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We describe a calculation for the electron Coulomb distortion efFects in (e,e p ) in the quasielastic re-
gion from medium and heavy nuclei. The bound nucleons are described by single-particle Dirac wave
functions in the presence of scalar and vector potentials which are parametrized fits to relativistic Har-
tree potentials, while the wave function of the knocked-out nucleon is a solution to the Dirac equation
with the relativistic optical potential. The electron wave functions are solutions to the Dirac equation in
the presence of the Coulomb potential of the nucleus and the interaction with the selected nucleon is
treated to first order. We examine the Ca(e, e'p) reaction in both parallel and co-q constant kinematics.
We find that electron Coulomb distortion has a smaller efFect in co-q constant kinematics than in parallel
kinematics. The principal efFect in parallel kinematics is to shift the maximum and minimum of the re-
duced cross section which is consistent with the experimental data. Occupation numbers of about 70%
to 80% are needed to normalize the distorted-wave Born approximation calculation to the ~Ca(e, e'p)
experimental data. We also calculate the reduced cross section for the 3s&zz state in Pb and compare
our results to experimental data and previous calculations. We find no significant difFerence in using rel-
ativistic, as compared with nonrelativistic, nuclear wave functions. We do find significant corrections to
earlier methods of treating Coulomb distortion which, in turn, afFect the occupation number extracted
from experiment. We find an occupation number for this state of 71.4%%uo.

PACS number{s): 25.30.—c, 24.90.+d

I. INTRODUCTION

Analysis of (e,e'p) reactions in the quasielastic region
holds out the possibility of extracting single-particle wave
functions and spectroscopic factors [1],at least within the
independent particle shell model (IPSM). For Ca,
theoretical models generally predict occupations of
around 80% for levels just below the Fermi level [2,3].
Spectroscopic factors deduced experimentally from pick-
up reactions generally agree with the theoretical esti-
mates [4,5]. However, analyses of the (e,e'p) reaction on

Ca have found spectroscopic factors of the order of
40—60% for valence protons [6]. These puzzling results
were based on one or the other of two previous methods
of analysis which differ in the way they include Coulomb
distortions effects. One of these approaches uses an
eikonal approximation to approximate the Coulomb dis-
tortion efFects [7], while the other also used the same gen-
eral approach we are using, but some approximations
were made in treating the Coulomb distortion [8]. We
also note that the eikonal-based calculations used nonre-
lativistic bound-state and continuum proton wave func-
tions, while Ref. [8] used relativistic bound-state and
continuum proton wave functions.

Using various techniques for handling electron
Coulomb distortion that we have developed over the
years [9], we have completed an analysis of (e,e') and
(e, e'p ) which has removed all significant approximations
which involve Coulomb distortions [10]. In this paper we
report our investigations of the (e, e'p) reactions from
medium and heavy nuclei. In Sec. II we give the formal-
ism for (e,e'p) in the distorted-wave Born approximation
(DWBA) and discuss our treatment of the bound and out-

going proton wave functions. In Sec. III we relate our
calculations to the commonly used reduced form p ex-
pressed as a function of "missing momentum" p; we are
then able to compare our calculations on Ca to experi-
mental data from NIKHEF. We estimate the occupation
numbers for two orbitals in Ca and find values closer to
those given by theory and by other reactions. In Sec. IV
we investigate (e, e'p) from Pb and compare our calcu-
lations for the 3s»2 knockout to the experimental data
from NIKHEF and to previous calculations. We extract
the occupation number for this orbital. Finally, in Sec. V
we give our conclusions.

II. FORMALISM
FOR INELASTIC ELECTRON SCATTERING

A. Kinematics and assumptions
for the (e, e'p) process

We choose to work in the laboratory frame of reference
in which the target nucleus is at the origin of the coordi-
nate system. As shown in Fig. 1, the incoming electron
with four-momentum k„=(ko, k) defines the z direction;
the scattered electron with k„'=(kok') is moving in the
x-z plane ($, =0). The ejected proton has p„=(E,p)
with its direction described by the polar angles (8&,P„).
We use q„=(co,q) to denote the four-momentum
transfer. Throughout we use units such that (fi=c = 1).

In our calculations we make the following assump-
tions: (1) The incoming and outgoing electrons are de-
scribed by wave functions distorted by the nuclear
Coulomb potential. (2) The virtual photon emitted by the
electron is absorbed by a single nucleon. A11 other nu-

1311 1992 The American Physical Society



1312 YANHE JIN, D. S. ONLEY, AND L. E. WRIGHT 45

final-state interaction. The wave function for the outgo-
ing proton has the same structure as that for the outgoing
electron:

FIG. 1. Kinematics for the (e, e'p) process.

where P „ is the electron eigenstate with angular
momentum quantum number ~,p given explicitly by

f,(r)P„„(r)
ig, (r)P „„(r) (2)i)'j,„(r)=

cleons are just spectators in the process. (3) The ejected
nucleon interacts with the residual nucleus through a rel-
ativistic optical potential. (4) The bound nucleon is de-
scribed by an independent particle model in a relativistic
Hartree potential. With these conditions satisfied, we
will refer to the calculation as the distorted-wave Born
approximation (DWBA). Where we ignore the Coulomb
distortion (the first condition) and use plane waves to de-
scribe the electrons, we will label the calculation plane-
wave Born approximation (PWBA), despite the fact that
the outgoing nucleon is still a distorted wave. If we ig-
nore the nucleon final-state interaction, we say explicitly
that we are using a plane wave for the nucleon.

The distorted-wave functions for the electrons are ob-
tained by numerically solving the Dirac equation in the
presence of the static Coulomb potential of the nuclear
charge distribution. Thus the Coulomb distortion of the
electron waves from the static Coulomb field of the nu-
cleus is included to all orders. The Coulomb distorted in-
coming electron wave function can be written as a sum of
partial waves,

iP;„(r)= g C„„exp(i5„)g„&(r),

Eh+ m
(r =

~"b~b

. in f„(r)P„„(r)
ig„(r)P „(r) (7)

where m~ is the nucleon mass. A11 the radial functions
given above satisfy the standard coupled first-order
di8'erential equations arising from the partial-wave
decomposition of the Dirac equation with the appropri-
ate vector and scalar potentials for the protons and with
simply the Coulomb potential for the electrons.

B. DWBA cross section

In electron-scattering calculations using the Born ap-
proximation, the main task is to evaluate the transition
matrix elements. The interaction is well known from
electrodynamics:

H; = —fJ"A„dr, (8)

where J~ is the nucleon transition current and A„ is the
potential generated by the electron transition current j„.
In the Lorentz gauge the potential can be written in
terms of the retarded Green function G(r, r')
=exp(ico[r —r'[)/(r —r'( as

A„(r)= J j„G(r,r')dr .

f„* (r)5'„„(r)
V~ ( r ) = g C„„exp( i 5—„* )

P P
K P

where C„„and P„„(r)are defined as in Eqs. (3) and
P P

(4) with the proton energy, mass, angular momentum,
etc. , replacing the electron values. Since f and g are the
solutions of the Dirac equation with corn. plex potentials
and must satisfy incoming boundary conditions, we must
use f ' and g

* and 5„' for the wave function to describe
P

the outgoing channel.
Finally, the bound-state wave function can be written

in terms of the Dirac quantum numbers I( & and pb.

and the spin angle functions are

&.,„(r)=y &ip —s-,'slJp~ Yi„—,(r) .

ko+m
2ko

( ip —s—,'sf jp )i 'Yi„,(k),

To satisfy the incoming boundary condition, we need
' 1/2

(3)

In the DWBA the nucleon and electron currents are
complicated and the only way to evaluate the transition
matrix elements is through partial-wave analysis. We can
expand the scalar Green function in terms of the spheri-
cal harmonics, i.e.,

G(r, r') =4mico g jL(cur )hl (car ) YL~(r) YL*M(r'),
LM

(10)
and 6 is the phase shift for the a. partial wave, m is the
electron mass, and s is the electron-spin projection. For
the outgoing electron,

%,„,(r)= g C,„exp( —i5,')g„„(r) .
KP

We use global optical potentials [1],obtained from fitting
elastic proton-scattering data, to describe the proton

where jL denotes the spherical Bessel function and hL

denotes the spherical Hankel function of the first kind;
r & refers to whichever of r and r' has the larger magni-
tude and r & to the one with the smaller magnitude. For
the three-vector current terms, we can expand the Green
function with the dyadic I in vector spherical harmonics

Y~l (r) [12]:
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G(r, r') =IG(r, r')

=4mico. g [ji.(cor )hL(cor )Y~I'(r)YJI (r')] .
JML

In terms of these expansions we can write the transition matrix element as

II;= 4~—ico g f p'YLbc(r) hI (cor) f p jI (cor')I'IM(r')dr'+J'L(cor) f p h I( cor')1'1~(r')dr' dr
LM 0

—g f j.YIJ'(r) hJ(cor) f J Ypz(r')j J(cor')dr'+j J(cor)f J Y~z(r')hJ(cor')dr' dr
0 0

(12)

The nucleon transition current will be the matrix element

(13)

where j„is the nucleon current operator. For a free nu-

cleon the operator consists of two parts, namely, the
Dirac contribution and the contribution of the anoma-
lous magnetic moment pT.

1PTj"=F@~+F2 ~ q
2mN

(14)

When written separately the zero component (charge
density) and three-vector current are

PTJ0=Fipo+ F2a q,
7tl N

(15)

(16)

1
GE GM~(PT+ 1)

(1—q„ /0. 71)
(19)

Note here q0=co and q is an operator in configuration
space. The form factors F& and F2 are related to the elec-
tric and magnetic form factors GE and GM by

2

777N

GM =F] +PTF2,
where q„=co —

q is the invariant square of the four
momentum transfer. We will assume that GE and GM
take the usual dipole form [13]for the proton:

where in this formula q is in units of GeV. We evaluate
these form factors at q„given by the asymptotic electron
energy and momentum, which amounts to an approxima-
tion, since, strictly speaking, our calculation requires that
the point proton wave functions be convoluted with the
proton charge and magnetization distributions in space.
These are of course equal in electron plane-wave calcula-
tions, but not in DWBA calculations. However, with the
values of energy and momentum transfer in experiments
done to date, this approximation should make an
insignificant difference. Using these definitions, we can
work out the matrix element integrals given in Eq. (12).
We find the following for the nucleon current operator
matrix elements (details are given in Appendix D of Ref.
[10]):

fp„& ~pf„,„,jL, (cor)&gM(r)d&

=(jbpbLMJI~@ )I„„Ks[rJz, (cor)I, (20)

where I„„is the standard reduced spin-angle matrix ele-
b p

ment

I„„=('P„„(r)[(& [~P„„(r)), (21)

which is independent of the magnetic quantum numbers
p, p', M and the signs of K, K. It is understood that this
matrix element is nonzero only when the angular momen-
tum selection rule is followed: i.e., l+l'+L = even for
electric transition and l+l'+L= even for magnetic
transition. Note that l is the nonrelativistic orbital angu-
lar momentum determined by ic, l(a) =j+sgn(a) (j being
the corresponding total angular momentum), and
1 =1 ( —~). The radial kernels Ks [r,jI (cor )] can be writ-
ten as

Ks"[»i L(~»)] =I'I (f.,f., +g.,g., )JL(~r)

F28T~ 1+ [(f„g„+g„f„)[(L+1)fl.+i(cor ) Ljl, (co» )]—
+(, ~b)(f. g.„—g. f., [ )ij+i ~()+jL-i(~ )]] (22)

For the vector part,
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p J ~ p jL mr .YLJ r dQ= jbpbLM jppp I..Ev r,jJ ~r (23)

where J=L„L+1.The corresponding quantities Ev are written in terms of the proton wave functions in the fo]lowing
way:

l F2p Tco
Ic:p{rjL(cor)I= jl(cor)(&~+&b) Fy(f. g. +g. f. &+

2
(f. g. —g. f. &

L (L +1)
pTco F2+ {(,+ b&(f. g. +g. f. ){LJi+i(~r) «—+1j)i-i( r)1

2m~2L +1

+L(L+1)(f,g., g.,f—., ){JI.+i(~r)+Jr. i(~r))I (24)

l Fzp Tcu
Kp'{«,JI &(cor) j

—
& Jz ](cor ) F](K Kp ) L-

L (2L + 1) 2m~ (f,g., +g,f., )

F2p Tco+ (~~ Icb) — LF, (—f, g, —g, f, )
2mN

F2p Tco+ (&~ &bj)l (cor)(f, f„+g„g„)2m~ Kp Kb Kp Kb
(25)

l F2pTNK"{r,j,(cor )I = j~+,(cor ) F) (lc ab )+(L—+ I )
v'(L + 1)(2L + 1) ~N (f,g., +g.,f., )

F2pTM+ (Kp Kb) +F, (L +1) (f„g„—g„ f„)
2P7l N

Kp Kb Kp Kb

F2pTN
(K KI )j L (cor )(f, f, +g„g„)

2mN Kp Kb Kp Kb
(26)

In the above expressions, the spherical Bessel function jL can be replaced by hL when required [see Eq. (30)].
In the same way, we can work out the corresponding integrals for the electron part and define the corresponding Kz

and Ev:

I4v'p'30$vyJL ( cor )I LM ( «)d& = (JVL Ml j'p' ».„'( —1)M&; {rjL ( co—r ) I (27)

Ig „jap (co« ) Y "(r )d. Q= (j PL Mlj 'p'&( 1)'+'+ +'I„.~—;{rj,(co«)I . (28)

Because the electron has no form factor and we neglect its anomalous magnetic moment, expressions for Ez and Kv
can be obtained by replacing the proton mass and angular momenta in Eqs. (22) —(28) by the electron values and setting
F& =1 and F2 =0. In terms of these integrals, we can write the transition matrix element

H, =4nico gC„„C„*.„C„*„(—1) (JzpbLMI J~p~ & ( JpL M I
J'p' &I~„,~~. ~1(.(~. ~R".",,(r» (29)

where the summation is understood to run over Icplc'p'~ p and LM. The complete radial integral, R "„„(r),is given by



ELECTRON COULOMB EFFECTS IN QUASIELASTIC (e,e'p). . . 1315

R"„' (r)=P, f Ks[r, hz(cor)j f Kstr', jL(cur')}r' dr'

+Ks [r JL(~r ) j f Ks [ r', hL (cur') j
r' dr' r dr

P, —f Kv[r, hL &(cur) j f Kv[r',jL &(cur') jr'2dr'
0 0

+Kv{rjL &(mr) j f Kv[r', hL &(cur') jr' dr' r dr

00

e Kv[r, hL+, (cur) j Kv[r Js. +,(~r') jr' dr'
0 0

+Kv[r JL, +i(~r) j f Kv[r', hL, +((~r') jr' dr' r dr

+p f Kv[r, hr(d'or)j f Kv[r',jz(cor')jr' dr'
0 0

+Kv[rjr (cgr) j f Kv[r', hr (cor')r' dr' r dr, (30)

where we have put in explicitly the factors for the angu-
lar momentum selection rule: P, =1 means electric rnul-

tipole conditions are satisfied, and P =1 for magnetic
rnultipole. Explicitly,

P, =
—,'[1+(—1)'+'+ ][1+(—1) ' ' ],

P — [1+( 1)I+I L+][1+( 1) ]

(31)

(32)

III. COMPARISON WITH EXPERIMENTS

Finally, we write down the cross section in terms of the
transition matrix element:

k'k k'

dQ, dkodQ 4m k 2, ;„2'~+1
pb Sp

where p„=pE/(2m ) is the density of states for the eject-
ed proton.

De Forest [14]. In our calculations we adopt the same
definition since the experimental data is usually presented
in terms of p . We cannot, however, interpret the quan-
tity in any simple way; in particular, p now depends on
the electron kinematics.

Up to now, all the (e,e'p) experiments have been car-
ried out using one of two kinematic arrangements, called
parallel kinematics and co-q constant kinematics. In
parallel kinematics one only observes protons ejected
along the momentum-transfer direction q and measures
their energy spectrum. By varying the incoming and out-
going electron energies and the scattering angle, a variety
of spectra for different mornenturn transfers is obtained.
In co-q constant kinematics, the energy and momentum
transfer are fixed by fixing the electron kinematics and
the proton angular distributions are measured. So far,
only in-plane proton angular distributions have been
measured.

1 d C7

p (p )=
pEcr,~ dkod Qk d 0 (34)

where p is called the missing momentum and can be
determined by the kinematics p =p —q. The off-shell
electron-proton cross section o.,& is not uniquely defined,
but the commonly used expression is 0."' given by

A popular way of presenting (e, e'p) results is to calcu-
late p, which for proton plane waves in the final state is
directly related to the probability that a bound proton
from a given shell with momentum p can be knocked
out of the nucleus. This can be related to the cross sec-
tion in the plane-wave impulse approximation (PWIA) by

A. Comparison to Ca (e,e'p) experimental data

As noted in the Introduction, we carry out the calcula-
tion in the laboratory frame (target fixed frame). Numer-
ically, it takes less time to do a co-q constant kinematics
calculation than a parallel kinematics calculation because
the radial integrals, which take much of the computation-
al time, do not depend on the angles L9„0,etc., but de-
pend on the incoming and outgoing electron energies;
hence parallel kinematics requires they be recalculated
for each point. So we prefer to study e-q constant kine-
matic data. All of the data shown are from NIKHEF [6].

In Fig. 2 we show a calculation which corresponds to
knocking out a proton from a 2s«2 orbit in Ca. The ki-
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passes q, at which point the missing momentum p
(=p —q) has a minimum magnitude ~p

—
q~ and also

points along q. But p vectors to the right of q and to
the left of q are not equivalent, although they may have
the same magnitude. They are distinguished on the plot
by sign, +Ip

~

and —
~p [: Values between +~p —

q~ are
not physically accessible, and this region is bridged by a
straight line. The points at either end of the straight lines
should correspond to the same kinematics if we chose
q~~p. However, in some figures, p is not exactly parallel
to q. We know from the discussions above that peaks are
shifted toward higher p for p &q and toward lower p
for p)q, and hence we can anticipate the distortion
effect in parallel kinematics; i.e., all DWBA peaks will
shift to the right (increasing p ). In Fig. 5 we show the
corresponding calculation in parallel kinematics. As ex-
pected, while leaving the point at p =q changed very lit-
tle, the DWBA calculation shifts the curve to the right,
so that the minimum shown by the experiment is well
reproduced. Also, note that the electron distortions
affect the p )0 and p &0 regions differently; the p &0
region shows a larger Coulomb effect.

In Figs. 6-9 are shown the same calculations for the

d3/2 orbit Ca. Again, we get negligible Coulomb distor-
tion effects with the p=q and co-q constant kinematics
(Fig. 6), some effects with pAq (Figs. 7 and 8), and the
largest effect with parallel kinematics. In this particular
case, the electron Coulomb distortion enhances the peak
for p &0 and reduces the peak for p )0.

To do the 2s, z2 and d i zz orbit calculations for Ca
(Z =20), we used 40 electron partial waves and 20 final-
state proton partial waves (also 20 virtual photon mul-
tipoles). All radial integrals are carried out numerically

8
C4

10

Ca(e, e'p) K

dG/2

I

0

p [MeV]

-300 -200 -100 100 200 300

FIG. 6. Reduced cross section for Ca (e,e'p) from the d3/p
shell with m-q constant kinematics. The kinematics are ko =375
MeV, ko =275, and p =q. The corresponding electron-
scattering angle is 8, =83'. The solid line is the DWBA calcula-
tion, the dashed line is the DWBA calculation with Z =1, and
the dotted line is the PWBA calculation.

to a radius R,„well outside the nucleus (determined by
the bound-state wave functions), and analytic forms [9]
are used to complete the integration to infinity. We work
with 14-digit words in the computer and require that all
radial integrals be accurate to 6 digits. Even with these
precautions, there are a few regions in the cross sections

g Id
&

Qe
8

C4

Q.
10

"Ca(e,i.
2S1]2

I I I

0

p [MeV]

-300 -200 -100 100 200 300

Ca(e, e'p) K

d3~2

I

0

p [Mev]

-300 -200 -100 100 200 300

FIG. 5. Reduced cross section for Ca (e,e'p) from the 2s&/2
shell with parallel kinematics. The kinematics are k0=375
MeV and k0=275. The solid line is the DWBA calculation,
and the dotted line is the PWBA calculation. The data are from
Ref. [6].

FIG. 7. Reduced cross section for Ca (e,e'p) from the d3/2
shell with off-peak e-q constant kinematics. The kinematics are
ko =375 MeV, ko =265, and p )q; 8, =60 . The solid line is the
DWBA calculation, the dashed line is the DWBA calculation
with Z =1, and the dotted line is the PWBA calculation.
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8
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0
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Ca(e, e'p) K

d3/2

numbers will appear as multiplying factors in our calcula-
tions. Visual fitting shows that we would need about
75% for the 2s&/2 orbital in Ca and 80% for the d3/2
orbital using parallel kinematics data [6]. Occupation
numbers, extracted using approximate treatment of the
electron distortion [6], are about 50% for the 2sI&z state
and about 64% for the d3/2 state; our calculation shows
that including the electron distortion properly gives a
better fit to the experimental data and more believable oc-
cupation numbers. Remember that in our calculation we
have no adjustable parameters apart from an overall scal-
ing which is used to determine the occupation probability
and all the wave functions we used are predetermined by
some other mechanism. We also note that it was ob-
served in Ref. [6] that previous analyses of co-q constant
kinematic data tended to find larger occupation numbers
than analyses of parallel kinematic data.

-300 -200 -100
I

0

p [MeV]

100 200 300 IV. ELECTRON
COULOMB DISTORTION EFFECTS FOR LEAD

(minima) where we have found it necessary to take more
terms in the expansion to get adequate convergence.

B. Occupation numbers

If we assume that the shells near the Fermi surface are
not completely filled in the shell model, then occupation

10

"Ca(e,e p)"K
d3/2

-300 -200 -100
I

0

p [MeV]

100 200 300

FIG. 9. Reduced cross section for Ca (e, e'p) from the d3/2
shell with parallel kinematics. The kinematics are ko=375
MeV and k0=275. The solid line is the DWBA calculation,
and the dotted hne is the PWBA calculation. The data are from
Ref. [6].

FIG. 8. Reduced cross section for Ca (e, e'p) from th d3/p
shell with o6'-peak e-q constant kinematics. The kinematics are
k0=375 MeV, k0=265, and p &q; 8, =120'. The solid line is
the DWBA calculation, the dashed line is the DWBA calcula-
tion with Z = 1, and the dotted line is the PWBA calculation.

As we finished the calculation for the Ca cases, a
Letter [8] was published by McDermott in which he also
presented a DWBA calculation. His calculation used a
bound-state wave function from Horowitz and Serot [15]
and a relativistic global optical potential to describe the
knocked-out proton [11]. The Letter particularly em-
phasized the calculation for the 3s, /2 state in Pb. In
the following we attempt to do the same calculation and
compare the results.

Besides the relativistic calculations, there is a nonrela-
tivistic calculation which is also used for experimental
analysis [7]. This calculation treats the electron distor-
tion in an approximate way by using eikonal-type wave
functions to describe the incoming and outgoing elec-
trons. The approximation gives a relatively simple ex-
pression compared with the full distorted-wave calcula-
tion, but without an exact calculation to verify the accu-
racy, it is not clear under what conditions the approxima-
tion is valid.

In Fig. 10 we compare three calculations: the solid line
is the present calculation, the dotted line McDermott's
calculation, and the dashed line the nonrelativistic eikon-
al calculation [7] (the latter two curves are reproduced
from Ref. [8)]. We first compare the plane-wave approxi-
mation calculations; i.e., ignore the electron Coulomb
distortion. In doing so we can compare the treatment of
the nuclear wave functions: both the bound and free
states without the comphcation of electron distortion.
Surprisingly, our results do not agree with McDermott's
calculation at all, but agree rather well with the nonrela-
tivistic calculation, especially near the peak. Presumably,
the slight differences between our calculation and the
nonrelativistic calculation is attributable to differences in
the bound-state and continuum wave functions arising
from a nonrelativistic versus relativistic approach to
describing the nucleus and proton scattering. The
disagreement between our results and those of McDer-
mott caused us to spend a lot of time checking the accu-
racy of our calculation. We checked our code by substi-
tuting the code of Horowitz and Serot [15] TIMQRA, and
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FIG. 10. Reduced cross section for Pb (e, e'p) from the
3s&zz shell with parallel kinematics calculated in (a) the PWBA
and (b) the DWBA. The solid line is the calculation given in the
text, the dashed line is the eikonal calculation from Ref. [7], and
the dotted line is McDermott's calculation from Ref. [8].

electron distortion shifts the curve toward higher p with
a bigger shift for the first peak than the second peak and
partly fills the minimum in between. There is also a
slight enhancement of the peak values. The eikonal cal-
culation follows the same general pattern, but the effect is
much larger. We roughly agree with McDermott's calcu-
lation on the size of the shift of the first peak, but not
with the detailed shape changes we find due to Coulomb
distortion.

It is interesting to see whether, as in the Ca calcula-
tions, we get an occupation number larger than obtained
with other calculations. Using an error-weighted least-
squares fit to the experimental data [17], the occupation
number from our calculation is 1.43 (71.4%). The occu-
pation number obtained using the nonrelativistic eikonal
calculations is 1.03 (51.5%), while using McDermott's
calculation gives 1.30 (65%). In Fig. 11 we show our best
fit to the experimental data.

V. CONCLUSION

the code of Hama et al. [11],GLoBAL, for our own Har-
tree and proton-scattering codes. We are also en-
couraged by our approximate agreement with the nonre-
lativistic results since we would not anticipate any
significant relativistic effects showing up in the (e,e'p)
cross section at these energies; see also Ref. [16]. We
have been unable to discover the basis of our disagree-
ment with McDermott's results.

Next, we examined the Coulomb distortion effects pre-
dicted by the three calculations. In our calculation the
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FIG. 11. Reduced cross section for Pb (e,e'p) from the
3s

& z~ shell with parallel kinematics. The kinematics are
k0=412 MeV, and proton kinetic energy T~ =100 MeV. The
solid line is the DWBA calculation, the dashed line is the
DWBA calculation with Z =1, and the dotted line the PWBA
calculation. The data are from NIKHEF [17]. The calculated
curves are scaled by 0.71.

The purpose of this work was to develop an effective
way of handling the electron distortion in quasielastic
electron scattering. Utilizing the potentials and wave
functions of relativistic nuclear physics, the relativistic
Hartree calculations, and Dirac phenomenology of the
elastic proton scattering, we have developed a code which
takes advantage of the supercomputer vectorization capa-
bility and properly includes the electron distortions
through a partial-wave analysis of the electron wave
functions as well as the proton wave functions. The cal-
culation is carried out entirely in relativistic terms, and
there is no nonrelativistic reduction involved.

As a preliminary project, we reanalyzed Ca(e, e'p)
experimental data using our DWBA code. We examined
two orbitals near the Fermi surface of Ca, namely, 2s, &2

and d3/2 with both parallel kinematics and co-q constant
kinematics. The calculations show that by properly in-
cluding the electron distortion, the shapes and minima of
the experimental data can be reproduced. We require oc-
cupations of 70—80% in order to agree with the experi-
mental data, larger than previous values extracted from
(e,e'p) cross sections (see Ref. [6]). Using the PWBA re-
sult as a reference, Coulomb distortion contributes
differently, depending on the kinematics. In co-q constant
kinematics, especially if we make the requirement that
q =p, which includes the quasielastic peak condition,
Coulomb effects are minimal. But in other cases,
Coulomb distortion gives more noticeable effects. In
parallel kinematics we find that Coulomb distortion
effects cannot be neglected except for the lightest nuclei.
The main effects in parallel kinematics are the shifting of
the reduced crosssection p towards larger p and the
differential changing of the amplitude as a function of
p, so that the overall shape of the curve gets changed.

In order to compare with the previous calculation by
McDermott [8], we chose the 3s&&2 proton in Pb as a
subject. Using what we believed to be the same relativis-
tic Hartree bound-state wave function, our calculation
does not agree with McDermott's calculation even in the
plane-wave limit. Comparing our calculation with the
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nonrelativistic calculation of Ref. [7], we find good
agreement with the electron distortion turned off and we
find that the eikonal method used qualitatively gives the
right Coulomb distortion effects, but overestimates them
considerably. The occupation number extracted from
our calculation is 1.43 (71.4%), which is larger than any
previous extracted frotn (e, e'p) by using other calcula-
tions.

Since it now seems likely that the occupation numbers
extracted from (e, e'p) experiments may agree with those
extracted from other reactions and with the theoretical
predictions, it is our next project to examine systemati-
cally the experimental data available for medium/heavy
nuclei.

An item of interest for the future is the separation of
the structure functions in the (e, e'p) process. According
to the PWBA, the cross section can be written in terms of

four nuclear structure functions, which could, in princi-
ple, be experimentally separated, and many of the experi-
mental arrangements adopted are guided by this pros-
pect. Since our results show that even for Ca the
Coulomb effects are noticeable, especially if off-peak kine-
matics are used, one should be cautious in using plane-
wave-based interpretations.
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