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Role of nuclear binding in the European-Muon-Collaboration effect
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We present a new derivation of the convolution formula for the contributions of nuclear binding
to the structure functions measured in the deep inelastic scattering of leptons from nuclei. The
derivation, which is manifestly covariant, gives a new binding correction. This new correction,
which depends on the mass of the recoiling nucleon fragments, gives corrections that are numerically
significant, and that improve the agreement between theory and experiment at large x. We conclude
that nuclear binding effects may be sufficient to explain the European-Muon-Collaboration effect at
large x.
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I. INTRODUCTION

The importance of nuclear binding to the classical
European-Muon-Collaboration (EMC) effect is still very
much in question. On one hand, even from the begin-
ning there were many explanations for this effect based
on "new" physics associated with the quark structure of
the nucleon [1], and, on the other hand, early calcula-
tions which produced large contributions from nuclear
binding [2] are in doubt because of the incorrect treat-
ment of wave-function normalization (sometimes referred
to as omission of the "Aux factor") [3]. Connected with
these questions is the role of pions, which must be in-
cluded somehow whenever nuclear binding is discussed
[4—6]. Recently it has been found that the high mo-
mentum components arising from correlations can en-
hance the effect at large z [7, 8], but these results still
fall somewhat short of the experimental data [9, 10]. Fi-
nally, there is uncertainty surrounding the derivation of
the "smearing, " or convolution formula, from which the
nuclear binding effects are calculated. Attempts to de-
rive it from the "instant form" of quantum mechanics
have difFiculties treating Lorentz covariance and current
conservation in a consistent manner [11, 12], and usu-

ally employ a rather ad hoc prescription introduced by
de Forest [13].The popular "front form" derivations [11,
14] employ spectral functions which may be difficult to
relate to the nonrelativistic densities normally available
from nuclear structure models.

Regardless of the role that it will ultimately be found
to play, it is essential to have a good treatment of nuclear
binding. Fermi motion and nuclear binding are minimal
effects which will always be present in the EMC data, and
it is essential to know the contributions from these effects
before new physics can be extracted. To be believable,
nuclear binding must be calculated in a covariant, gauge-
invariant manner, using a formalism in which there is a
clear connection between the relativistic spectral function

which necessarily enters the calculation and the nonrel-
ativistic spectral function available from present nuclear
theory.

In this paper, we present a new derivation of this im-
portant formula. Our method is based on relativistic
Feynman diagrams, in which covariance is manifest and
exact. This method is fully developed and has already
been applied to a treatment of the two-body problem
[15, 16], and extensions to the three- [17] and many-body
problem [18] are being developed. The formalism has a
smooth nonrelativistic limit, and can be used to treat
electromagnetic interactions in a fully gauge-invariant
manner [19], so it is ideal for the calculation of bind-
ing contributions to the EMC effect. Using this method,
we obtain a new convolution formula which includes sig-
ni6cant new effects. Evaluation of the new formula for
realistic cases with realistic parameters shows that nu-
clear binding can account for the EMC effect for z ) 0.5.

In this approach, deep inelastic scattering (DI$) is de-
scribed by relativistic Feynman diagrams in which both
the structure of the nucleon and the nuclear target are
described by relativistic vertex functions in which one
constituent is off-shell, as illustrated in Figs. 1(a)—1(c).
The nucleon will be described by two such functions,
I'~(p, p2) and I'1v(p, p4), describing valence and sea con-
tributions, respectively. As Fig. 1(a) suggests, the va-

lence vertex function has two "spectators" while the sea
function [shown in Fig. 1(b)] has a minimum of four,
and we assume that the internal degrees of freedom of
the spectators (either two or four) can be ignored, so
that each I'~ can be expanded as a sum of tensor op-
erators multiplied by invariant functions which depend
on p and p~ only, where p~ —

p~ or p4. The structure
of the nuclear target is similarly described by the vertex
function I'~(P, P~ r) shown in Fig. 1(c).

The use of vertex functions with one particle off-shell to
describe nuclear structure has been developed extensively
for the two-body problem, and provides a clear way to
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FIG. 1. The vertex functions and Feynman diagram used
in the derivation. (a) The valence and (b) sea vertex functions
have one quark with four-momentum p off-shell (represented
by the dark line) and the remaining spectators on-shell. (c)
The vertex function for the nucleus has one nucleon ofF-shell

(the dark line) and the residual A —1 system on-shell. (d)
The Feynman diagram with the momenta labeled, includes
the off-shell nucleon structure function (inclosed by the oval).

describe the relativistic structure of a bound state. The
relativistic wave function of the nucleon can be related
to the quantities 4'~ = S (p) I'N(p, px), where S (p) is
the propagator of the virtual quark, and X = V or S. For
the nucleus, the relation is 4A = SM(P) I'A(P, PA i)
These bound-state wave functions are manifestly covari-

ant, and satisfy (known) relativistic wave equations and
normalization conditions. Our assumption that the spec-
tator quarks or spectator nucleons can be treated as a
single system (with a variable mass) means that we may
carry over all of this formalism to this problem.

The additional approximations made in the derivation
of our convolution formula are common to almost all
other treatments of nuclear binding. We assume that (i)
final-state interactions and meson exchange currents can
be ignored, so that the one-body current operator gives

the leading contribution; (ii) interference terms can be
ignored, so that the cross section is the incoherent sum
of squared terms, as illustrated in Fig. 1(d); and (iii) any

explicit dependence of the vertex functions on the mass of
the bound state can be ignored, so that the vertex func-
tions describing the nucleon structure will be assumed to
have no direct dependence on the mass of the nucleon,
P2. It is known how to use final-state interactions and
meson exchange currents to ensure gauge invariance of in-
elastic processes [19], and the first of these assumptions
means that any effects arising from the gauge dependence
of the plane wave processes are assumed to vanish in the
Bjorken limit. This assumption is supported by specific
estimates, when they exist [20], but is a subject for fur-
ther study. The second assumption has not been widely
discussed and might also benefit from further study. The
third is the essence of the nuclear binding approximation,
where it is assumed that the EMC efFect can be explained
by the binding and Fermi motion of nucleons without as-
suming any change in their intrinsic structure. This is
the assumption we hope to be testing.

With these assumptions, the structure functions of the
nucleus can be calculated from the diagram shown in
Fig. 1(d). This calculation will be carried out in Sec. II.
We obtain a new convolution formula which includes a
dependence on the mass, rn~, of the fragments of the nu-
cleon left behind by the struck quark. Numerical results
obtained from our new formula will be given and dis-
cussed in Sec. III. Section IV includes further discussion
and conclusions.

= oM(Wz + 2Wi tan z8),21 (2 1)

where crM is the Mott cross section, and the structure
function W~ is a sum of the three amplitudes Wip ——

e&' W» e&, where A = 0, + are the three polarization
states of the virtual photon:

Q2
4n'M Wz ——

z [Wpp + z (W++ + W )] . (2.2)

II. DERIVATION
OF THE CONVOLUTION FORMULA

The inelastic cross section [21] from which the EMC
data is obtained is

With the normalization implied by Eq. (2.2), the W„„tensor for a spin-0 nucleus and a spin-2 residual system of
fixed mass MA i, denoted by W+„,can be obtained directly from diagram Fig. 1(d)

A l dP~ i(M~
r[AM„,(P& i)1'„(P,P~ i)S~(P) W„„SM(P)I'g(P,P~ i)],2MAy 2z. s i, EA (2 3)

where we assume that there are A contributions, one for each nucleon, and AM„,(P~ i) = (M~ i+ g~ i)/2M~
is the projection operator for a spin-z particle of mass M~ i (the residual nuclear system in this case) and SM(P) =
(M+ g)/(M2 —P ) is the propagator of a spin-& particle of mass M (the nucleon in this case). The tensor for a
single nucleon, W„„,is

~Pf 2 d J X m]3
Wp eq

( s E 2Kb(Ei + Ex —Pp —&) I&(p, px )S~, (p)&„A~,(p + p)y, S,(p) I iv(p, px) (2.4)
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where e is the average of the square of the quark charge,
and we assume that the spectator system with Axed mass
m~ has spin zero. An important feature of this method
is that bo/h energy and momentum are conserved at ev-
ery vertex, and hence the four-vector q transferred to
the quark is identical to the q transferred to the nu. cleus,
removing ambiguities or effects of the kind encountered
using instant form treatments employing the de Forest
[13]prescription. Also, we are assured that the Po which
enters into the b function in (2.4) is equal to M~ —Eg»
so that the convolution formula (2.3) is an exact state-
ment of the fact that the only difference between scat-
tering from a bound nucleon and a free nucleon is that
P gM.

One of the difhculties with the covariant formalism, in
which the struck quark is initially off-shell, is that the
elementary current "operator" p„doesnot conserve cur-

rent. This could be corrected by introducing the current
conserving operator p„—gq„/q, but such a procedure is
ad hoc, and does not do justice to this approach, where
it has recently been learned [19] how to assure current
conservation naturally by including interaction currents
and final-state interactions. We postpone this discussion
for a later time in the expectation that these terms can
be shown to vanish in the DIS limit, justifying some ef-
fective treatment such as the one we are using. In any
case, expanding the virtual photon in terms of its four
polarization vectors, as discussed in Ref. [21], leads to
the observation that all terms proportional to q„canbe
dropped, making the use of the effective current operator
p„—gq&/qz completely equivalent to using 7&

From studies of the relativistic equation satisfied by
I'~(P, P~ i), we can derive the following relativistic nor-
malization condition [22]:

dsP M
A =

~

" '
~

' t [A (P„,)1'z(P, P„,)S (P)p SM(P)I'x(P, Pw )].
(2M' (2x)s ( Eg

(2 5)

Note that this is a difFerent condition from that; obtained
in the light front formalism. It involves the charge (hence
the operator 7 ) instead of the (—) component of the
current (7 —p'). However, our final result will be almost
equivalent to the normalization obtained in light front
theory (see below).

While the relativistic wave functions are known for the
deuteron [23], this is not so for complex nuclei, so we ap-
proximate Eq. (2.3) and (2.5) by introducing a covariant
nuclear spectral function, pA,

SM(P)I'g(P, Pg )A „,(P )I' (P, P, )SM(P)

= p (P, M ) -'AM(P), (2.6)

W„„=—tr W„„A(P) (2 8)

The normalization condition (2.5) similarly reduces to

A =
/(2M')

(2 9)

—1V
where W„„is the spin-averaged nucleon structure func-
tion for a bound nucleon

where P2 g Mz in the projection operator on the right-
hand side (RHS) of the equation. The matrix product
on the left-hand side (I HS) of the equation is the rel-
ativistic density matrix of the bound nucleon, and the
equation says that this can be approximated by the den-

sity matrix of a pure spin-- system with four-momentum
. 2I'. The remaining, spin independent, scalar function p~

can depend only on P (provided M~ i is fixed). In fact,
the relativistic structure of the nuclear target will result,
in general, in a more complicated spin dependence for
the density matrix, but if the spin of the target is zero,
the approximation (2.6) should be very good. [For the
study of the spin-dependent EMC effect, Eq. ( 2.6) would
not be sufficient. ] With this definition, the convolution
formula (2.3) reduces to

(2M~
dsP M

(2.7)

The next step is to introduce a quark spectral function,

pN, similar to Eq. (2.6), but with a different normaliza-
tion

(p)1'~(p»)AM(P)I'w(p, px)S, (p)

= p~(p' px) (~i+ 8) (2 1o)

This equation relates the relativistic density matrix for
a quark in a spin-averaged nucleon (written on the I HS)
to the product of a scalar spectral function of the two
variables p and p&, multiplied by the relativistic den-
sity matrix for a pure spin-& particle of four-momentum
p. This is the simplest way of treating the spin, and
is consistent with both the parton and nuclear binding
models.

Taking the Bjorken limit, defined by Q~ and v ~ oo
with z = Q~/2Mv fixed, and choosing a coordinate sys-
tem so that q = (v, 0g, ql. ), leads to the following ap-
proximations:
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6(Ei+ Ex —Pp —v) ~ 6(Mz —p ),

Ey~v,
(2.11)

where kg = Pg, k = (k~, z), f(z, z) is a shorthand no-
tation for the entire integrand, which will prove useful—N
later, and F& (y, k) is the structure function of a bound
nucleon, which depends explicitly on the nuclear motion
through p2, which is a function of k:

2 d2
»(p (k) px) . (214)

(1 —y) 4 2s s

where the sum over A is the same weighted sum that
occurs in the definition of Wz, Eq. ('2.2). Note that the
light cone variable p = po —p, appears naturally in the
energy conservation relation. This suggests defining the
momentum fractions y and z by (

A-i
I

(pz Mz )2(2ir)s ((A —z) M ) (2.15)

The normalization condition (2.9) similarily reduces to

Mg
p = P y, P = z.

(2.12)

dz zz (2.13)

VVe emphasize that our covariant formalism is not related
directly to light front dynamics, and hence these momen-
tum fractions should be viewed only as convenient substi-
tutions for the p and P variables, motivated by the ap-
pearance of these variables in the energy-conserving delta
function. Furthermore, the momentum fractions should
be regarded as dined by the on-shell four-momenta px
and P~ y so that all four components of these momenta
are known, and later we will be able to express (px)+
and (PA i)+ in terms of y and z. Finally, note that even
though y and z are defined by (px) and (PA i), their
relations to p and P are exact, because energy and
momentum are conserved at every vertex.

With these definitions it is straightforward to obtain
the following expression for F2 (z) = vW& ..

F"(z) =
I

'
I (P M )2(2s.)s (A —z) M j

AMz)
x dy Fz (ys k) 6

I
y—

zMA p

To obtain these equations, it is necessary to express the
integration over (px), and (PA i), in terms of y and z,
which can be done using (2.12) and the energy relations

Ex = Vosx+px sosl Ex s= )/-Mx &+Px s. Also,
to obtain (2.15) from (2.5) observe that the factor Pp in
the numerator of (2.5) can be replaced by Pp —P, = P
because the additional factor P, integrates to zero.

Our results (2.13) and (2.15) are similar to those usu-
ally obtained from the parton model, with a few impor-
tant differences. The most significant of these is the ex-
plicit dependence of the bound nucleon structure func-—N
tion, I"2, on the momentum of the bound nucleon, k.
As we will show now, this dependence gives additional
corrections to the EMC effect, as anticipated in Ref. [24].
If these new eAects are ignored our formula reduces to a
form identical to the standard convolution formula. An-
other difference, which is not numerically important, is
that the range of integration over the variable z is not
the same.

To obtain a practical formula from Eq. (2.14), we ex-
ploit the fact that it displays the nucleon structure func-
tion as a product of two terms, the "kinematic factor"
y /(1 —y) and the integral over the unknown function» of pz. From the diagram shown in Fig. 1(d), and the
definitions (2.12), it is a simple matter to show that

m —p = m + p~+ [mx + (kg —pg) ] —y(M +k~)+ yM b.
1 —g

=gp(y)+yM 6+
1 (pz —2ypz kj +y kz), (2.16)

where (p(y) = mi + [y/(1 —y)]m& —yM~ and 6 is simple form:

(2.17)

Note that A = 0 if the nucleon is at rest, and there is
no nuclear binding. The integral over d2p~ can be reex-
pressed by shifting p& ~ p~ +yk~, giving the following

F2 (y, k) = y ', »(mi —
& 6)

(0(y)+yM2a 8 27r

(2.18)

A similar formula (with b, = 0) holds for the free struc-
ture function FP (y).

Using Eq. (2.18) it is therefore possible to express
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I"z (y, k) in terms of the free structure function I"2 (y),
—N

1V

evaluated at a shifted value of y. The shifted value, de-
noted by y', satisfies the equation

(2.19)

1.0

0.8

I i I I

I

I 1 I I

I

I I 1 1

x=0.'7

2

T'~ (y &) = „„F~(y') . (2.21)

This result, when combined with the basic convolution
formula (2.13), will be referred to as the "fixed mass"
formula, and the fact that y' g y in (2.21) is an additional
consequence of nuclear binding which seems to have been
overlooked in previous treatments using this formalism.

The fixed mass formula (2.'21) assumes a fixed mass

m&, which is a parameter unconstrained by the deriva-
tion except for the requirement that it be larger than M2.
If this mass is infinite, then the transformation (2.20) re-

duces to y' = y, and the convolution formula reduces to
the familiar form obtained by many previous investiga-
tors. However, the physical picture of the process given
in Fig. 1(d) suggests that the minimal value mx —M
is a better choice, and if mx is finite, y' ) y, as shown
in Fig. 2 for an illustrative case. Since the free nucleon
structure function decreases as y increases (at least at
large y), this new result will predict a larger EMC ef-

fect. This is shown in Fig. 3, which gives the integrand
f(z, z), Eq. (2.13), for iron, evaluated at z = 0.7. The
dotted line is the old result (y' = y), and the new result
(y' & y) is smaller, particularly at large z. The resulting
EMC effect will be larger.

This transformation depends on the parameter m~~. The
condition that the quark be bound is that mi +mx & M,
and it seems most appropriate, in the DIS application,
to regard the scattering as taking place from a current
quark, in which case it is reasonable to take mt —0
and mx ) M. The physical picture emerging from this
choice is that the spectators and glue remaining behind
constitute "most" of the nucleon, and hence most of its
mass.

An additional reason for requiring mx & M is that
this condition is necessary and sufBcient for the mapping
between (o(y) and y to be one to one. If this mapping is
not one to one, the nucleon structure function, which is
a function of y through (o(y) (except for the kinematic
factor y~), would be constrained by kinematics. The re-
moval of such constraints, which occurs naturally when

m~ & M, further supports the physical picture outlined
above.

If mx & M, the transformation determined by (2.19)
becomes

m~v' = ~ —~(w) + /~'(v) —~„
(2.20)

1 ( m2x 1
u(y) =

2
I (1 —y) + M, 1

+» IM~1 —y j
Since the y~ factor in front of Eq. (2.18) does not get
transformed, the transformation law is

0.6

0.0
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I

I

I
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1.5 2

~ ~ ~ ~

~ ~

i I I I I I I

2.5

FIG. 2. The variable y' ploted as a function of the nucleon
momentum fraction z for x = 0.7, mx = M and difFerent
values of k~ = 0 (solid), 1 (dashed), 3 (dash-dotted), and 4.5
(short dashed) fm . The dotted line is y' = y, shown for
compprrSonn.
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FIG. 3. The integrand J(z, x) for iron, Eq. (2.13), evalu-
ated at x = 0.7. The dotted and solid lines are the same cases
discussed in Figs. 4 and 5.

The model also suggests that a different convolution
formula should hold for the sea and valence contributions.
Since the sea contribution has at least four spectators, we
might expect the effective value of m4 —2m', and this
greatly reduces the EMC contribution for sea quarks (as
will be discussed in the next section).

Finally, the fixed mass formula is only an approxima-
tion to Fig. 1(d); the full calculation requires that we

integrate over m&~, weighting the integral by the appro-
priate phase-space factor (two body for the valence con-
tribution, and four body for the sea contribution). If
the dependence of the vertex function on mx2 can be
ignored, this procedure gives an answer independent of
the detailed structure of the nucleon. Making the ap-
proximation that the two-body relativistic phase space
g(mx —M2) jm2x is a constant (which is good because
of the rapid rise of the square root), the structure of
(2.18) shows that the m~& integral scales like y/(1 —y),
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giving an improved transformation law for the valence
part 1.4

N — y(1 —y)
F2v(y &) =,(1,) F2v(y') . (2.22)

This result, when used in the basic convolution formula
(2.13), will be referred to as the "phase-space" formula.
The sea contribution involves a four-body phase-space
integral, which is a convolution of three two-body phase-
space factors, and does not scale unless all masses are
ignored. If we make this naive approximation, just to
get a feeling for the effect of the four-body phase space,
it scales like [y/(1 —y)], leading to

y (1 y)+zs(» &) =. ..,Fzs(y')
yjl —y'j

(2.23)

However, this transformation law gives an infinite con-
tribution from the sea quarks as z ~ 0 (which implies
y ~ 0) because in this limit the ratio y'/y is very large.
Physically, this arises because the formula (2.18) is inde-
pendent of rnx at y = 0, and the phase-space integral
diverges. (Even the valence contribution is unreliably
evaluated at this point, but this is less serious because
the valence part of FP is also zero at y = 0.) Since the
sea quarks make important contributions at small z (or
y), we conclude that we do not yet have a reliable calcu-
lation of their contribution, and this part requires further
study.

We now turn to a discussion of the numerical results
obtained with the new convolution formula.

III. NUMERICAL RESULTS

Figure 4 shows the results for several different calcula-
tions of the EMC effect for an illustrative nucleus (izC).
The data are from Ref. [25]. All of these calculations
were carried out using the same nuclear model [7, 8] in
which the (nonrelativistic) spectral function is assumed
to be composed of two parts: (i) contributions from the
sum over the discrete bound states of the A —1 sys-
tem, and (ii) more complex configurations including A —1
breakup channels. When correlations are included in the
ground-state wave function, both of these configurations
will play an important role, and guided by recent exper-
iments and theory, the nuclear model assumes that 80%
of the spectral function comes from the contributions of
discrete final states, with an average removal energy of

Eo )= 23 MeV (for i2C), and the remaining 20Fo
comes from the breakup channels, with a mean removal
energy of ( E1 &= 153 MeV, giving an overall average
removal energy of ( E )= 49 MeV (see Refs. [7, 8] for
details). The calculation of Refs. [7, 8], which uses the
usual convolution formula (identical to ours if y' = y)
and is our standard of comparison, is the dotted line
in Fig. 4. This calculation already gives a larger con-
tribution from nuclear binding (because of the effect of
correlations) than most preceding ones, yet falls short of
explaining the full effect at large z, where it, should work
best.

Two of the remaining four curves (the short and long
dashed lines) in Fig. 4 use the "fixed mass" formula de-

1.0

0.8

0.6 I

O.P

I

0.4 0.6
I

0.8

X

FIG. 4. The ratio 8 of Fq (for C) divided by 6F& (for
the deuteron) plotted as a', function of the scaling variable x.
The five curves are discussed in the text. The data are from
Ref. [25].

scribed in the preceding section, and two use the "phase-
space" formula (the solid and dot da-shed lines). As we

discussed above, the phase-space formula is preferred,
and the two fixed mass cases are presented for compari-
son only. The long dashed curve is the fixed mass result
when bo/h the valence and sea quark contributions are
evaluated with the same fixed mass mz —m4 ——M. This
gives the maximum effect possible, and deviates strongly
from the experimental data at small z. This deviation is
due almost entirely to the sea contribution, as illustrated
by the short dashed curve, which shows the fixed mass
result when my ——M and m4 ——2M. The choice of a
larger value for rn& is strongly suggested by the model,
and shows how sensitive the fixed mass formula is to the
choice of m4 (note that the two fixed mass curves are
almost equal for z ) 0.5, a reflection of the fact that the
sea quark contribution vanishes there).

However, even the valence contribution is over empha-
sized by the fixed mass formula when we choose mq —M.
A more realistic result is obtained from the phase-space
formula, and the solid line shows the result when this
formula (2.22) is used for the valence part, and the sea
part is not smeared (no E3fC e/Ject). (This latter idea
is suggested by the absence of any observed EMC effect
in Drell-Yan processes [26], which are dominated by sea
contributions, but if we smear the sea part with a fixed
mass m4 ——2M, the result is quite similar to the curve
shown. ) This is the treatment most faithful to the physics
contained in our approach, and hence is our theoretically
preferred result. Finally, if we smear the sea part us-

. ing (2.23), and use (2.22) for the valence part, we obtain
the dot-dashed curve. This gives an unrealistic result at
z = 0, as explained in Sec. III, and illustrates once again
the sensitivity of the sea part to the treatment of the m4
dependence.

Figure 5 shows how the results of Refs. [7, 8] and the
preferred results of this paper compare with the data [25,
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FIG. 5. The ratio R of F~ divided by (A/2)Eq for He,

C, Ca, and Fe. The dotted lines are the calculations
of [7, 8], given for comparison, and the solid lines are the
best results of this calculation (with the phase-space formula
for the valence quarks and no EMC effect for the sea quarks).
The two curves for C are identical to the corresponding cases
shown in Fig. 4. The data are from Ref. [25] (diamonds) and
Ref. [27] (boxes).

27] for four illustrative nuclei: 4He, tzC, 4oCa, and s Fe.
In each case the mean removal energies and spectral func-
tions of Refs. [7, 8] were used. Note that the large z data
are systematically well explained by the new convolution
formula, but that the predicted eA'ect is too big at low x.

Note that a feature of the results shown in Figs. 4 and 5
is that R(0) g 1. This is a consequence of the structure of
the basic convolution formula (2.13) and occurs because
of the behavior of the int;egrand as y, y' ~ 0. It does
not reAect any violation of baryon conservation, which is
ensured by the normalization condition (2.15).

IV. CONCLUSIONS AND DISCUSSION

The derivation of the convolution formula given in Sec
II, and the results shown in Figs. 4 and 5, suggest that
nuclear binding can indeed explain the EMC effect at
large z. In this region only the valence quarks can con-
tribute, and the additional binding effects which we find
are sufficient to give the extra contributions needed to
reach agreement with data. Note that the results shown
in Fig. 4 are rather insensitive to how the valence part
is treated, and all methods give a substantial new contri-
bution. The results given in Fig. 5 show that our success
with C is replicated for an illustrative set of nuclei. The

success with Ca and Fe is particularly striking.
The same cannot be said for the description of the low

z region. Here the additional eA'ects spoil the rather good
description obtained in most previous calculations. This
may be due to the fact that many other processes con-
tribute to this region, including the sea contributions and
possible contributions from the mesons which partly ac-
count for the nuclear force, and are in any case present in
the nuclear medium. We take the sensitivity of our model
to the way in which the sea contributions are handled as
a signature of the fact that a better description is needed
before it is possible to carry out a reliable calculation of
the EMC eR'ect in this region. The model itself suggests
additional work which needs to be done, including (i) the
development of a more microscopic description of the sea
contribution, (ii) a detailed treatment of the additional
interactions which are known to contribute because of
gauge invariance (final state interactions and interaction
currents), with a possible demonstration that they do not
contribute in the DIS limit, and (iii) inclusion of meson
(pion) contributions and the restoration of the momen-
tum sum rule.

There are some indications that the pion contributions
may have the behavior needed to correct the low z re-
sults. Using the estimate worked out by Llewellyn Smith
[4] (which may, however, not apply here) it looks like a
small pion enhancement of 4% per nucleon would bring
the ratios R up to unity at z = 0. It is known that a
pion enhancement will only contribute at small z, but
the toy model worked out in Ref. [6] suggests that this
contribution might well extend out to z = 0.6. Such a
contribution would also correct the violation of the mo-
mentum sum rule which is a feature of the present re-
sult. Furthermore, a small pion enhancement may not be
contradicted by the recent Drell-Yan measurements [26],
which show that the EMC effect for sea quarks must be
very small. Before any definite conclusions can be drawn,
a completely new calculation, in which these eAects are
treated in a manner consistent with the covariant formal-
ism, is needed.

ACKNOWLEDGMENTS

Initial discussion of this work began when one of us
(F.G.) was a visitor at the INFN, Sezione Sanita, in
Rome, and he would like to thank the members of the
Institute, and especially Claudio Ciofi degli Atti, for hos-
pitality, support, and helpful conversations. The work
was completed at CEBAF, and one of us (S.L.) would
like to thank the CEBAF theory group for its hospitality.
We also thank 3. Gomez for giving us his new analysis
of the SLAC data. The support of the Department of
Energy, through CEBAF, is gratefully acknowledged.

[1] For some early references, see R. L. 3affe, Phys. Rev.
Lett. 50, 228 (1983); C. E. Carlson and T. Havens, ibid.
51, 261 (1983); R. L. Jaffe, F. Close, R. Roberts, and G.
Ross, Phys. Lett. 134B, 449 (1984); O. Nachmann and
H. 3. Pirner, Z. Phys. C 21, 277 (1984).

[2] S. A. Akulinichev, S. A. Kulagin, and G. M. Vagradov,
Phys. Lett. 158B, 485 (1985); S. A. Akulinichev et al. ,
Phys. Rev. Lett. 55, 2239 (1985).

[3] L. L. Frankfurt and M. I. Strikman, Phys. Lett. B 183,
254 (1987).



45 ROLE OF NUCLEAR BINDING IN THE EUROPEAN-MUON-. . . 1381

[4] C. H. Llewellyn Smith, Phys. Lett. 128B, 107 (1983).
[5] M. Erickson and A. W. Thomas, Phys. Lett. 128B, 112

(1983).
[6] E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev.

D 29, 398 (1984)
[7] C. Ciofi degli Atti and S. Liuti, Phys. Lett. B 225, 215

(1989).
[8] C. Ciofi degli Atti and S. Liuti, Phys. Rev. C 41, 1100

(1990).
[9) C. Ciofi degli Atti and S. Liuti, Phys. Rev. C 44, R1269

(1991).
[10] A. E. L. Dieperink and A. G. Miller, Phys. Rev. C 44,

866 (1991).
[11] U. Oelfke, P. U. Sauer, and F. Coester, Nucl. Phys.

A518, 593 (1990).
[12] L. Heller and A. W. Thomas, Phys. Rev. C 41, 2756

(1990).
[13] T. de Forest Jr. , Nucl. Phys. A369, 232 (1983).
[14] B-Q. Ma, Phys. Rev. C 43, 2821 (1991).
[15) F. Gross, Phys. Rev. 186, 1448 (1969); Phys. Rev. D 10,

223 (1974).
[16] F. Gross, J. W. Van Orden, and K. Holinde, Phys. Rev.

C 41, R1909 (1990); Report No. CEBAF-TH-91-14.
[17] F. Gross, Phys. Rev. C 26, 2226 (1982).
[18] F. Gross and K. M. Maung, Phys. Lett. B 229, 188

(1989); Phys. Rev. C 42, 1681 (1990).
[19] F. Gross and D. O. Riska, Phys. Rev. C 36, 1928 (1987).
[20] L.S. Celenza, C. M. Shakin, and W. Koepf, Phys. Rev.

C 42, 1989 (1990).
[21] All of our notation is defined in V. Dmitrasinovic and F.

Gross, Phys. Rev. C 40, 2479 (1989).
[22] This has been known for a long time, but a derivation

which emphasizes the generality of the result is in Ref.
[15] (the second reference includes a correction to the
derivation in the first).

[23] W. W. Buck and F. Gross, Phys. Rev. D 20, 2361 (1979).
[24] L. S. Celenza et al. , Phys. Rev. C 41, 176 (1990).
[25] R. G. Arnold et al. , Phys. Rev. Lett. 52, 727 (1984).
[26] D. M. Aide et al. , Phys. Rev. Lett. 64, 2479 (1990).
[27] J. Gomez (private communication).




