf }]]
P

and

2 g f dq [[Ri(q P; IqP)+iIi(q P; IqP)]r(s, q;P)—Wi(qPIqfPf )

(C14)

(C15)

+ ~l(q « Iq»r(s. q'P)[~i(qPlqfPf )+i7i(qPlqfPf }1+II i(qP; Iq»r(s. q "P}IIi(qPlqfPf )]

(C16)

Except for the deuteron pole in the ~ function the integrand in the first contribution is a regular function of q. The
second contribution, however, contains logarithms of the form

ln[lq —
q (q, q'}I],

where q„(q,q') are the threshold points

q
=

—,'Iq —+3(s, —
q )I

q =
—,'[q++3(s, —

q )] .

(C17)

(C18)

The logarithms are integrable and after the convolution of the kernels the form in expression (C17) has turned into a
harmless algebraic-logarithmic dependence

[q —
q (q, q'}]ln[lq —

q (q, q')I] . (C19)

To determine K&
' numerically we have applied the following procedure. Both integrals (C15) and (C16) heavily de-

pend on the position of q, and qf. The most complicated situation occurs when q; and qf have both continuum values:

q, ,qf (s, . In that case the continuuin sector contains two threshold curves (see Fig. 17): q =q(q,. ) and q =q(qf ).
Both relations are according to expression (C13). Consequently four branch points (q„,q„,q, q ) exist [Eq.

(C18)],which are arranged in increasing order qb (k = 1,4).
k

For some values of q; and qf these branch points coincide. Of course, if q,
=qf then q„=q, but more coincidences

of q; with either qf, q, or q„occur:
lf 2f
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qf C[0,—,I+s, ]

qf e [—,I+s, , —,'+3s, ]

qf E [—,
' +3s, ,Qs, ]

q, C[O, —,I+s, ]

% =qf

q, E [-,I+s, , —,'+3s, ]

f
q; =qf

qg =qu,
f

q, C [-,'+3s, ,+s, ]

q;=q
f

qi f
qi =qf

The coincidences are determined by the subinterval to which the values of q; and qf are restricted. For example, if
q;=q, then either q =

q and q =qf or q =qf and q„=q
lf I. 2f 2. 1. 2 2f

With the above analysis on the positions of the various branch points in mind we can arrange for a proper distribu-
tion of the integration points q. It is stressed that the way the q points are scattered is decisive in achieving an adequate
integration procedure. Let us discuss the situation where all four branch points are different.

To perform the regular integration in Eq. (C15) Gauss-Legendre quadratures are employed for each of the five
subranges of the interval [0,+s, ] according to the following scheme:

Gauss-Legendre q mesh
Gauss-Laguerre q mesh

0

ng
(1)

—,'n n

qb,

n'"
n (&) n (2)

qb

(2)n reg
n (2) n (3)

qb,

(3)n reg

n (3) n (4)

qb,

ng
(4)n~ 2ng

The number of points in the first and last range is set to
n =4. In the remaining intervals the number depends on
the width of the interval, but is bound on both sides:
8~n &n„.The value n„=24turns out to be in

rCgmax regmax

general a good choice, except when the intervals become
narrow. In that case we found that a value for n smaller
than n„ led to more stable results.reg max

To perform the logarithmic integrals in Eq. (C16),
Gauss-Laguerre quadratures are employed such that in-
tegrals of the form f, &f(q)ln(b —q)dq are accounted
for exactly. The five intervals are each divided into two
subintervals such as shown in the above scheme. Only
the integrations in the first and last interval are done with
a Gauss-Legendre quadrature for ng/2=2 points. In the

0.00 I ' I ' I ' I

Irnag qK

0.10

—0.05 0.05

—0.10
CI

0

0.00

remaining eight intervals the entire integral in Eq. (C16)
is carried out with Gauss-Laguerre quadratures regard-
less of the fact that at each branch point the logarithmic
singularity is present in only one term of the integrand.
The values for n (;), n (;) are selected with respect to the

width of the subinterval, in the restriction that

C —0.15
O
C

—0.05

IV3s fs
0
0
0
CL
tn

0.00

—0.05

I ~ I . I ~ I
I ' I I ' I

Imag qK

—0.10

0.05

—0.10

C0
—0.15

0.00

—0.05

—0.20 ~ ~ I ~ I ~ I ~ I ~ 0 10
0 1 2 3 4 0 1 2 3 4 5

q, (Mev~)

FIG. 17. Three-particle threshold curve. The interior sector
is the three-particle scattering region.

Flax. 18. Driving term l(II='0= —8mKI'2I0 determined for an
energy s, =25 MeV and spectator momentum qf =2.375
MeV'~2. The function q t( is actually plotted. The solid line cor-
responds to calculations with n„gand n set to their maximum
values, while the dotted curves indicate the results for variations
of n„g(lower curves) or n (upper curves).
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4(n (n . The value n„=12turns out to be a
max max

good choice. KI '(q, p, lqfpf ) is calculated as a function
of q,- for a fixed value of qf. In arranging the grid of q,-

values the spectator momentum qf and the correspond-
ing branch points q and q serve as a guide. Coin-

lf 2f
cidences are avoided such that the above scheme can be
employed without modifications. If q,- )s, a situation
similar to the N-d breakup process is recovered.

To study the sensitivity on the values for n„andreg max

n we have plotted the 1(I '0 function at an energy
max

s, =25 MeV and a spectator momentum qf =2. 375
MeV' . The result is shown in Fig. 18.

Clearly visible is the cusplike structure at qf and

q =2.623 MeV' . In general the q point is too
f f

close to the Qs, boundary where the threshold behav-
ior dominates, so that no cusp structure is seen in that
case. The discussed cusp structures arise from the onset
of the overlap of the three-particle sectors [q, q ] and

I[q„,q ]. For example, the pure residue contribution
lf 2f

X f dq II(q P; lqP)~(s q;P)I&(q—PlqfPf )

0.00

+
—0.10

0
U

—0.20

0

0.06
CL

Real q+

o 000
CL

c
0
D

—0.12
0

I j I

2 4 6

q„.„(MeV~)

lmag qO

10

FIG. 19. Multiple scattering spectator function for 3N~3N
scattering. The parameters correspond to the solid curves of
Fig. 18.

exhibits such a structure as a function of q; at fixed qf.
As is shown in Fig. 18 the region around the final specta-
tor momentum and its branch points requires a very de-
tailed numerical analysis. But even then some numerical
error remains present due to the discretization. Howev-
er, we found that this inaccuracy does not seriously affect
the calculated values of the scattering series. Based on

this we decided to use the K&' ' contribution as the driving
term for the subsequent iterations without taking any fur-
ther precautions.

The analysis of B' ' can be done in a slightly different
way. In determining the principal-value contribution RI
[Eq. (C7)] the Legendre polynomial PI can be combined
with the subtraction function f [Eq. (Cl 1)], i.e.,

+, PI(~)f(~(q, q');PP') f dy PI(y)f—(y(q, q');PP')&(y —x, )

R&(qPl q'P') =
—,'P dx —1

—1 X X
(C20)

such that the subtraction is confined to the three-particle sector. The residue contribution II in Eq. (C9) does not
change, but the function Wi of Eq. (C8), which contains the logarithms, takes the form

~I (qPl q'P') = —f dy Qo (y)Pi(y)f (y(q, q');OP'»(y —x, ) (C21)

An obvious advantage of this procedure is that W| is only nonzero in the three-particle sectors [q, q ] and

[q, q ]. Consequently, the evaluation of the contribution in Eq. (C16) can be restricted to four subinterva» i«he

integration scheme, which is shown before. In the calculation of the electromagnetic three-body breakup amplitude we

have employed the separation of the kernel according to Eqs. (C20) and (C21).
Once the driving term for the continuum multiple scattering series is calculated we can proceed with the iterations of

the multiple scattering series. The spectator function PI
' is obtained by multiplying K&' ' with a factor —8~. The fac-

tor arises from the alternating character of the scattering series {—1), the number of diagrams involved in each next
scattering (2), and the integration over a full solid angle (4'). The construction of the continuum spectator wave func-

tion 4" ' ', which accounts for the complete multiple scattering series apart from the rescattering term 4"', proceeds
along exactly the same lines as in the N-d breakup analysis and without any modifications we can apply the already dis-

cussed method of Pade approximants. The structure of the three-nucleon wave function is equivalent to B"' in Eq.
(C2) and becomes

+(p&qp~ lpf qfpf ) = g(p&, p&)r(s, qf;p&)+ ' (q—~p~lqfpf)r(s. qf pf)g(pf pf) .
p&+q& —s, —iE

(C22)
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APPENDIX D: INTKGRATIONS
OF THE SQUARED AMPLITUDE

A full treatment of the three-body breakup process re-
quires the evaluation of the integrals in Eqs. (19) and (20),
where the squared amplitude I is composed from all pos-
sible diagrammatic contributions to the amplitude M. To
perform the integration accurately it is necessary to know
more specifically the characteristic behavior of the func-
tion I of Eq. (13). The integration procedure explained
hereafter is valid for the case of nonrelativistic kinemat-
ics, but a similar prescription is obtained for relativistic
kinematics.

The integration over the pair momentum pf yields the
nuclear structure functions W in Eq. (19). The radial in-
tegration trivially removes the energy conserving delta
function present in I giving rise to a nonrelativistic phase
space factor —,'Qs, —qf. The generally weak depen-
dence on the azimuthal angle P~ is purely due to ex-

pf
change contributions. These are represented by the n =2
and n =3 terms in the various amplitudes of Eqs. (32),
(33), and (35). To obtain numerically equal results for the
n =2 and n =3 terms separately (apart from the overlap),
the integration interval [0,2m. ] is divided into two subin-
tervals [O, m. ] and [n., 2tt]. A Gauss-Legendre quadrature
with n& =3 points in each subinterval already leads to

Pf
an accurate result.

The integration over the polar angle 8 requires a
Pf

more detailed examination. As we have seen before the
trinucleon spectral function shows a pronounced max-
imum at missing energy E =0 and missing momentum

q =0. In PWIA-type diagrams the values of the in-

tegration variables at these points are given by

p2 —0

qf = —Q = —Q/+3M~ .
(D 1)

However, these relations are valid for the associated
momentum pf, qf (n =2, 3) as well. In terms of the in-

n n

tegration momenta, significant contributions to the nu-
clear structure functions, which correspond to the ex-
change contribution n =2 and n =3, will show up at

As an example we have plotted the multiple scattering
spectator wave function (Fig. 19). The parameters s,
and qf are the same as in Fig. 18.

As a final remark we note that the continuum wave
functions carry the spectator momentum qf as an extra
parameter. At each energy we typically need 10—15
values for qf. Together with the high accuracy deter-
mination of the second rescattering term, the required
CPU time increases by about a factor of 50 as compared
to multiple scattering with a N-d physical state.

O=E =pf 4pf+ 4tIf+ g&3pf 'qf

O=q = ,'pf—+,'qf—+Q +&3pf Q —qf Q

+—,'&3pf qf .

(D2)

The second condition, q =0, can only be fulfilled at the
quasielastic peak, s, =Q . At this point the combina-

tion of values

pf =4scm 3 f pf Q~ —1

qf =~s, xf =qf 'Q = + 1

(D3)

completely satisfies the conditions in Eq. (D2). Off the
quasielastic peak we relax the second condition of Eq.
(D2) and search for the lowest possible value of q . In
that case the phase space values in Eq. (D3) again define
the region with the largest contributions, but the maxima
are less pronounced. [In Eqs. (D2) and (D3) the upper
(lower) sign corresponds to n =2(3).] This analysis im-
plies that the integrand I will be peaked at forward or
backward angles 0, which is confirmed by numerical in-

pf y

vestigation. Moreover, this type of behavior is present in
almost the entire phase space region, although the func-
tion I is much smoother outside the quasielastic points.
To account accurately for the polar integral with a
reasonable number of mesh points the integration vari-
able is casted into a form which samples the forward and
backward angles more effectively. For this we used the
substitution

y ~y =sin —y (D4)

This mapping gives surprisingly fast converging results.
Already ny =8 is sufficient, provided that I behaves as

discussed above.
A subsequent integration over the spectator rnomen-

tum qf yields the response functions according to Eq.
(20). As is already pointed out, the azimuthal integration
removes the contribution from 8'I, whereas 8'T and Wz
contribute to the inclusive cross section with the same
transverse electron-photon factor [Eq. (7)]. The x~
dependence of 8' appears to be quite similar to the yPf
dependence of I and again we used the substitution of Eq.
(D4) in order to perform the x integration. The radial

integration is recasted into an integral over the missing
energy E =s, —qf. This integral is carried out keep-
ing in mind the presence of pronounced maxima at
qf =s, and qf =—,'s, . Therefore the entire interval is
subdivided into [0,—,'s, ] and [3s, ,s, ] and accurate
integrations are performed with a 12—4 point Gauss-
Legendre grid, once more using substitutions equivalent
to Eq. (D4).
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