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Single-step and coupled-channels calculations of pion inelastic scattering
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We discuss, in a collective framework, single-step and coupled-channels distorted-wave calculations
for inelastic scattering of pions from nuclei. Two frequently used codes are compared and contrasted.

PACS number(s): 25.80.Ek, 24.10.Eq

I. INTRODUCTION

The distorted-wave impulse-approximation (DWIA)
code DWPI [1] is widely used to calculate cross sections
for pion inelastic scattering. Coupled-channels calcula-
tions are frequently carried out with the code NEwcHop,
a modified version of CHOPIN [2]. In CHOPIN (and hence
in NEwcHQP), the initial, intermediate, and final states
are teated explicitly as rotational in character —indeed
all three are treated as members of the same rotational
band, with bandhead angular momentum projection I~.
In DwPI, no such assumption is made. Rather, the lan-
guage is more in the spirit of a vibrational collective
model. The two codes have been used extensively for pre-
dictions of scattering cross sections in inelastic x-nucleus
scattering, and fitting of data for the extraction of the col-
lective strength parameter P, or equivalently the reduced
transition probability B(EA) Care m. ust be exercised
when comparing the two codes, especially for calculations
in which the initial state has nonzero spin.

In this work, we wish to resolve the ambiguities re-
garding the two codes, and show how to use them cor-
rectly for data analysis. In Sec. II we present the correct
formulas for the transition matrix element and reduced
transition probability in the vibrational and rotational
collective models (VCM, RCM) and compare them with
the formulas used by the two codes. AVe also define the
appropriate value of the parameter P in order that both
codes perform calculations in either model correctly, and
point to the kind of previous calculations which need to
be reconsidered. In Sec. III we show one- and two-step
calculations compared to data, and provide examples of
data analysis which yield the strengths of the various
multipoles contributing to a given transition.

II. REVIEW OF THE COLLECTIVE MODELS

The two major sources of ambiguity in using the two
codes are the various versions of the signer-Eckart theo-
rem currently used in the literature, as represented —for
example —by Satchler [3] and Edmonds [4], as well as
the various definitions of the strength parameter P used

R = Rp 1+ ) np„Y),„(r)
)

is typically used in parametrizations of the collective nu-
clear density [5]

p(r, R) = p(r, Rp) + bp(r, Rp), (2)

where p(r, Rp) and 6p(r, Rp) are the elastic and transition
densities, respectively. '4e use a normalization of the
ground-state density p(r, Rp) such that

d r p(r, Rp) =1,

as in [1]. The multipole expansion of the collective tran-
sition density used throughout this work is

Dp
bp(r, Rp) = Rp —)—nq„Yp„(i)Or R=RO)

= f(r) ).n „&(r)
Ap

(4)

where A is the transferred angular momentum and n~„
are model-dependent multipole coefficients. These coeffi-
cients are spherical tensors that have the same properties
under rotations as the spherical harmonics. The param-
eter P is introduced through them. In the VCM, n~„
is defined in terms of phonon creation and annihilat, ion
operators coupled to A, p:

4, +(—) b,p

2A+1- (5)

in different formulations of the collective models. The
physical observables affected by such ambiguities are the
transition amplitude and the reduced transition proba-
bility. It is appropriate, therefore, to begin by defining
the parameter P in the context of both the VCM and the
RCM as used by the codes. We will follow the notation
of [1], the source of the code DWPI, and often refer to
fomulas derived there.

We remind the reader that an expansion of the nuclear
radius

'Present address: Los Alamos National Laboratory, Los
Alamos, NM 87545.

We point to the difference between (5) and formula (7) of
[1]. The parameter Pp, or strength of the multipole A, is
related to the reduced matrix element of these coe%cients
between the states of interest:
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(IIII~~III*) = ~~
(2I;+ 1)(2If ~ 1)

2A+ 1
(6)

4~I
o'A p

—PA 2A+1 Y),„(A),

The reduced matrix element in (6) is in the Edmonds
convent loll.

In the RCM, one does not speak of phonon excitations,
but rather of nuclear collective deformations. In this lan-
guage, the coefficients nq„are defined by [6]

where 0 is the collective nuclear orientation.
Thus, we have the connection of the multipole

strengths Pq with the transition density, as one can check
by substituting the coefficients n~„in the VCM or RCM,
formula (5) or (7) respectively, into (4). Subsequently,
one proceeds to build the optical potential and to take
matrix elements of the transition density between states
of interest. Bypassing intermediate steps, we provide
the correct formulas for the transition matrix elements
in the VCM and RCM obtained by using the multipole
strengths pl, as defined above. In the VCM, we have

(2lf + 1)(2l; + 1)(2If + l)(2I; + 1)
II II, l,fI,f- 4%

lf A 1\ I; I, Jx
0 0 0 I I I A

[AiIi + A2I2+ A3I3]irl, I, &) f f
(8)

and in the RCM

JP l l I+/ K (2lf + 1)(2!,+ 1)(2If + 1)(2I, + 1)(2A + 1)
jr II l I; A KIKI 4x

tf A I ~ If A I, /; I, J
p p p l I 0 I Il') [Ai Ii + A&I2 + A3I3]lrl, A

f f
(9)

In (8) and (9), the angular momenta of the rr and the nu-
cleon are denoted by t, I, with subscripts i,f indicating
initial and final states. These couple to J, the channel an-
gular momentum. The angular momentum transfer and
the spin projection along the axis of symmetry in the
deformed nucleus are represented by A and I~, respec-
tively. The radial integrals Ii and I~ and the coeKcients
Ai, A2, A3 are as in [1] and [7]. The parentheses and
curly brackets are 3J and 6J symbols. The integral I3 is
given by

o(J, ~ Jf) 2Jf + 1

o.(Jf ~ J, ) 2J;+ 1

For J; = 0 in particular, (11) yields

o(0 ~ J)
o(J ~ 0)

= 2J+ 1.

Results of DWPI give instead

I O' f(r) 2 -Of(r)
Or 2 r Or so that for J; = 0,

A(A+ 1)
ul+,r- I (10)

o(0 J) (2J+,)3
o(J 0)

(14)

where f(r) in I3 is the same as in (4). Note that (10)
diff'ers from (18) of [1] in the sign of the second term.
The correct formula (10), however, is implemented in the
code.

lt should be noted that (8) has an extra factor of
/2I; + 1 relative to Eq. (15) of Ref. [1], the source of
DWPI. This factor is required in order to guarantee the
invariance of (8) under interchange of initial and final
states. The absence of this factor in the formula used
by DWPI results in incorrect calcula, tion of matrix ele-
ments and cross sections when the initial nuclear state
has nonzero spin. This problem can be easily detected
by considering the ratio of cross sections of a forward to a
backward calculation by DwPI: Kinematical corrections
notwithstanding small in any case for low excitations—detailed balance requires that

This is a consequence of the fact that whereas cr(0 ~ J)
is calculated correctly, cr(J ~ 0) is reduced by a factor
of (2J + 1).

The code NEvvcHQP uses (9) for the evaluation of the
transition matrix element and the cross section. How-

ever, it has been used frequently in the past for coupled-
channels calculations of transitions between spherically
symmetric states, where A' is an irrelevant quantum num-

ber and (8) ought to be used instead. Comparison be-
tween (8) and (9) shows that simply setting Ii = 0 does
not make the VCM and RCM matrix elements equiva-
lent, unless at least one of I, , If is zero. Consequently,
calculations by NEwcHOP between spherically symmet-
ric states done in this fashion, have been correct only for
transitions which involve at least one state of zero spin
in each step.

The reduced transition probability B(EA) is defined
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by [8j

l~p(EA) I' 1(II IIQ~ III*)I'
f 2I, +1 2I, +.1

where Qp is the electric multipole operator which also de-

pends on the transition density. Note that )6dlz(EA), the
reduced matrix element of the electric multipole opera-
tor between states of interest in the Edmonds convention,
is invariant upon interchange of the initial and the final
state.

One can retrace the steps described earlier which would

I

have to be followed for the derivation of the transition
matrix element, and become convinced that the reduced
transition probability will be different for the VCM and
the RCM, and will depend on the multipole strengths Pp.
One thus arrives at the following formulas, appropriate
for the two collective models:

B(EA, I; ~ II) = ZPg dz 2
"+ f(z-)

I

2' +1
2A+1

in the VCM, and

2 2

B(EII; II, ) = 6lr, Kr(21I + 1) (Z1)r, dr r f(r) I

,+,
) (It, 0 Ic; )- (17)

in the RCM, where f(z ) is as in (4) and Z is the charge. Hence, according to (15), we have

M (EA) = '
I ZPf, dz r"+ f(r) I2A+ 1

(18)

in the VCM, and

6dr(EA) = 6rr rrr)/(21;+ 1)(2II + 1) (ZBg f dr r"+ f(r) ) (,I~, 0 Ic;)- (19)

in the RCM. Substitution of Z by N yields the B(NA)'s
and the M„'s. The code DwPI also calculates the
B(E,NA)'s incorrectly for many cases. The old ver-
sion of DwPI calculates B(E,NA)'s in units of esfm2"
as well as in W.u. (Weisskopf units). Various errors re-
sulted in these being correct only for 0 ~ J transitions
in e fm " and J ~ 0 transitions in W.u. For the deriva-
tion of the Wp „'sin previous analyses, Eq. (15) was
used, and it was assumed that the B(E,NA) t's were
correct in units of e fm ". For identical cross sections
between our modified and the old version of DWPI, the
relation p I&p' —pow~)1)'2J, + 1 must hold. The code
NEwCHOP does not calculate the B{E,N A)'s For id-en-.

I

tical cross sections in calculations involving spherically
symmetric nuclei with NEWCHOP, p")& " /p„",
must be in the same ratio as TI & I & (VCM)/

TI & .I &. (RCM) of Eqs. (8) and (9).

III. NUMERICAL RESULTS

We have thus presented the correct formulas for the
transition matrix element and the reduced transition
probability in the VCM and RCM and have shown how
they should be used by the codes DwPI and NEwcHoP.
We have created modified versions of the two codes which

TABLE I. Examples of calculation of W„and M„,the reduced matrix elements of electromagnetic operators of known multipolarity for
protons and neutrons, using our modified versions of the codes in the VCM.

Target E (MeV) Jf" EA
Pion scattering (e fm" )

Pn

Modified DwPI calculations in the VCM

Electromagnetic (e fm")
~n

39K a,

39K a
2.52
3.02

3+
3+ 2

-'+ E2
E32

0.145+0.009
0.210+0.014

0.066+0.004 13.9+0.9
0.170+0.011 110.0+7.1

6.6+0.4
93.9+6.1

8.2+ 1.5 (8.2
118.7+91.2 245.0 6 110.8

44G d

44G
44C d

1.16
2.28
2.28

0+
0+
2+

2+
4+
4+

Modified NEwc:HoP calculations in the VCM

E2 0.264+0.024 0.271+0.024 20.7+1.9
E4 0.112+0.010 0.050+0.005 190.5+ 17.2
E2 —0.165+0.027 0.123+0.020 —38.6+6.4

28.4+2.5
118.7+ 10.7
38.6+6.4

21.3+0.7
190.5+5.6
38.6+6.4

Data from Ref. [9]. Pion M„and elf from present work.

Reference [10].
Reference [11].
Data and matrix elements from Ref. [12].
References [13,14].

f Sign explained in Ref. [12].
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TABLE II. Input parameters that result in the same cross
sections as those of Table I, but using the unmodified versions
of DWPI and NEWCHOP.

Target E (MeV) 1; J& P„
Old DWPI calculations

39
Iq

39
lq

2.52
3.02

3+ 1+
2 23+ 3—
2 2

0.290+0.018 0.132+0.008
0.420+0.028 0.340+0.022

Old NEWCHOP calculations, setting A' = 0

44 g
44'
44'

1.16
c) c)8

2 '78

0+ )+ 0.264+0.024 0.271+0,024
0+ 4+ 0.112+0.010 0.050+0.005
2+ 4+ —0 309+0.051 0.230+0.037

See text in Sec. II, following (14).
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I
~ ~ ~ I

I
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I
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K(m, m )

1o-1

have as a standard option the choice of either collective
model, and calculate B(EA) for each step.

VVe now present two examples of past incorrect usage
nf. .tbt„..rndpc . , npq. .reag, .

ilying/yc

g .sing;. ctgp. ~eJqglgf jgptr. ...
on a. J; g 0 target (viz. I&), with Dwpj; the other in-
volves coupled-channels calculations with NEwCHQP in

" Ca. The results of these calculations, using our mod-
ified versions of the codes, are shown in Table I. The
values of the strength parameter P, which reproduce our
calculated cross sections using the older incorrect ver-
sions, are shown in Table II.

For K, we have chosen one quadrupole and one oc-
tupole transition (see Table I). We have simultaneously
varied P& and P„(equivalently, M& and M„)to fit the

data. For the
&

state at 2.52 MeV, and the
&

state at
3.02 MeV, the data and calculations are plotted in Fig.
1. The curves are for A = 2, 3 collective transitions, as
in [9]. Quality of fit is almost as in the original reference.
But our goal here is not to search for the best fit, but
simply to obtain correct M„'sand M„'s.They are listed
in Table I. We note that they differ from those of Ref.
[9], primarily by a factor [(2Jg + 1)j(2A + I)]tf2. It is
likely t, hat many (tr, tr') results for odd-A targets in the
literature suffer from a similar mistake.

The coupled-channels examples are for Ca(tr+, tr+),
leading to the 2+, 0+, and 4+ excited states at 1.16,
1.88, and 2.28 MeV, respectively. In these examples we

use the values of M and M from [121; our results for
the 0+, ~ 2+ ~ 02+ coupled-channels calculation, and

the direct transition 0+, ~ 02, are identical to those
shown in Fig. 4 of [12], as expected from the discus-
sion of the previous section for transitions involving at
least one state of zero spin. These are therefore not
shown here. Our calculation for the coupled-channels
transition 0+, ~ 2+ ~ 4+, however, differs from that
of [12] in both shape and magnitude. The difference
in shape is independent of our changes to NEwcHop;
rather, in an unrelated error, the shape of the coupled-
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FIG. 1. Pion inelastic scattering on I& leading to the
lowest 2 (E = 2.52 MeV) and 2 (E = 3.02 MeV) states.
The solid curves represent single-step DwvpI calculations with
parameters from Table I. The data, density parameters, and
energy shift used in the calculations are from [9]. Whenever
no error bars are indicated, the data were read from Fig. 2 of

FIG. 2. Pion inelastic scattering from Ca to the lowest
2+ (E = 1.18 MeV) and 4+ (E = 2.28 MeV) states. The
curves represent NEWCHOP calculations with the parameters
of Ta.ble I. Dot, t,ed curves a.re one-st, ep calcula. tions, wit, h A =
Jy. The dashed cirrve is frora a. coupled-channels calculation,
involving coupling of the target g.s. , the first 2, and t, he
final 4 st, ates. The solid curve is obtained by combinirig
the single-step and coupled-channels calculations. The data. ,

density parameters, and energy shift. used in the calculat, iori

are from [12]. The data. for E = 1.16 MeV were read from

Fig. 2 of [12], thus error bars are not indicated.
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channels calculation in [12] corresponds to the transition
0+, ~ 2+ ~ 2+, instead. Single-step, coupled-channels,

and total calculations for Ca(m+, or+) are displayed in

Fig. 2.
We have thus resolved past ambiguities regarding the

meaning of the multipole strength, P~, in calculations
by the codes DwPI and NEwcHOP. We have provided
the correct expressions for the transition matrix elements
-"nd B(EA)'s, consistent with the VCM and the RCM,

and discussed the extraction of Pq s from pion inelastic
scattering data.
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