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Canonical studies of the cluster distribution, dynamical evolution, and critical temperature
in nuclear multifragmentation processes
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Partition functions for a canonical and microcanonical ensemble are developed which are then used to
describe various properties of excited hadronic systems. Relating multinomial coefficients to a generat-
ing function of these partition functions, it is shown that the average value of various moments of cluster
sizes are of a quite simple form in terms of canonical partition functions. Specific applications of the re-
sults are to partitioning problems as in the partitioning of nucleons into clusters arising from a nuclear
collision and to branching processes as in Furry branching. The underlying dynamical evolution of a
system is studied by parametrizing the multinomial variables of the theory. A Fokker-Planck equation
can be obtained from these evolutionary equations. By relating the parameters and variables of the
theory to thermodynamic variables, the thermal properties of excited hadronic systems are studied.

PACS number(s): 25.70.Pq, 24.60.—k, 05.70.—a, 05.40.+j

I. INTRODUCTION

Nuclear systems under various amounts of excitation
show a wide variety of different behavior. At low excita-
tion energy, single particle and collective excitations such
as giant resonances are seen. Gamma emission, evapora-
tion of a nucleon, and fission are possible simple modes of
decay. As the excitation energy increases, more complex
decay schemes manifest themselves. The nuclear system
fragments into more pieces as this energy is increased.
The region where the excitation energy is near to the
binding energy is of current interest. This region is called
the multifragmentation region. Within this region lie the
possibility of seeing a liquid-gas phase transition in the
nuclear matter limit, i.e., in an infinitely large nuclear
system. At still higher energies, particles such as pions
and kaons can be produced. At very high energies, a
quark-gluon phase may be reached. When particles are
produced or a transition is made to the quark-gluon plas-
ma, new degrees of freedom are created. In the mul-
tifragmentation region, the initial number of baryons are
redistributed into clusters of various sizes and into single
nucleons. How nucleons in a nuclear system at moderate
excitation energy are redistributed among clusters, and
how the initial excitation energy affects the modes of de-
cay, will be studied here. This paper is a continuation of
work started in Refs. [1,2].

Except in infinite nuclear matter, the number of nu-
cleons in a nuclear system is too small to be considered as
a thermodynamic system. Only up to few hundred nu-

cleons are involved in a heavy-ion collision. Thus the
study of nuclear multifragmentation phenomena requires
nonequilibrium considerations and fluctuation studies
due to the finiteness of the system. The large number
limit of this study should lead to thermodynamic phe-
nomena such as the liquid-gas phase transition, critical
phenomena, and the spinodal instability. Our study here
considers the modes at the final state of a nuclear system
after experiencing a dynamical instability such as a spino-
dal instability.

An outline of this paper is as follows. Section II con-
tains a framework for investigating the partitioning of a
nucleus into clusters. A general grand canonical parti-
tion function is developed in terms of multinomials.
Then canonical and microcanonical partition functions
are developed from this grand canonical partition func-
tion. The distribution of cluster sizes is then developed
and fluctuations are studied. Section III investigates the
underlying dynamical evolution of the cluster size distri-
bution function. In Secs. II and III, very general formu-
lations are considered. One special case of these formula-
tions is related to nuclear fragmentation phenomena.
Section IV shows how the excitation energy controls the
distribution of fragments. The various special tempera-
tures of a nuclear system are also discussed. Section V is
for concluding remarks and some detail derivations are
given in the appendixes.

II. GENERALIZED PARTITION
FUNCTIONS, DISTRIBUTIONS,

AND FRAGMENTATION PROCESSES
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A method for investigating the fragmentation of a nu-
clear system into clusters of nucleons will be developed.
The partitioning of A initial nucleons into groups of
varying sizes gives rise to a distribution of cluster sizes.
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Let nI, be the number of clusters of size k. The n, is then

the number of nucleons not in clusters. A partition
~ 4 ~ ~ ~ ~

tn I n& =0 n&=0 n,. =0 n&=0
(7)

n= ni = n1, n2, n3, . . . , nA

defines a particular arrangement of the initial nucleons
into clusters (nz, n3, . . . , n„) and monomers (n, ) regard-
less of which nucleon belongs to which- cluster. A con-
straint exists which is

The constraint A =g;in; of Eq. (2) is represented by the
delta function 5(n) in Eq. (6); 5(n) =5„0for a discrete ar-

gument. For the W„(n,x ) given by Eq. (4}, the Q„(x) of
Eq. (6} can be generated by an exponential generating
function [1,2,3]

in, (2)
00 QA Q

Q(&,x)= g Q„(x), =exp g x
A=0 i

The number of clusters in a particular partition is called
the multiplicity M,

Thus we have

(8)

n; (3)

The counting of partitions for a given A can be related to
the partition of an integer A into a summand of smaller
integers without regard to order [1,3]. This counting and
its generating function are discussed in Sec. II B together
with other types of counting.

Each partition n is then assigned a weight. Ensemble
averages over all possible fragmentation partitions can be
carried out using this weight. For example, Ref. [1]con-
sidered a weight which is simply

W„(n,x ) =M2( A, n)x

where M2 is a Cauchy's number [4]

M2( A, n) =
A

g j 'n/!
j=1

1 'n1!2 'n2!" ~ A "nA!

Q„(x)= g 5 gin, —A W„(n,x),
I n,. I i

where the sum is over aB possible values of n s, i.e.,

(6)

The x is an evolutionary tuning parameter discussed in
Refs. [1,2]. While M2 contains combinatoric factors, the
x contains the underlying physical quantities which
determine the distribution of cluster sizes. References [1]
and [3] relate x to the freeze out volume and freeze out
temperature, to the binding energy per particle, and to
the level density. Section IV contains a discussion of x
which can vary from zero to infinity. As x increases, the
weighting factor x in Eq. (4) shifts the fragmentation
scheme from low multiplicity to high multiplicity events.
The M=2 modes of decay correspond to the system
breaking into two pieces, the M =3 modes correspond to
a fragmentation into three pieces, etc. At x =0, only one
cluster made of all nucleons exists and at x = 00, the frag-
mentation results in A nucleons. In between these two
extremes, we have all other possibilities. For example,
for small x the mode of decay can be evaporation of a
particle from a heated system while for large x, the sys-
tem will break up into many nucleons and some small
clusters.

Once a weight function, W„(n,x ), is assigned to each
partition n, a canonical ensemble partition function can
be obtained from

Q„(x ) =x(x+ 1)(x+2) "(x+A —1)= r(x+ A)
(9)r(x }

The I (x) is the gamma function which is (x —1)!if x is
an integer.

Properties of the cluster size distribution function re-
sulting from Eq. (9) can be found in Refs. [1,2,3]. The
mean number of clusters of size i obtained from

y5 'ytn, —A n„W„'(n,x)
I n,. I i

Yq(k, x)=
Q„(x)

(10)

Y„(k,x ) =—eA (12)

where the Lagrange multiplier I, is determined by
gl, k Y„(k,x ) = A. This Maxwell-Boltzmann-like distri-
bution is a special case of the more general expression
studied in Ref. [2]. If no microcounting factor or evolu-
tionary tuning parameter is included, i.e., putting
W„(n,x ) =1 in Eq. (6), then the yield Y„(k) for a large
A is simply

Y„(k}= 1 1

4&3A exp[(n. /2)k&2/(3A )]—1
(13)

which is the Bose-Einstein-like distribution obtained in
Ref. [5]. The efFect of the finiteness of A in Bose-Einstein
statistics is studied in Ref. [6] and the corresponding
number of partitions are discussed in Sec. II B.

We will generalize the partition function of Eq. (8) in
Sec. II A. In Sec. II 8, we discuss the relations with vari-
ous partitions of an integer. Section II C relates the par-
tition functions to the mean and various moments of the
distribution in a canonical ensemble. Finally, the various
factorial moments in a microcanonical ensemble are con-
sidered in Sec. II D.

in a canonical ensemble is simply

Y„(k,x}=
k xB(x+A —k, k) .A (11)

Here („")= A!/k!( A —k )! and 8(x+ A k, k)—
=I'(x+ A —k)I (k )/I'(x+ A ) are the binomial
coeScient and the beta function, respectively. For large
A andk&&A,
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A. Generalized partition functions

We now extend Eq. (8) by considering a more general
generating function of the form

N

Q(u, x) =exp X x;u
i=1 Pi M=O

N

x,

M

(14)

The sum over [n; I is given by Eq. (7) and the sum over A

is for all possible values of A given by

N

which is an infinite sum of multinomials. The
x= [x;) =(xi,x2, . . . , xiv) is the set of N multinomial
variables. Each cluster i has an x; associated with it.
The case a; =p; =i with all the x s equal to a single x is
then Eq. (8). The grand canonical partition function
Q(u, x) generates the canonical partition function Q„(x)
through the relation of

u' uA
Q(u, x)= XQ„(x) = X G„(n,x)

ly soluble microcanonical ensemble in Sec. II D.
Before going further, let us define a shorter notation

for various summations:

N= X5 Xan, —A
«n,. j „«n,. j

N N= X5 Xan; —A 5 Xn, —M, (19)
«nj& M «nj i =1 '=1

N= X5 Xan, —A 5(nk —nk),
«n,.j, «n,. j i =1

k

i.e., constrained summations of Eq. (7) with the fixed
values of g;a; n, = A, g;a;n; = A, and g;n; =M, and

g;a;n;=A and nk= n/„respectively. With these nota-
tions, the unconstrained summation of Eq. (7) can be ex-

pressed by

X=X X =XX X =XX X
nt j A «nj& A M «nj& M A n' «nijk ' ~nk

The canonical partition function then becomes, from Eq.
(15),

a;n, .

Here A may have any value depending on the a;. How-
ever, if we restrict a; to a; =i as in a nuclear fragmenta-
tion, only the integer values are allowed for A and Eq.
(16) reduces to Eq. (2). For this case we have
r(A+1)=A!. The Gz(n, x) is the weight function of a
specific partition n of A into a summand of a s and is

given by

Q„(x)= d
du

Q(u, x)
0=0

G„(n,x)

n,.
N

r(A+1) g
i=l P, 'n, !

(21)

n,,
XiN

=r(A+1) g
i =l P, ''n, !

G„(n,x)=, C(M, n) gr(A+1)
i=1

(17)

Except for the differential representation (d /du )", the
expression in Eq. (21) applies to the case with arbitrary
values of a;. We also define the following quantities:

QM(x) = X G„(n,x)
«&'j a, M

where

C(M, n) = M1
N

Pn!
j=1

Mt

1' 21 N1
(18)

n,.

X;

Q„"(x)= X G„(n,x)
«n, , j

N

r(A+1) g
«&'j a, M i = l P,. 'n, .!

(22)

The multiplicity M is given by Eq. (3) and the C(M, n) is
the multinomial coeScient of the term specified by n in
the expansion of the Mth order multinomial. The
G~(n, x) of Eq. (17) reduces to the weight function
8'„(n,x ) of Eq. (4) when a; =P; =i and x, =x. The sum-

mation over M in Eq. (14) results in the connection be-
tween the multinomial factor and the grand canonical
partition function Q(u, x) which is the generating func-
tion of the canonical partition function Q„(x) for fixed
A. Cole [7] has considered a multinomial expansion
without the summation over M and thus has a generating
function for a microcanonical partition function for fixed
A and M instead of a generating function for a canonical
partition function. We will also give results for an exact-

n,.X.N

r(A+1) g
p n, !

(23)

Q~(x)= X QÃx)= X Q~"(x) .
M=0 nk =0

(24)

Considering x, ~x, tin Q„, Q„.can be found using Q„
as

The Q„(x) and Qz" (x) can be nonzero only for A ~ 0 for
1lk

the case a; =i. The Qz(x) and Qz"(x) are more con-
strained than the canonical partition function Q„(x) and
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QM( )
1

M
d

Q„(tx)
dt t=0

(25)

Here, Q„(x) and Q„"(x)can be considered microcanoni-
cal partition functions in the sense that they are more
constrained than the canonical partition function Qz(x).
For a system which has total energy proportional to the
multiplicity M [see Eq. (85) in Sec. IV], Q„(x) becomes
the usual microcanonical partition function in thermo-
dynamics, i.e., partition function for fixed energy. The
various partition functions for the a; =p; = 1 case and the
a; =P; =i case are given in Appendixes A and B, respec-
tively.

In Eqs. (14)—(25), the a s and P s may, in general,
have any value. All the following discussions in Secs. II
and III are applicable for general a; and P; unless it is ex-
plicitly specified. However, for simplicity, only positive
integer values of a; are considered. The A is then a non-
negative integer and Qz (x)=0 for A & 0. Here A =0
only when all the n s are zero and Qo(x}= l. Otherwise,
A is a positive integer. We will also use A. instead of
I'(A+1). When a;=i, the species i is represented as a
cluster with the size specified in terms of the number of
constituents. Then A =g;a;n; =g;in; is the total num-
ber of nucleons in the fragmentation of a nucleus into
clusters with any size between 1 and A.

As can be seen from Eqs. (15) and (21)—(23), partition
functions depend solely on the weight function G„(n,x)
beside the obvious constraints on A and M. Equation
(17) shows that various factors are involved in determin-
ing the weight G„(n,x): The parameter x;, which
represents the characteristics of each species or cluster i,
may be related to an evolution parameter as will be dis-
cussed in Sec. III or to thermodynamic quantities as will
be discussed in Sec. IV in more detail. Section II B con-
tains a discussion of the n; dependence of G„(n,x) and il-
lustrates other types of microstate counting rules. Final-
ly, the parameters a; and p; characterize the structure of
species i which we will discuss in the rest of this subsec-
tion.

The physical system considered specifies the choice to
be taken for quantities a s and P s. Here we discuss
various physical situations for the choice of these quanti-
ties. If we consider nuclear fragmentation described by
the number of nucleons in a cluster with a fixed total
number of nucleons A, then a; =i are positive integers
from 1 to A with i the size of the cluster. If we consider
a system of baryons and antibaryons with fixed total
baryon number A, a; are positive and negative integers
which are unbound and can even be larger than A. On
the other hand, we may relate a,- with the energy of a sin-
gle particle level in a nucleus or of an oscillator. Then A
corresponds to the total energy which is the sum of those
level energies. Identifying a; as the spin of the species i,
which is an integer or a half integer, A becomes the total
spin of the system. If we consider hadrons as the color-
less realization of a quark-antiquark system, the existing
a s are 2 for mesons, 3 for baryons, and 6 for dibaryons.
For the case of clusters with even number of elements

only, which is studied in Ref. [3] and may be applicable
to various pairing phenomena, a; =i for even i and no
species i exists for odd i. As we can see from Eqs. (16)
and (17), the nonexistence of some species i can be
represented by either a;= oo, P,.= oo, or x,. =0 for the
corresponding i W. ith the choice of a;=p;=1, we may
study branching phenomena such as jet fragmentation in

theory [8] having N+1=3 lines at each vertex [see
Eq. (61) in the next section]. For this case, the N =2 is
the number of branches per each stem in a tree diagram.
The case with a; =P; =i and N= oo is the generalization
of Eq. (9) with general x;. This choice applies to the nu-
clear fragmentation process of the total A nucleons into
n; clusters with i nucleons. Equations (8) and (9) are the
one parameter case of x;=x. The two parameter case
with x, =xy " is studied in Ref. [2] (see Appendix B).
We also study other various choices of x s in Ref. [3]
which also are exactly soluble.

The p; may be related to the number of rearrange-
ments of constituents in a cluster i (see discussion in Sec.
IIB). If we consider a cycle in a permutation [3], P; =i
for a cycle of length i, and p; =i! if we consider a cluster
constituted with i classical particles. The Cauchy's num-
ber of Eq. (5) corresponds to G„(n,x) of Eq. (17) with
a;=p, =i and x;=1 for i &N=A. For this case, the
canonical partition function Qz( [x;=1]} becomes the
total number of possible partitions of A particles into
difFerent sizes of cycles in Maxwell-Boltzmann statistics
[see Eq. (31) in Sec. IIB]. For x;=x, Q„(x) becomes
Qz(x) of Eq. (9). Particle rearrangements are allowed in
this partition through the factor I'(A+1}=A! in the
weighting function Gz(n, x}of Eq. (17) together with the
multinomial coefficient C(M, n) of Eq. (18). Further-
more, the particle rearrangements in a cluster can also be
considered through proper choice of p;. Thus this model
of Eqs. (14)—(18) is proper in describing the fragmenta-
tion of participating nucleons after thermal equilibration.
In contrast to this case, Eq. (13) or the psE( A } discussed
in Sec. II B does not allow for any rearrangement of nu-
cleons and thus can describe only a prompt fragmenta-
tion process before reaching thermal equilibrium.

B. Partitions of integer and generating functions

In this subsection we compare various possible choices
of the microcounting factors appearing in the weight
function W„(n,x) of Eq. (4) or G„(n,x) of Eq. (17).
Clusterization of A elements can be related with a parti-
tion of an integer A into a summand of smaller integers.
A specific microstate counting rule determines the struc-
ture of the weight function.

Sobotka and Moretto [6] have shown that the decom-
position of an integer A into integer summands
A =g;in; [Eq. (2)] without regard to order can approxi-
mate the fragmentation of a nucleus of size A through
nucleon-nucleus collision. The number of such partitions
of A is called pHE( A ) where the subscript BE just indi-
cates that the counting of the partitions follows Bose-
Einstein (BE) like rules; same integer can appear several
times in a partition without regard to order. Such
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decomposition of an integer A into n, of 1's, n2 of
2's, . . ., and n „of A's is represented by a partition n of
Eq. (1), and the total number of these decompositions can
be represented by

paE(A)= g 5 gin; —A = g 1. (26)

Here the summations are defined by Eqs. (7) and (19).
This puE(A) is the same as the canonical partition func-
tion Qz of Eq. (6) with Wz(n, x)=1. For A =3, as an
example, paE(3)=3 with the partitions of
3=2+1=1+1+1.Here, partitions are, in terms of n of
Eq. (1), n=(0, 0, 1) for the partition 3, n=(1, 1,0) for the
partition 2+1, and n =(3,0,0) for the partition 1+1+ l.
Minimal information or maximum entropy consideration,
which treats each partition with the same weight
[Wz(n, x)=1 or put G„(n,x)=1 in Eq. (21)], deternunes
the size distribution in a nuclear fragmentation process
[6]. The large A limit of this partition gives the Bose-
Einstein-like distribution Eq. (13) obtained by Aichelin
and Huefner [5] in their description of fragmentation.
Due to the BE counting rule for clusters without any
rearrangement of their constituent nucleons, this model
may describe the distribution of fragments broken off
through the prompt fragmentation of a nucleus in a
nucleon-nucleus collision or from the most unstable (ex-
cited) part of the spectator in heavy-ion collisions before
its thermal equilibration. This corresponds to approxi-
mating a nuclear fragmentation as a shattering of a glass
ball through bombarding with a small projectile.

If we distinguish all the different orders of integers, we
need to consider the rearrangement of integers in a
specific partition. This rearrangement gives rise to a mi-
crostate counting factor for each partition n =

[ n; ] which
is the corresponding multinomial coefficient C(M, n) of
Eq. (18):

M nl nP n/(x)+x2+" +xg) = $ C(M, n)x) x2 "x~
I" IM

with 3=2+1=1+2=1+1+1.The corresponding par-
titions are one of n=(0, 0, 1), two of n=(1, 1,0), and one
of n=(3, 0,0). The p~s(A) of Eq. (28) can be considered
as a canonical partition function Q„of Eq. (6) with the
weighting factor Wz(n, x) =C(M, n}, or Qz of Eq. (21)
with the weighting function G„(n,x) =C(M, n). Due to
the Maxwell-Boltzmann counting rule for clusters
without any rearrangement of their constituent nucleons,
this partition function may describe a shattering of a
glass ball through colliding with another large ball or a
prompt fragmentation (through cracking} of the partici-
pants in heavy-ion collisions before its thermal equilibra-
tion.

Similarly, we can consider Fermi-Dirac (FD) rules in
counting the clusters (integers), i.e., allow only zero or
one cluster for each size; n; 1. In this case, the number
of partitions of an integer A into distinct integer sum-
mands without regard to order becomes

p„D(A)= g 5 gin; —A g [5(n, )+5(n; —1)]
fn I c i

g [5(n;)+5(n; —1)] . (29)

g p„D(n)u"= g (1+u'),
n=0 i=1

For example, pFD(3)=2 with 3=2+1 where the parti-
tions are 3 which is n=(0, 0, 1) and 2+1 which is
n=(1, 1,0). The partition n=(3, 0,0), which is 1+1+1,
is not allowed here. The p„D( A) corresponds to a canon-

ical partition function Q„of Eq. (21) with the weighting

function Gz (n, x)=g; [5(n; )+5(n; —1)]. Due to this re-

striction on the allowed values of n, , this partition may be

connected with some special case of a sandpile problem

[3 9].
The generating functions [4] for p„D(n), paE(n), and

p~a(n) are

(27}
g paE(n )u"= P (1—u')

n=0 i=1
(30)

The M is the multiplicity (the total number of integers)
for the partition n and is given by Eq. (3). The n .'s in the
denominator of C(M, n} are the Gibbs factorials arising
from the indistinguishability of the same integers in the
Maxwell-Boltzmann (MB) statistics for M integers. Here
each integer can be assigned a distinguishable position in
contrast to the Bose-Einstein case in which all the in-

tegers appear at indistinguishable points. Weighting each
partition by C(M, n), we have

p~a(A }=g 5 gin; —A C(M, n}= g C(M, n) .
In,. I i I n,. I „

(28)

This corresponds to the number of partitions of an in-
teger A into integer summands distinguishing different
orders, i.e., counting the partitions with MB statistics for
clusters. This p~a( A ) also can be considered as the num-
ber of possible cuts in the (A —1) links for A serial
points, thus p~a(A)=2" '. For example, p~a(3)=4

g pMH(n)u"= g g u'
n=0 m=0 i =1

—1

(1—u)
(1 —2u )

All of these are polynomial generating functions. By con-
trast, Q„(x) of Eq. (21) has an exponential generating
function given by Eq. (14).

Since it does not allow any rearrangement of nucleons
and counts partitions without regard to order, the
paE( A ) may be applicable to the fragmentations of spec-
tators in heavy-ion collisions or nucleon-nucleus col-
lisions in which some clusters break off from the most un-
stable (excited) part of the system before its thermal
equilibration. The different order of clusters, which is
considered in the p~a( A ), corresponds to the breakup of
a nucleus at a different place. The Maxwell-Boltzmann
statistics may describe prompt fragmentation of the par-
ticipants in a heavy-ion collision. However, both of these
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pBE( A) and pMB( A) do not allow for any rearrangement
of nucleons. They thus consider clusters without regard
to their internal nucleonic structure. Due to the neglect
of nucleon rearrangements in the system, these partitions
may only be applicable to prompt fragmentation (through
cracking) before thermal equilibration in a fashion similar
to the shattering of a glass ball.

To consider the rearrangement of constituents in
the system, we need to replace the multinomial coeffi-
cients C(M, n) in pMa( A) of Eq. (28) by
( A!/M!)C(M, n) = A!/n, !nz!" n~!. The factor A!
counts the rearrangements of A nucleons; the factor Mf
in C(M, n) counts the rearrangements of M clusters but
not nucleons. However using A! instead of M! over-
counts due to the indistinguishability among clusters of
the same size: We need to consider the rearrangement of
nucleons in a cluster such as the Gibbs factorial, i!.
Representing the number of rearrangements of nucleons
in a cluster i by P;, we have the weighting function
Gz(n, x) of Eq. (17}. The partition of an integer A [here,
a;=i in Eq. (16)] with this weight factor for each parti-
tion gives rise to a canonical partition function given by
Eq. (21). This canonical partition function has an ex-
ponential generating function of Eq. (14} which is the
sum of multinomials Eq. (27) of all order. The specific
choice of P; =i, which represents cyclic rearrangement of
i components, weights each partition n by a correspond-
ing Cauchy's number Mz( A, n} of Eq. (5) and gives vari-
ous exactly soluble models [1,2,3] such as the case given
by Eq. (9).

The Cauchy's number M2( A, n) of Eq. (5}corresponds
to G„(n,x) of Eq. (17) with a; =P; =i and x; = 1 for
i ~ N = A. For this case, the sum of partitions of an in-

M2(A, n)= A! .
In,. I ~

(31)

The particle rearrangements are allowed in these parti-
tions in contrast to the previous ones [pMs(A), pBE( A),
and p„D(A)]. Furthermore, the particle rearrangements
in a cluster are also considered through proper choice of
P;. Thus this is more proper in describing the fragmenta-
tion of participants after thermal equilibration, i.e., after
the system reaches a uniform distribution. Notice that
the Q„(1)of Eq. (31) is a MB distribution of A constitu-
ent particles (nucleons} in contrast to the pMn( A } of Eq.
(28) which is a MB distribution of M clusters without any
rearrangement of their constituent nucleons. For exam-
ple, Q3(1)=6 with one of partition n=(3, 0, 0), three of
partition n=(1, 1,0), and two of partition n=(0, 0, 1).
The least information principle in this MB statistics of A
nucleons determines the cluster size distribution given by
1/k which is a special case of Eq. (11)with x = l.

C. Canonical ensemble averages

This subsection illustrates how to use the partition
function to obtain canonical ensemble averages of various
quantities of interest. Various derivatives of Eqs.
(15)—(23) with respect to x; are of interest since these
derivatives give information about the distribution of
cluster sizes. As an example, the derivatives of Eq. (17)
lead to

teger A with weighting factor Mz(A, n) gives the parti-
tion function Q„(1)given by Eq. (6) or (9) with x =1,

Q„(1)= g 5 gin; —A M2(A, n)
In,. I i

d
'

d
x~ xk G„(n,x) =n' nk G„(.n, x),

dXJ. dXk
(32)

dXJ.

n !n.k!
(33)

Notice that Eq. (32) becomes zero only when nj or nk is zero in contrast to Eq. (33) which is nonzero only when l nj.
and m ~ nk Equatio. n (33) also applies to the case ofj=k with nj =(nk —m ), i.e., replacing the factorial factors on the
right-hand side by nk! /(nk —m —l )!. Then factorial moments are contained in a function

m n! nk!
(x)= [~k ] d

Q&"(x)= g G„(n,x)= Q„"(x)
dxk !„! (nk —m)! " '

(nk —m)!
l A, flk

(34)

n ! nk!

for m nk. The correlations between different factorial moments are contained in the derivative of the canonical parti-
tion function Q„(x);

[X, ]'[xk l
d'd

(35)
dXJ dXk

for m ~ nk and I ~ n Using E.q. . (17) for Gz(n, x) and the fact that

N N

5 g a, n, —A =5. . g a;n;+aknk —(A —mak)
iWk

(36)

for nk =nk —m, we can show that
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F„" (x)= Xk A! (nk —m )

),
Q(~- .„)( ) (37)

[x, ]'[x„] Q„(x)=d
'

d

dXj dXk

Xk

P) Pk

A!
(A —la —m )( '" '

/CXj IClk
(38)

Here m ~nk and (A —mak) &0 for F„" of Eq. (37), and (A —la. —mak) 0 for Eq. (38). Moreover,
I n!

[xj]' F„" (x)= g ' G„(n,x)
dx ' (nk —m)! (n —1)!

l
Xj nk. (nk—

(A —la )! P (n/, —m)! '" /~/)Q
' (x) . (39)

Here (nk —15J k) &0 and (A —la~) &0 with m (nk for Eq. (39). The sum of this equation over nk results in Eq. (38)
[cf. Eqs. (34) and (37)].

We glow consider various average values in the canonical ensemble (Qz ) with the corresponding probability P„:
N

A!P [x, '/(P, 'n;!)]
GA(n, x)

Q„(x)
(40)P„(n,x)=

N

A!g [x; ' /(P n;!) ]
In,. I A

i =1

The P„(n,x) is the probability for a specific partition n of A elements to appear. We also define P„(n ,k)xas the proba-
bility of having nk species of type k,

Q k( ) F k
( )

P„(n„,x)= g P„(n,x)=
Q„(x) Q„(x)

(41)

For these probabilities, using Eqs. (34) and (35), the average values of the factorial moments are

nk!
Y„(k,x)=, = g, P„(nk, x)=

(nk —m )! „0(n/,
—m )!

k

g F„" (x)
nk =0

Q~(x)

[xk ] [d /dxk ] Q~ (x)

Q„(x)
Xk Q(~-~ak)(x)

( A —mak )! Q„(x) (42)

and the correlations between factorial moments are

(nk(nk —1)~ ~ ~ (nk —m+1)nj(nj —1)" (n, —1+1))

[ )x]'[ x]k[d/dx/]'[d/dx„] Q„(x)
(n —1)! (nk —. m)! Q„(x)
I

X- Xk

P, Pk

m

(A —ma —la )!k j
Q( A —mak —/a. )(x)

Q„(x)

Y~(k, x)Y„' m~ (j,x)=Y„ /~ (k, x)Y„'(j,x) .
k j

(43)

The ( ) represents an average over the canonical ensemble Qz(x). Equation (43) also applies for j=k when

n =nk —m. For this case, E. q. (43) becomes Eq. (42) with the m of Eq. (42) set equal to m+1. The average of the fac-
torial moments Yz (k, x) of Eq. (42) is zero for m ak & A, and the correlation between different factorial moments of Eq.
(43) is zero unless A —la - —mak & 0.

The relations in Eqs. (42) and (43) give simple expressions for average moments and correlations of the cluster distri-
bution nk in the canonical ensemble. These quantities are expressed by a single ratio of canonical partition functions

Q„(x) with different A values. As an illustration, the average number of species k in the canonical ensemble is, from

Eq. (42),
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(n» ) = Y„'(k,x) = x» A) Q(A- „)(x}

P» (A —a»)! Q„(x)
d

x» lng„(x) .
dXk

(44)

The (n» ) is zero for the species k for which a» & A in a nuclear fragmentation (a; =i ). The corresponding correla-
tions and fluctuations are, from Eq. (43),

Q(A —a —a )(

QA(x)

X Xk A!
(n„n )=

P P» (A —a» —a/}!

=Y('„)(k,x)Y„'(j,x)= Y„'(k,x)Y('„)(j,x), (45)

[(n/, ) —(n/, ) ]= x/, lng„(x)d
dXk

x»
'

A( Q(A2 )(x}

P» ( A —2a» )! Q„(x)
Af

P„(A —a„)!
Q(A —„)("}

QA(x)

x» A) Q(A-.„)(x}2 2

P» ( A —a» )! QA (x)

=[Y('„)(k,x)—Y„'(k,x}+1]YA(k,x) . (46)

The left-hand side of Eq. (45) is to be taken as
( n» ( n» —1 }) for the case of j=k. The correlations
(n»n ) are zero for (a»+aj) & A and the fluctuation in

nk is zero for ak ) A. Notice here that the correlation
( n» n ) is of a form very similar to the average distribu-
tion Y„'(k,x)=(n» ). The averages and correlations for
the cases a; =p; =1 and a; =p; =i are shown in Appen-
dixes A and B, respectively. The detail behaviors of
(n») and (n»nl ) for the a;=p;=i case are studied in

Ref. [2] for x; =xy " and in Ref. [1] for x,. =x. Other
choices of x s, which also are exactly soluble, are con-
sidered in Ref. [3] where applications to biological prob-
lems and social behavior are also discussed. The factorial
moments [Eq. (42}] of the cluster distribution and their
correlations [Eq. (43)] in our model are simple ratios of
QA(x) with diff'erent A values. This is a much simpler
relation than the recursion relations of Ref. [7].

D. Microcanonical ensemble

In our approach exact microcanonical ensemble results
can also be obtained since the relations of Eqs. (35)—(46)
for Q„are also true for Q„of Eq. (22), which is the mi-
crocanonical ensemble partition function. For example,
the average factorial moments of the cluster distribution

in a microcanonical ensemble of fixed M and A becomes

=Yq kxM

Xk

p»

A!
(A —ma»)!

Q(A-ma„)(X}

gM(x)

(47)

Specifically, for a, =P,. =i case with x, =x and m = 1, Eq.
(47) becomes, from Eq. (B2}in Appendix B,

M —1

k —1 S(A k)

k (A —k)!
A

(48)

where S„ is the Stirling number of the first kind [1,4]. In
this special case, ( n» )~ is independent of the parameter
x. Similar results are easily found for the averages of all
other factorial moments of the number distribution nk
for this microcanonical ensemble. The correlations be-
tween factorial moments in the microcanonical ensemble
are

Ix,
pf

n-!J
(n» —m)! (n —I)!. Xk

p»

A!
( A —ma» —laj )!

Q( A —ma» —la. ) (

gl( )

= Y„(k,x)srYA' „(J,x}M = Y'„ , (k, x)~ , Y„'(j,x)M . (49}
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(50)

These behaviors are easy to understand since the generat-
ing function of QA (x) defined by Eq. (22) is simply a mul-
tinomial of order M which is related to Eq. (14) without
the summation over the multiplicity M. Hence, as can be
seen in Eq. (4) for the x; =x case, all partitions have the
same weighting factor x for fixed M.

Replacing the denominator Q„which appears in Eqs.
(47) and (49) by the canonical partition function Q„gives
the contribution of the partitions with multiplicity M to
the average factorial moments and the correlations of the
cluster distribution in the canonical ensemble. Explicitly,

M —1

A!
pk ( A —ak )! Q„(x)

represents the contribution of the partitions with multi-
plicity M to the average number of clusters ( nk ) in the
canonical ensemble. The total (nk ) in the canonical en-
semble is then a sum over the contribution of different
multiplicities M. The sum of (nk ) over k gives the aver-
age multiplicity M [cf. Eq. (3)]. Explicitly,

N N

(M)= y y n/, PA(n x)= y (n/ )
k=1 k=1

(51)

In general, we define P„(M,x) as the probability of hav-
ing M clusters regardless of the cluster sizes,

Q M( x )
P„(M,x) = g P„(n,x) =

!A,M

Then, moments of the multiplicity distribution are

QM(x)
(M )= g M P„(M,x)= g M

M=O M=O QA(
(53)

We will come back to more detailed studies of the aver-
age multiplicity and its Auctuation in the following sec-
tions.

In this section, general expressions were developed for
the grand canonical, canonical, and microcanonical parti-

I

Due to Eq. (B2), these correlations are also independent
of the parameter x, =x for the a, =/3, =i case.
Specifically,

(n.n, )M

M —2

(
—

)
1 3! k~ —2 S[A —k —j)
k (A —k —j)! gM

tion functions for the clusterization of A constituent par-
ticles in Maxwell-Boltzmann statistics. These expressions
can be used to study the cluster size distribution and the
multiplicity distribution in the multifragmentation region
of heavy-ion collision. Similar investigations with the
counting rule of the Bose-Einstein or Fermi-Dirac type
(Sec. II B) might be interesting problems. Especially, the
Bose-Einstein-like distribution of Eq. (13), which does not
have a microcounting factor such as M2( A, n) of Eq. (5),
describes cracking of a nucleus through nucleon-nucleus
collisions [5,6]. The number of partitions in this BE case
is given by paE of Eq. (26). The Fermi-Dirac case [p„D of
Eq. (29)], which has limitation on the maximum number
of clusters to be one, may be connected to sandpile prob-
lems [9]. Investigation of the relation between our model
with the Fermi-Dirac statistics and the sandpile model of
Ref. [9] is also an interesting problem which we hope to
investigate in the future. The next section describes a
general framework for studying the evolution of observ-
able s.

III. EVOLUTION OF OBSERVABLES

This section is concerned with an investigation of the
underlying dynamical processes that produce the cluster
size distribution function. We will also look at branching
aspects of our dynamical model. These dynamical pro-
cesses are studied by allowing the x s to change by let-
ting them depend on a parameter. In the case of clusters,
changes in the distribution of cluster sizes will be related
to changes in the x s. The creation and disappearance of
clusters through various underlying processes such as
fission and fusion of clusters and by evaporation or pick-
up processes can be studied by this procedure of allowing
the x s to vary in some parametric way. In the case of
the branching aspects, the dynamical processes can be re-
lated to the evolution of a jet distribution.

Considering the weight parameter x s to be functions
of an evolution parameter t such as time or temperature,
i.e., x, =x, (t), the changes induced by the variation of the
parameter t can be studied. A change of the evolution
parameter t of the system induces a change in the x;(t)'s
which assign a different weight given by G„(n,x) of Eq.
(17) for different partitions n. This change in the weight
occurring in response to the change of the evolution pa-
rameter t of the system gives the t dependence of the par-
tition function Q„(x) of Eq. (21) which describes the evo-
lution of the system in t, i.e., how the distribution
changes with t. We now develop expressions for changes
in various distributions arising from changes in the x,.(t)'s
coming from the parameter t.

For any function V(x) of x, 's,

V(x)= g —Inxk(t) xk V(x),
dt dxk

V(x) = g g —Inx, (t) —1nxk(t) x d
'd V(x)+ g

k=1

2
d d

Inxk(t) xk
dt dxk

(54)

V(x) .

(55)
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As an example, Eq. (32) gives, for G„,

G~(n, x)= g —lnxk(t) nkG„(n, x),
dt k =1 dt

(56)

d
2

N

G„(n,x)= gdt k=1

'2
d

lnxk(t) nkG„(n, x)+ g g lnxj(t) l—nxk(t) njnkG„(n, x) .
dt dt

Summing each equation of Eq. (56) over all the possible partitions of A gives the rates of change of the canonical parti-
tion function Q„(x) with parameter t which also determine the t dependences of observables, i.e., the mean cluster dis-
tribution Y„(k,x), mean multiplicity, fluctuations, correlations, etc.

When x;(t) =x; t, every species has the same t dependence independent of the species. From Eqs. (3), (21), (40), and
(56},the following results can be obtained:

d N
t lnQ—„(tx) = g g nk Pz (n, x)= (M ) =A z (x),

t=l {n}q k=1
(57)

and

2

t—lnQ (tx)d d N
t JK„(t x)

= g g nk P„(n,x) —(M )
f =1 f =1 In,. I & k =1

=[(M ) —(M) ]=b Atq(x) . (58)

Equation (57) is the average multiplicity Af z (x) [see Eq. (51)] in the canonical ensemble and Eq. (58) is its fluctuation

~& (x). For a; =P; =i and x; =xy ", the mean multiplicity and its fluctuation reduce to Eqs. (Cl} and (C2} given in
Appendix C, respectively. We can see from Eq. (58) that the evolution (d Jkt „Idt ) of the mean multiplicity (M ) is
directly determined by its fluctuation (~z ) in this special case. This situation is easily understood. As can be seen in
the weight Eq. (17), for the x, (t) =x, t case, all the partitions with the same multiplicity M of Eq. (3) have the same t
dependent weight, t . This special case corresponds to the situation of a thermodynamic system made of species (clus-
ters) having the same partition function independent of the detailed internal structure of the species (clusters) such as
the free particle partition function arising from the thermal kinetic energy, t ~ T ~ [see Xo(T) given by Eqs. (86) and
(87) in Sec. IV].

If x; (t) =x; t ', as another special case, then Eq. (57) becomes the A of Eq. (16), which is the total number of elements
for the a; =i case, and Eq. (58) becomes zero which represents the conservation of the total number A. In this case, all
the constituent particles have the same weight t, independent of the cluster (species) it belongs to. Thus all the parti-
tions with fixed A have the same t-dependent weight, t". This situation corresponds to a thermodynamic partition

a& /T
function t ~ e [cf., X&( T) of Eqs. (86) and (87)] arising from the binding energy per particle as in a cluster which is
assumed to be independent of the cluster size.

Jl

A. Evolution of the distribution F& (x) of species k and branching processes: Furry distribution

A!
F( g ) (x) . (59)

See Eq. (D 1) in Appendix D for more detailed steps regarding Eq. (59).
An interesting application of Eq. (59} is to branching processes and jet fragmentation. For a;=P;=1, Eq. (59)

reduces to

This subsection will investigate the evolution of the quantity F& (x) given by Eq. (34). At m =0, the
Fz"o(x)/Q„(x)=Q„"(x)/Q„(x) is the probability of having nk species of type k as already noted in Eq. (41). Also

nkF„"~( x)I Q&( x)summed over nk gives the ensemble averaged quantity Yz(k, x)=(nk(nk —1) . (nk —I+I)) which
is discussed in Sec. III B. The evolution of the F„(x)contains information regarding the underlying dynamics such
as in various cascade phenomena. From Eq. (54), we obtain the dynamic equation for the function Fz (x) of Eq. (34);

d nk A d d &J dF~" (x)= —lnxk(t) F„" (x)+ g lnx. (t)— lnxk(t)—
dt "' ak dt ' . , dt ak dt

F„" (x)=A lnxk F„' (x)+A g ln J
&.m

J=1 dt xk
"kx F(~ —i), (60)

Furthermore, if N =2 with x&(t) =1/co(t) and xz(t) =1—1/co(t), then
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—F„" (x)= — — [ AF„" (x)—( A —m )F(„",) (x)]
CO

(61)

for k = 1, where F is defined by the relation

A —mak !
(62)

Equation (61) is a generalization of a dynamical equation (m =1) for the multiplicity distribution function of jet frag-
mentation in ()) theory [8] having three lines at each vertex. Then the solution of Eq. (61) becomes the Furry distribu-
tion

r

n„ I (A ) 1

1 (n), )I ( A nk—+1) co

A —n k

gI F(„",) ~([x,=x j )
A —j!

in p theory with the evolution parameter m(t) =e~'. Here the A is the number of final jet lines at t and nk is the num-
ber of initial jet lines at t =0. In ()) theory, each initial line (stem) branches into N =2 new lines (branches) at each step.
Detailed discussions concerning the relation between Furry distribution and branching processes can be found in Ref.

For the situation of a; =P; =i with x;(t) =x(t), we get, from Eq. (59),

F" (—[x =x j)= —lnx F" (—[x =x j)+ gd nk d A nk x (k —j)
j k

(63)
j=1

or

Fg ~([x—;=x j)= —lnx F„—([x,=x])+ g — '. F(„J.) m([x,. =x j)d -nk d A -&k x (k —j) (A —mk)!

These results may be considered dynamical equations for the factorial distribution of clusters of size k in a nuclear frag-
mentation. The first term in either equation represents the dependence on the multiplicity nk of the same species k and
the second term represents the dependence on the multiplicity n of clusters of size jAk. Equation (63) for m = 1 is the
changing rate of the number of clusters of size k, nk, when each cluster has the same weight x (t) independent of the
size, an example is the partition function x(t) ~ T arising from the thermal kinetic energy of the cluster.

B. Evolution of mean distribution and equilibrium: Fokker-Planck equation

The evolution of the average number of clusters of size k can also be obtained. We will also show how the results
developed in this section can be reduced to a Fokker-Planck equation. The evolution of the average factorial moments
is given by [from Eq. (D2) in Appendix D]

—Y„(k,x)= g lnxj(t) nj, —(nj. )

lnx (t)—d
dt

lnx„(t) Y„'(j,x)[Y,„,(k, x) —Y„(k,*)] .
dt j

(64)

Notice here that, from Eq. (42),

Y(A /a. )(k~x}YA(—9~x} YA(k~x}Y(A ma„)(1~x} . —

When m = 1, Y„'(k,x) is the mean number of cluster ( nk ) and Eq. (64) reduces to

(65)

—Y„'(k,x)=—(nk) = g —lnx (t) [(n.nk) —(n )(nk )].
j=1

d lnx. (t)—
dt

lnxk(t) Y„'(j,x}[Y('„)(k,x}—Y„'(k,x)] . (66)

This result shows that the change of the average multiplicity (d(nk ) /dt ) of species k is directly related to the fluctua-

tion ((nk ) —(nk) ) and the correlations ((n nk ) —(n )(,nk ) ). Thus, to study dynamical properties associated with

fragmentation phenomena in heavy-ion collisions, the fluctuations and correlations, besides the average multiplicity,
must be considered. Equation (66) shows that a system is in an equilibrium state, if all the fluctuations and the correla-
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tions are zero, i.e., ( n~nk ) = ( n~ ) ( nk ), but not vice versa in general.
Separating j (k and j & k and defining Nk as

Nk ( A }=akY„(k,x),
Eq. (64) can be rewritten as

k —1 N —k

Nk (A)= g C(k I)Nk (A —a(k —())NIk —()(A} g CkNk (A —a(k+&))N('k+&)(A)dt 1=1 1=1
k —1 N —k

C(k ()Nk (A)N('k &)(A)+ g CkNk (A)N(k+1)(A}
1=1 1=1

where

(67)

(68)

Ck= 1 1 —I1nxk(t)— 1~(k+1)(t) Ck+) .
ak dt a(k+I) dt (69)

The first two terms in Eq. (68) can be rewritten using the
relation

Nk ( A —aj }Nj'( A )=Nk ( A )N'( A ma—k ) (70)

due to Eq. (65). For the case of a; =i, N„'( A ) =k ( nk )
can be considered as the total average number of nu-
cleons belonging to clusters of size k in the fragmentation
of a nucleus of size A. The quantity
Nk(A)/A =(k/A )(nk) is considered in Ref. [3] as a
probability. While Eq. (68) seems complex, this equation
has a simple interpretation. The first term of Eq. (68)
represents the creation of species k arising from the
fusion of one of the N('k &)( A) species (k —1) and one of
species l [process (a) in Fig. 1] when the C(k &)

is posi-
tive. If the C~k &)

is negative, we can also interpret this
same term as an annihilation process (b) of one of Nk( A )

species k using the right-hand side representation of Eq.
(70) which has Nk (A). The second term of Eq. (68)

represents the formation of species (k+l) arising from
the fusion of species k and l [process (c) in Fig. 1], which
thus reduces species k, using the right-hand side repre-
sentation of Eq. (70) when Ck is positive. When Ck is
negative, this second term represents the formation of
species k arising from the fission of species (k+l ) [pro-
cess (d) in Fig. 1] using the left-hand side representation
of Eq. (70). The third term represents the annihilation of
species k due to its fragmentation into species (k —l ) and
l [process (b) in Fig. 1] for C(k () )0, or the creation of
species k through the fusion of species (k —l ) and l [pro-
cess (a) in Fig. 1] for C(k () (0. Finally, the fourth term
represents the increase of species k due to the fission of
the species (k+l) into k and l [process (d) in Fig. 1]
when Ck is positive, or the decrease of species k through
the fusion with the species l [process (c} in Fig. 1] when
Ck is negative.

An expression for how the mth factorial moment of the
distribution of species k evolves with t can be obtained
using Eq. (68). It is easy to see that the distribution is
stable, i e., (dldt)Nk (A )=0, if x;(t)=x;[f(t)] ' since
Ck =0 due to Eq. (69) for this case. Defining a current as

(b)
~J ( A k m }=C,Nk ( A —aJ )NJ'( A ) C~'Nk ( A )N—,'( A )

=CJ'Nk ( A )NJ'( A —mak)

CJ Nk ( A )NJ'( A—), (71)

Eq. (68}can be rewritten as

—k+l k —1 N —k

k A } g ~(k —l)(A k }+ g (k+l)(Adt I=1 1=1

(72)

FIG. 1. Evolution of fragmentation process in the fragmenta-
tion block diagram representation [3]. Each box represents a
nucleon and the stack of boxes represents a cluster.

The evolution of the average distribution (nk) corre-
sponds to the m =1 case. The distribution is in equilibri-
um when J.( A, k, m ) =0.

For a,. =P,. =i and x,.(t)=x(t), using Eq. (B4) in Ap-
pendix B with y = 1,
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J)
( A k ) l

d
1 ( )

x A ! r (x + A —j ) x
dt j (A j—)! I (x+A) k

X
(A —j}!

( A —mk —j)!
r(x+ A —mk —j)

r(x+ A —j) (A —mk)!
8 A —mk —j— I (x+ A m—k)

g(A k) (73)r(x+ A)

The step function 8(a) is 1 for a ~0 and is zero otherwise. ~hen x =Q or x =ao, J((A, k, m)=0 foi ail
(N k—)&l&(k 1)—independently of A and k, i.e., the distribution is in equilibrium. For mk+j&A,

J~'( A, k, m ) =0 at x = 1. Thus at x = 1, the distribution can be changed only through the growth or loss process arising
from clusters of size j with A —mk &j & A.

On the other hand, for a; =P; = 1, using Eq. (A2) in Appendix A,

A 1 d xj(t}
JJ'(A, k, m)= —m ', —ln (74}

The current of Eq. (74) is zero only when xk =0 or xj =0 or (d /dt )in[xi(t)/xk(t)]=0, i e., x and xk have the same t
dependence. Otherwise, this current is nonzero and describes the branching process studied in Ref. [8].

For the m = 1 case, Eq. (68) or (72) represents the evolution of the average distribution of species k,
k —1 N —k k —1 N —k—Nk(A)= g D(k ()N('k ()(A) — g Dk+ g Ek Nk(A)+ g E(), +()N(k+()(A),
1=1 1=1 1=1 1=1

(75)

where

D,'=C'N(' +()( A —a, ),
E =C(. ()N( ()( A)

(76)

The result of Eq. (75) can be related to a Fokker-Planck equation [8,10] by considering only l =1 and going to the con-
tinuum limit of k. That is, using

1 1 (} ) i 1 82

E(k+, )N(k+()(A )=EkNk(A )+ EkNk(A)+ —
i EkNk(A ),

2! Bki

and with a similar approximation for D('k ))N('k i)( A ), Eq. (75) is reduced to

dt Bk
Nk ( A ) = —(Ek Dk )Nk ( A )+—— (Ek +Dg )Nk ( A )

2 Bk
(77)

A continuum k limit of Eq. (75) becomes the differential form of the Chapman-Kolmogorov equation [8]. Due to the
discrete value of k, Eq. (75) is applicable to a finite system with the finite number of k values.

IV. EXPECTATION VALUES AND VARIOUS SPECIAL TEMPERATURES

This section considers the thermodynamic properties in a nuclear fragmentation; how nucleons in a nuclear system at
moderate energy are redistributed among clusters, and how the initial energy affects the modes of fragmentation of the
nucleus. The previous section considered the evolution of the distribution using an evolution parameter t for the weight
parameter x,.(t)'s by looking at the change of the system in response to the change of t. Here we will relate the parame-
ter t to the inverse temperature t =1/T and the weight parameter x;(t) of cluster i to the thermodynamic partition
function of the cluster at a given temperature T=1/t. By looking at the cluster distribution at a fixed temperature T,
we can study the thermodynamic properties of a system with given excitation energy in a fragmentation process.
Different excitation energy or temperature gives difFerent weight x;( T) for clusters which induce different cluster distri-
bution in the system.

Consider some quantity f, (t) which character. izes the species i such as the energy of a cluster of size i in the fragmen-
tation of a nucleus. To find the average value of the total quantity f (t) defined by

f(t)= g f, (t)n, ,
i=1

let the t dependence of x,.(t) be

x, (t) =x,.exp f f,(t)dt.

(78)

(79)

Then from Eq. (56), the expectation value off (t) with the probability P„(n,x) defined in Eq. (40) is
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N N
(f(t))= g g fk(t)nk&„(n, x)= g fk(t)(nk)= — lng„(x) .

In,. I ~ k =1
(80)

The last equality follows from Eq. (44). Also, the change of the expectation value in t is

2

(f(t})= lng„(x)d d
dt dt

N N N

g f (t}fk(t)[(n nk) —(nj)(nf, )]+ g fk(t) (nk)
k=1 j=1 k=1

(81}

Notice here that nk is independent of t even though
(nk) = Y„'(k,x) depends on t through x, (t) Thu. s f(t)
of Eq. (78) has a t dependence only through the explicit t
dependence of f;(t). However (f(t) ) has a t dependence
through both of fk(t) and (nk) = Y„'(k,x(t)). Equation
(81}shows that the rate of change of (f(t)) with respect
to t is the same as the fiuctuation of f (t), i.e.,
(f (t)) —(f(t)) if fk(t) is t independent As a. special
case, evaluating Eqs. (80) and (81}at t =0 with fk(t) =1
[which corresponds to f (t)=gk, nk =M] generates the
average multiplicity and its fluctuation which are given
by Eqs. (57) and (58). On the other hand, if we put
fk(t) =ak, then f (t)=gk, aknk = A.

A. Parameter x; as a thermodynamic variable

3 $ TpT
'2

E; ( T)=—T+Mtti —
&t~

——
6'p T+ Tp

these terms are

80(T)= T, —3

TpT
4'i( T)=Mtt —&tti+-

ep T+ Tp

TpT
Cy(T)=a~ ——

6p T+ Tp

(83)

To study cluster size distributions in nuclear fragmen-
tations, we identify a cluster i by the number of nucleons
in the cluster; then a;=i. Moreover, we will consider
only the special case a; =P, =i [Eq. (Bl}in Appendix B]
with N= oo (actually N= A for the case with fixed A,
i.e., n; =0 for i ) A). Here the choice P; =i accounts for
the cyclic rearrangement of nucleons in each of n, clus-
ters.

Relating f;(t) with the energy E, of a cluster i and the
parameter t with the inverse temperature T, our formula-
tions can be used to study a fragmentation of a nucleus at
finite temperature T. Through this connection, the
weight parameter x; of Eq. (79) becomes the usual parti-
tion function of the cluster in thermodynamics. Neglect-
ing the surface energy and the Coulomb energy, the ener-

gy E; of a cluster with i nucleons is of the form

In Eq. (83},the Boltzmann constant kti = 1, Mti is the nu-
cleon mass, &tti is the binding energy per nucleon in a nu-
cleus, E'p is the nuclear level density parameter for inter-
nal excitations, and Tp is the cutofF temperature for the
excitation level density. Experimentally, az =8 MeV and
@0=8 MeV for a finite nucleus [11]and these values are
about half of the values in nuclear matter.

Identifying the quantity —f, (t) as the energy E;(T) of
a cluster with i nucleons at temperature T= 1/t,

f;(t =1/T) = E,(T)= —go(T—) @i(T)i —g —(T)fj, ,

(84)

the total energy of the system is then

E(T)= f(t = 1/T ) = —g—f;(t)n;

E, (T)=Co(T)+8,(T)i+by. (T)5, i . (82) =&o&&(T)M+@,(T}A+@(T)n, . (85)

The Cp is independent of the size of a cluster such as its
mean kinetic energy at a given temperature T and the
second term depends on the size such as the binding ener-
gy in the cluster. The 8 term is introduced because that
monomer has no binding or internal excitation energy.
For a cluster of size i with the energy given by [11,12]

x, ( t = 1/T ) =X (T )oX', ( T )y "(T),
with

(86)

Here the nucleon number A and the multiplicity M are
given by Eqs. (2) and (3), respectively. Then the weight
variable x, (t) of Eq. (79}is.
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Xo(T=1/t)=x(v)exp —f '@0(T)dt

=x(v)T

F, (T) is given by

z E;(T)F(T)=Tf E,(T)dt= —Tf 2
dT . (88)

X, (T=1/t)=exp —f 8,(T)dt

=exp
(Ms —as) 1 TpT+-

T 6p T+ Tp

(87)

y(T=I/t)=exp —f 6' (T)dt

ag
=exp

T
1 TQT

E'p T+ Tp

The last relation of Eq. (87) shows that y ~ 1 and y = 1 at
T= oo and To=0 (T,att, eo are all positive). This result
also shows that there is no monomer at zero temperature
since y =0 at T=O [cf. x-y model of Eq. (B4) in Appendix
B]. At high temperature, the cluster distribution depends
on the value of the cutoff temperature Tp. The situation
TQ=O or equivalently ep= ~ corresponds to having no
bound excited levels in a cluster (y =1 at T= 00 for this
choice of cutoff temperature To). At the other extreme,
the choice of TQ = Dc corresponds to having bound levels
with infinite excitation energy. Moreover, when T= ~,
y =0 and thus x, is zero and no monomers are present
which is unphysical. Thus we should use a finite cutoff
temperature To. Xo(T), X,(T), and y(T) are all zero at
T=0. At high temperature T, as T~~,
X,(T)=exp(To/eo), and y(T)=exp( —To/eo) are finite
while Xo(T)~ ~ (see Appendix F). The partition func-

tions and the mean cluster distributions for x, =LQX',y "
of Eq. (86) are given in Appendix E.

The x,.(t) of Eq. (79) corresponds to the partition func-—F,.(T)/T
tion z;(T)=e ' of cluster i Here the .free energy

The integral over t here and in Eq. (87) or (79) is the gen-
eralization to a T-dependent Hamiltonian E, of a cluster
i. This integral is similar to the action in a path integral
with a time dependent Hamiltonian. For a system with
the energy given by Eq. (85) or equivalently by (82), the
partition function x, of a cluster has three pieces shown
in Eqs. (86) and (87); (i) a cluster size independent part
Xo( T ) which originates from the thermal kinetic energy
of a cluster together with the volume dependence of the
system, (ii) X&(T) which is the same for every nucleon in-
dependent of the cluster it belongs to and arises from the
binding energy per nucleon in a cluster and the mass en-
ergy, (iii) y(T) which distinguishes monomers, i.e., free
nucleons, from clusters due to the lack of binding energy
or internal structure of the monomers.

B. Thermodynamic quantities: energy, entropy, and pressure

(E(T))= —(f(t =1/T)) = — —lnQ„(x)
d
dt

=ho(T)(M)+6, (T)A+6~(T)(n, ) . (89)

For the change in energy with T, we obtain the result,
from Eq. (81),

Using expressions just developed, in particular Eqs.
(84)—(87), the ensemble averaged behavior of thermo-
dynamical quantities can be developed. As an example,
we can find the average energy of the system at a given T
and its change with T in a canonical ensemble (fixed A).
Using these equations and Eq. (80), we find, for the mean
energy of a system with the cluster energy E; given by
Eq. (82),

d G(E(T)&= — —(E(T)&dT dt

d&0(T) d@,(T) d8 (T)=8 (T)[(M ) —(M) ]+6 (T)[(n, ) —(n, ) ]
— (M) — '

A — (n, ),
(90)

where

d6'0(T)

dt

d@,(T)
dt

23———T
2

dD

dt ~o T+ To

3
TQ T

QQ T+ To

3
TQ T

(91)

(E (T))—(E(T)) =80(T)[(M ) —(M) ]

+6' (T)[(n, ) —(n, ) ] . (92)

The average multiplicity (M ) and its fiuctuation
[(M ) —(M ) ] are given by Eqs. (Cl) and (C2) with
x =Xo(T) From Eq. (90), we. can find the heat capacity
Cv =1(E ) /dT. The last three terms in Eq. (90) are the
average of dE(T)/dt = df (t )/dt [see Eq. —(81)] and the
first two terms are the Auctuation of the total energy,
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This fluctuation is always non-negative as well as the fluc-
tuation of multiplicity. Due to the asymptotic behavior
of Eqs. (F6) and (F8) for the x;(t ) of Eq. (86), the fluctua-
tion of the energy Eq. (92) is zero at both of T=O
and T=oo. Since b.N. „(Xo,y) ~Xo=x(v )T and

[(n, ) —(n, ) ]~y=e at low T (see Appendix F),
the energy fluctuation goes to zero with T as T~O.—a& /T
Furthermore, (M)=1 and (n, ) ~y=e at low
temperature and (M)=A and (n, )=A as T~~.
Thus, from Eq. (90), at T=0 and
Ct =d(E(T))/dT= ,'(M)—. This behavior in Ci, for a
system with Eq. (85) has its origin in the kinetic energy of
clusters at T; d@0(T)/dT= ,'for ea—ch cluster indepen-
dent of its size.

The canonical partition function Qz determines the
free energy F= —Ting„. The corresponding entropy
S= —BF/BT can then be evaluated by

S=t((E)—F)=t(E)+in gz( x), (93)

where the average energy (E ) is given by Eq. (89) and

Q„ is given by Eq. (El). Using the grand canonical parti-
tion function Q given by Eq. (El), we can find the pres-
sure of the system as

To determine P( T), we need to know the volume V of the
system. The quantity x(v) in Xo=x(v)T / of Eq. (87)
represents the volume dependence of x;. To approximate
this volume dependence of x(v), we consider the parti-
tion function of free particles g Vl/A, ;, where g is the de-
generacy, VI= V —Vo is the free volume available to the
cluster with i nucleons, and A,;=Q2n5 /m;T is the
thermal wavelength of the cluster with mass m;. Then in
terms of the average volume v per nucleon and mass MB
of a nucleon, the free particle partition function of the
cluster becomes

gVI
A(v —v )(2aM ) i 3/2T3/2

0 B
I

(95)

Here A is the total number of participant nucleons in the
system and po=1/vo is the nuclear matter saturation
density. If we neglect the size i dependence in Eq. (95),
we can consider this partition function of Eq. (95) as the
Xo=x(v)T in Eq. (87). Then, we have

x(v)= (2m.Mii) / A(v —vo)

g(2aM' )

h po

po
A ——1

p
(96)

where p is the average nuclear density. The ratio po/p
represents the expansion of the system compared to nu-
clear matter with the saturation density po.

C. Various temperatures in nuclear fragmentation

For a nuclear system which has about 50 or more nu-
cleons, we can easily evaluate Eqs. (El)—(E4) only for
small values of Xo and y, i.e., only for low temperature

[see Eq. (87)]. However if y =1, Q„of Eq. (El) becomes
very simple (only one term with r = A survives) and there
is no problem evaluating the multiplicity and other quan-
tities even at very high temperatures with large Xo.
Thus, as in Ref. [1], we will first consider the case y =1
which is obtained by replacing Xoy " in Eq. (86) with
Xp y. This case corresponds to using the backshifted
binding energy Eti(i)=ati(i —1) instead of Ett(i)=atii
used in Eq. (83).

Table I and Fig. 2 show the T dependence of (E),
( M ), ( n, ), and their fluctuations for 0 & T & ~. Figure
2 also shows the evolution of observables ((E), (M),
and ( n i )) in response to the change of the temperature
T. Higher T corresponds to larger Xo and thus system
fragments into more pieces. Here, A(po/p —1)=200 is
used for x (v) of Eq. (96) which gives x (v)=1.31 with a
fixed total volume V. The corresponding value of po/p is
3 for A =100, which is the value used in Ref. [12] for
A =100 nucleons, and po/p= 5 for A =50, which is simi-
lar to the lower density of the spinodal point at T=15.77
MeV discussed later.

Here we can consider various temperatures related to
several different kinds of phenomena in the nuclear frag-
mentation process [13]. The results of our calculations
show that the system starts to fragment (average multipli-
city of 2) at a breakup temperature of Th=4 MeV for

an't =co=15.77 MeV (nuclear matter parameters), and at
Tb =3 MeV for empirical parameter values of a finite nu-
cleus which are aB=eo=8 MeV. These results are in-
dependent of the cutoff temperature To and the size A of
the systetn for a fixed volume [fixed x(v)]. The average
number of monomers also shows a similar behavior. The
average number of tnonomers ( n, ) is equal to one at the
evaporation temperature of T, =6 MeV for nuclear
matter and, for a finite nucleus, (n, ) =1 at T, =4 MeV.
A vaporization temperature T„, where A —2 monomers
and only one dimer exist in average with the average mul-
tiplicity of A —1, is the same for both sets of aB and eo
values but depends on the size of the system A and the
cutoff temperature To. The temperature at which the
average energy becomes zero is also insensitive to the
cutoff temperature but does depend on the system, i.e., on
the size and the parameter values. The average energy is
composed of kinetic, binding, and excitation energies.
Maximum values of the various fluctuations occur at
finite T but depend on the size of the system and the pa-
rameter values.

This simple model gives results for the multiplicity dis-
tribution which are similar to those in Ref. [12]. We do
not have surface effect in contrast to Ref. [12]; we ap-
proximate the energy of a cluster to be the form of Eq.
(82). The mean multiplicity of Eq. (51) and its fluctuation
[cf. Eq. (53)] for A =100 with as =co= To=15.77 MeV
(Table I) are quite similar to those in Ref. [12] at T=10
MeV but somewhat too small at T=5 MeV (see Fig. 3).
Instead of po/p=3, the choice of po/p=5, i.e., the two
times larger Xo( T) value, was required to obtain a similar
result at T=5 MeV. This change of the po/p value de-
picts the lower breakup density (larger fragmentation
volume) at lower temperature.
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2

@(p p) +Clp+C2p
B

and for a phase space distribution given by

f(p,p)= 1

exp [C(p, p ) p] /T—+ 1

p= „,fd'S f(p p») .
4

(97)

(98)

D. Spinodal instability and fragmentation

A thermally equilibrated hot dense system expands un-
til it breaks up due to a spinodal instability
(dP /d V

~ r )0) [14] or a hydrodynamic instability
(dP/d V ~v )0) [15]. On the other hand, as a hot gas sys-
tem cools down, various sizes of clusters appear through
condensation in the spinodal instability region. Figure
4(a) shows the equation of state, i.e., the pressure P vs the
density p at various temperatures (dotted lines). The re-
sults were generated for the single particle mean field en-
ergy given by

The self-consistent calculation of Eqs. (97) and (98) deter-
mines the density p and the chemical potential p at a
given temperature T [16]. The pressure is then given by

B

(99)

We choose C, = —816.75 MeV fm and C2 =3238. 1

MeV fm with e =2 which has a nuclear matter satura-
tion density of p0=0. 145 fm with binding energy
E/A = —15.77 MeV and compressibility of 368 MeV
[17]. The compressibility is too high for this parameter
set, but our calculations are insensitive to this value. We
use the equation of state only to decide the breakup den-
sity. From the density dependence of the pressure and
the chemical potentials at each temperature, we can
determine the spinodal and coexistence lines. These
quantities are shown in Fig 4. Here the critical tempera-
ture is T, =20.95 MeV with the critical density of
p, =0.3927po. Notice also that, at T=5 MeV, the upper

TABLE I. Various special temperatures in MeV for nuclear matter values and for empirical values
of az and 60 with various cutoff temperature To. Here the breakup density appearing in Eq. (96) is set
to A (po/p —1)=200 which corresponds to fixing x (v) = 1.31. Temperatures in the row of (M ) =2 are
the breakup temperatures Tb at which there are two fragments on average. Temperatures in the row
(M ) = A —1 are the vaporization temperatures T„ from which there are no bound nucleons on aver-
age. The (AM),„row shows the temperatures at which the fluctuation in multiplicity is maximum.
Total average energy is zero at temperature given in the row of (E ) =0 and the changing rate of ener-

gy (heat capacity) is maximum at the temperature in the row of (AE),„. There is one free nucleon on
average at the evaporation temperature T, with ( n

~ ) = 1 and its maximum fluctuation is at tempera-
ture in the row of (hn, ),„. In the rows for (M ) and bM at T=5 are the multiplicity and its fluctua-
tion, respectively, at temperature T= 5 MeV. In the rows for (M ) and hM at T= 10 are the multipli-
city and its fluctuation, respectively, at temperature T= 10 MeV.

a& = eo (MeV)
To (MeV)

(M)=2
(M) =49
(AM), „
(z)=o
(AE),„
(n, )=1
(En' ),„
(M) at T=5
hM at T=5
(M) at T=lo
hM at T=10

0.0

A =50
4.1

104
14.0
12.3
12.2
5.6
22.3
3.35
2.03
16.9
9.08

15.77
15.77

4.3
185

17.7
12.9
13.1
5.9

30.0
2.91
1.69

13.6
7.88

20.95

43
220

18.1
12.8
12.6
6.0

32.7
2.88
1.67

13.3
7.74

0.0

2.5
100
11.0
8.2

11.0
3.7

18.3
9.03
5.69

24.6
10.6

8.0
8.0

2.7
185
14.9
8.4

22.3
4.0

28.1

7.07
4.55

19.0
9.67

10.0

2.7
214

15.5
8.4

32.5
4.0

30.9
6.92
4.46

18.3
9.50

(M)=2
(M) =99
(hM ),„
&z)=o
(hE),„
&n, )=1
(An, ) „
(M) at T=5
hM at T=5
(M) at T=lo
hM at T=10

2 =100
4.0
250
18.9
14.9
17.7
5.6
31.0
3.79
2.46
22.2
13.8

4.1

466
24.6
15.5
23.8

5.9
45.7
3.25
2.02

17.3
11.3

4.1

544
26.3
15.3
20.2
6.0

50.3
3.22
2.00

16.9
11.1

2.5
246

15.0
10.0
19.6
3.7

27.2
11.0
7.58

34.9
18.7

2.6
471

22.3
10.3
60.0
4.0

44.2
8.43
5.88

25.4
15.3

2.6
545
23.9
10.0
83.9
4.0

78.7
8.24
5.75

24.4
14.8
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FIG. 2. Temperature dependence of averages and fluctuations of the multiplicity, the total energy in MeV, and the number of
monomers for a system with 3 = 100 nucleons. hE =d (E )/dT which is the heat capacity. Here y =1, i.e., x model as in Ref. [1]
and the temperature dependences are given by Eqs. (86) and (87) with as =ep = To = 15.77 MeV and po/p =3 for Eq. (96).
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FIG. 3. Multiplicity distribution Eq. (52) in x model of Table
I for A =100 system at T=5 and 10 MeV. The solid lines are
with p0/p =3 and the dashed lines are with p0/p =5. The histo-
grams are the Monte Carlo calculations of Ref. [12].

density of the spinodal point is 0.6695po and the upper
density of the coexist point is 0.9709po. At T=10 MeV,
the upper densities of the spinodal and coexist points are
0.6389po and 0.8887po, respectively. The chemical po-
tential p becomes the same as that for the coexist points
at the density p jpo of 0.3568 at T=5 MeU and 0.3707 at
T=10 MeV compared to po/3 which has been used for
Table I and, Figs. 2 and 3. The densities which corre-
spond to Xo( T)= 1 and 2 of Eq. (87) with Eq. (96) also are
shown in Fig. 4(c). These curves show that the larger sys-
tem may break up at the higher density for the same tem-
perature.

Figure 5 shows the average and the fluctuation of vari-
ous thermodynamic quantities along the higher density
side of the coexist and spinodal curves. Here we consider
a system which can be described with the energy given by
Eq. (85) without using a backshifted binding energy in
contrast to the case of Table I and Fig. 2. Notice that Xo
becomes large at low density, i.e., at higher T in Fig. 5.
This case also shows that the system breaks up into more
pieces as the temperature T or the excitation energy be-
comes higher. At a given temperature (isothermal) [14]
or at a fixed entropy (isentropic) [15],the system expands
with uniform density until it hits the coexistence or spi-
nodal point. Then the system will break into pieces at
some density in either the coexistence or spinodal region
at the given temperature T for the isothermal case or at a
given entropy for the isentropic case. The coexist and
spinodal points at a given T for a given A in Fig. 5 give
two different values for each quantity. The actual aver-
age and fluctuation for primary fragmentations may be
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FIG. 4. (a) Equation of state (P p) for nu—clear matter with BKN force parameters [17] at various temperatures (dotted line).

Each dotted line represents the density dependence of the pressure at a temperature T of 0 MeV, 5 MeV, 10 MeV, 15.16 MeV {at
which the minimum pressure is 0), 18 MeV, 20.95 MeV [which is the critical temperature T, (read from bottom up)] 25 MeV, and 30
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some value between these two values depending on what
density the system breaks up at. The multiplicity and the
number of monomers vary widely. These quantities de-
pend on the density at which the system fragments
through Xo(T)=x(U)T . The average energy is quite
insensitive to the fragmentation point. The real empirical
results may correspond to much smaller density due to
secondary fragmentations. However, due to the finiteness
of A for a finite nucleus, the thermodynamic limit is not
applicable and the fiuctuation effects become important
in contrast to the nuclear matter case. Thus there are no
clear spinodal and coexistence points. Even the breakup
density of a finite nucleus may vary event by event.

Figure 6 shows the cluster size distribution for an
A =50 system with the energy given by Eq. (85) at T=5
and 20 MeV for various breakup densities. It could be a
U-shape curve or it could follow a power law depending
on the breakup density. If Xo(T) is large due to the low
density or high temperature, the size distributions show
the power law k ' with v=3 up to k=10 and much
larger for larger clusters; see the dash-dotted line in Fig.
6(a) and the curves shown in Figs. 6(b) and 6(c) for T=20
MeV= T, or 25 MeV. Experimentally ~ ranges from 2 to
3 [5,18]. This figure shows the temperature T (or col-
lision energy) dependence of the critical exponent r [19].

E. Distribution of fragments in a heavy-ion collision

As an application of our simple model to a physical
system, Fig. 7 shows the cluster size distribution in

Ne+Au —+k+X reaction at the beam energy of 250 MeV
per nucleon [20]. This figure shows a good fit to the data
even though we have neglected the surface energy [cf. Eq.
(82) or (85)). For this reaction, our result (long dashed
line) with the coexist density at T=8 MeV is clearly
better than the Bose-Einstein-like distribution Eq. (13)
(dash-dot-dot-dotted line) considered in Refs. [5,6] which
does not allow the rearrangement of nucleons [weight
function W„(n,x)=1 in Eq. (6) in this case]. Here we
have taken the number of participant nucleons to be
A =200. Equation (13) is siinilar to the dash-dotted line
which is our model with the spinodal density at T=8
MeV and is good only for small clusters. Equation (13)
can become similar to our result (dashed line) only when
we take A =50000 (dotted line). If we take T=7 MeV,
our model with the density taken to be the higher side of
the spinodal density gives a quite similar result as the
dash-dot-dot-dotted line [Eq. (13) with A =200] and with
the higher side of the coexist density gives the same result
as the dotted line [Eq. (13) with A =50 000].

Notice that the size distribution is insensitive to the
value of y [2] and thus it is determined through the value
of Xo(T). The corresponding Xo(T) values are 2.33,
15.67, 1.45, and 12.48 for the dashed line, dash-dotted,
dotted, and dash-dot-dot-dotted lines, respectively.
These Xo(T) values depend on the values of the number
A of participant nucleons, the temperature T, and the
breakup density p. These parameters should be fitted to
obtain better agreement with data.

The fact that our model having the MB-like microstate
counting rule for each partition of A nucleons fits the
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the spinodal points. The dash-dotted (dash-dot-dot-dotted) curves are with the densities where the pressure (chemical potential) is
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the simple power law, i.e., k ', 10k, and 100k ' and these lines can be compared with the other lines.
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data better than Eq. (13) having the BE-like microstate
counting rule for each partition of an integer A (see Sec.
II B) indicates that the reaction we have considered
achieves a uniform thermal system, such as hot nuclear
matter or a fireball, before its final breakup into frag-
ments. Fits using the simple form for the energy given by
Eq. (82) may indicate that a proper statistical treatment is
a more important factor than the details of the interac-
tions between nucleons in the system in describing the
fragmentation process at this energy.

V. CONCLUSION

In this paper, fragmentation processes in hadronic col-
lisions are discussed in a unified way using generalized
canonical partition functions. The generating function
Eq. (14) (grand canonical partition function) of a canoni-
cal partition function Eq (21.) with fixed nucleon number
A is expressed in terms of a simple multinomial. The
average and correlation values of various factorial mo-

ments are expressed as simple ratios of this canonical par-

100-

tition function [Eqs. (42) and (43)]. Depending on the
choice of the multinomial variable, the model becomes
exactly soluble and applicable to various systems as dis-
cussed in Ref. [3].

Parametrizing the multinomial variables in terms of
time or temperature, we also can study the evolution of
the system in a clusterization or fragmentation space
[Eqs. (59) and (68)]. A general result for the evolution of
the system can be reduced to the Fokker-Planck equa-
tion, Eq. (77), or the dynamic equation for the multiplici-

ty distribution function of jet fragmentation in P theory
[Eq. (61)].

Identifying the multinomial variable as the partition
function of the cluster [Eqs. (79) and (86)], we can use the
model to study the thermodynamical behavior of a frag-
mentation process. This study shows there are various
types of special temperatures (Table I), such as the break-
up temperature Tb at which the system breaks up into
two pieces in average, the evaporation temperature T,
having one monomer in average, the vaporization tern-
perature T„ for a total fragmentation, and the tempera-
tures where the average total energy is zero, where the
fluctuation becomes maximum, etc. We also have shown
that there is U shape or power law in the cluster size dis-
tribution depending on the temperature of the system and
the volume when the fragmentation occurs (Fig. 6). With
this simple model, we were able to fit the nucleus-nucleus
collision data (Fig. 7). Further comparison with various
reactions will be published elsewhere.

Here we considered only statistics based on Maxwell-
Boltzmann-like counting. Bose-Einstein or Fermi-Dirac
statistics also can be considered. Also extending the case
considered here to various other types of constituents
such as quark-gluon would be an interesting problem.

This work was supported in part by National Science
Foundation Grant No. 89-03457, by Rutgers University
and by the Department of Energy.

APPENDIX A: PARTITION FUNCTIONS
FOR a; =P; = 1 CASE

For the special case a; =P; =1, the partition functions
of Eqs. (14)—(21) are

10
0 20 60

Q(u, x) =exp
N

gx, u
i=1

Cluster Size (Mass) k

FICx. 7. Mass distribution in Ne+Au~k+I reactions at
the beam energy of 250 MeV per nucleon. The filled circles are
the data [20] and the solid line is the fit of Ref. [21] with T= 16
MeV which has the surface energy eftect also. The long dashed
(dash-dotted) line is our x-y model with the coexist (spinodal)
density at T=8 MeV and A =200 (here a~=co=TO=15.77
MeV) ~ Our model with spinodal density at T=7 MeV is quite
similar to the Bose-Einstein-like distribution of Eq. (13) with
A =200 which is shown by the dash-dot-dot-dotted line. Our
model with coexist density at T=7 MeV is almost the same as
the Bose-Einstein-like distribution of Eq. (13) with A =50000
which is shown by the dotted line.

N N
A= g an;= g n;=M,

Ix, '

G„(n,x)=A! ff n. t
i =1, '"i'

A

Q~(x)= g x,

(A1)

For this case, 2 is same as the multiplicity M and
Q„=Q„ is the Ath-order multinomial having the multi-
nomial expansion terms G~. The average and fluctua-
tions for this case are, from Eqs. (Al) and (42) —(46)
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A!
F~(k, x)=[xk]

A —m!
A! &k

(A —m)! gx,

A!
&n„n, )(x)=x„x,

A —2

= A(A —1)
x;

[&nk ) —
&n/, )'](x)= A(A —1)

gx,

2

+A
x;

Xk

gx,

(A2)

These results are obvious from the fact that the corresponding canonical partition function Qz is just a multinomial of
order A.

APPENDIX B: PARTITION FUNCTIONS FOR a; =P; =i CASK

For a; =p; =i, the partition functions of Eqs. (14)—(22) are

Q(u, x) =exp
N Qi

. x;

N N
A= g an;= gin;,

N I

G„(n,x)= A! g
l Pli.

(81)

N

Q„(x)= g G„(n,x)= g A! g
n,.

X;

n,.x

Through the change of variable of x; ~ix;, this a; =p; =i case becomes obviously the case of a; =i and p,. =1. For
N=ao or N=A, Eqs. (Bl) reduce to the cases studied in Ref. [1] with x;=x and in Ref. [2] with x, =xy ".
Specifically, for x; =x for all i, using Eqs. (14), (21), and (25), we have

Q(u, x ) =Q(u, [x, =x ] ) =exp
l

Q (x)=Q ([x.=x])=x(x+1)(x+2) "(x+A —1)= 1(x+A)
i I (x)

'M

(B2)

Q„(x)=Q„([x;=x])= j. d
Q ([ ]) M

( 1)A
—MgMxM

x=0

where I (x) is the gamma function and S„ is the Stirling number [1,4]. This is the case which has been considered in
Ref. [1]with A the particle number and M the multiplicity of clusters. For x, =xy and x; =x for i + 2,
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6,-1Q(u, x,y ) =Q(u, Ix, =xy "]) =exp + [x(y —1)u ]
1

x(y —1)ue

r=
M

d 6,-1Q„(Ix;=xy "])QA"(x y)=QA(Ix;=xy "]}= 1

x=0
M

(83}

This is the case with two parameters studied in detail in Ref. [2]. Other various choices of x; s, which also are exactly
soluble, are studied in Ref. [3].

For two variables of Eq. (83), i.e., x, =xy and x; =x for i & 2, the average factorial moments are
m

nk! k, l

Y„(k,x,y) = Q(~ —mk)(x»)

Q„(x,y)
A!

(A —mk)!
(84)

(nk —m )!

Here Q„(x,y ) is the canonical partition function in the x-y model given in Eq. (83). When y =1, the x-y model be-
comes the x model of Eq. (82) and y =0 means there are no free nucleons. The detail properties and the various limit-
ing forms of this distribution are discussed in Ref. [2]. We can also easily find the correlations and the fiuctuations us-

ing Eqs. (45) and (46) for this two-variable case:

k 1

(n„n, ) =

(n„') —(n„)'=

5.
)

Xy "
J

2

Xy
k, 1

k

Xy

k

(A —k —j)!
Q(a —k —t)(x y}

Q~(x y)

A! Q(A —2k)(x y }

( A —2k )! Q„(x,y )

A! Q(~ —k)(x») xy "'
(A —k }! Q„(x,y) k

2 2
A! Q(A —k)(x,y }

(A —k}! Q„(x,y)

(85)

Since (nkn~ ) is exactly the same as Eq. (84) with m =1 except for replacing k by k+j and for an extra factor
[xy "/j ], all the asymptotic forms for Y„' apply to this correlation also.

APPENDIX C: MULTIPLICITY AND ITS FLUCTUATION IN THE x-I MODEL

For a; =P; =i and x, =xy ",i.e. , in the x-y model, the mean multiplicity Eq. (51), is, from Eq. (57),

JM~(x,y}=(M)= t Ing~(tx) —= x lnQ„(x,y)
t=l

r —1 A!
Qz(x, y) Q„(x,y), p x+p r!(A r)! r(x)—

Here Q„(x,y ) is given by Eq. (83) in Appendix B. The fiuctuation of the multiplicity is, from Eq. (58),

(Cl)

2

AJAR„(x,y)=[(M ) —(M) ]= t Ingz(tx)—d
2

dx lng„(x, y )
dx

x A, „(x,y)=[(M) —(M)']+ Xo' Q (&p,y}dx " '
Q„(X(),y )

Q~-)(x y)= [At „(x,y ) —JM „(x,y ) ]+A [x (y —1)] ~„,(x,y )

A [x(y —1)] "
QA(x~y) p=) =p

+
(x y) =) =px

( A —1)! r(x+r )

x +p r!( A —1 r)! I (x)—A —) —r

2
X

2
X A! I (x+r)

[ ( )]g r

r!( A r)! I (x)—p=0
(C2)

These relations are the generalization of Ref. [1] and the detail properties of W „and b,Al, „are discussed in Ref. [2].



45 CANONICAL STUDIES OF THE CLUSTER DISTRIBUTION, . . . 1307

Using (34), (39), and (54), we can show that

n„F„" (x)= g lnx. (t)
1=1

n, G„(n,x)
rtk m

i A, nk

APPENDIX D: DERIVATION OF EQS. (59) AND (64)

—1nxk(t) nkFA (x)+ g —1nxj(t)
d

jAk

d
lnxk(t) F„" (x)

ak dt

X.

p (g )) (A —a )mj j

lnx (t)—
dt ak

Inx (t)
dt p (g ~ )) (A —a)m

J J
(D 1)

Here, in the last equality, we have used the fact that ni, = [3 —QJ~&aj n~ ]/ak due to Eq. (16).
From Eqs. (42), (43), and (59) or (Dl),

QA(x)

g dF„" (x)/dt
I,

=o
Y„(k,x)=

dt

dQA (x) /dt
YAm(k, x)

Q„(x

nk!= 'V —lnx (t) n —(tt ) (., -m)'l

nk!
lnx„(t) r(k

—YA(k, x)Y„(k,x)
"(nk —I )!

+ g —lnxj(t)
j~k

Q(A-a, )(»

P,. (A —a, )) QA(x)
[Y(„)(k,x) —Y„(k,x)]

d
lnx (t)—

dt

a.
lnx (t)

d
dt

X~ g!
p (A —a)!

Q(A —,.)(")
Q„(x)

X [Y(„)(k,x) —Y„(k,x)]
J

d
1nx (t)—

dt
aj d

lnxk(t) Y„='(j,x)[Y(„)(k,x) —Y„(k,x)] .dt J
(D2)

For the last two relations, Eq. (16) or equivalently the last expression of Eq. (Dl) is used.

APPENDIX E' PARTITION FUNCTIONS AND MEAN DISTRIBUTION FOR x =XOX 1y

For x;=XOX',y ",
u' ~ (X(u )

gx, . =Xo
l

+XoX, (y —1 )u =Xoln
1

1 X1u
+X()X,(y —1)u .

Thus, from Eqs. (14) and (21), we have

Q(u, [x;=XoX',y "I ) = 1

1 —X1u

Xo
XOX1(y

—1 )u

(El)
A g( I (X +or)

QA([x;=XoX'(y "))= g '
X", [X()X,(y —1)]" "=X,"Q„(X(),y) .

The Q„(Xo,y) =Q„([x,. =Xoy "I ) is given by Eq. (83) in Appendix 8 with x =Xo. The results of Eq. (El) are of a
very simple form and they lead to an exactly soluble model (see below). The average number of clusters [Eq. (44)] is
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(n„)= /ky k, 1

k
A! X)" "Q(~-k)(Xp y} =F„'(k,Xp,y) .

(A —k)! X"g (X y)
(E2)

This result is the same as Eq. (B4}with m =1 and x; =xy "=Xpy " [2]. Similarly, the correlations and the fiuctua-
tions are the same as Eq. (B5). Using Eqs. (80) and (81) with Xp~Xpe' in Eq. (El), which corresponds to f, (t)=1 in
Eq. (79), the average multiplicity and its fiuctuation are found to be given by

d i 1lng&([x; =Xpe'XIy "j) = Xp ln[X)"Qg(Xp y)]
dXp

d
Xp luge (Xp y ) =a/8 g (Xp y )

p

2

(E3)

[(M') —(M )']= lng~([x, . =Xpe'X', y "])
t=p

d d
X() lng„(X(),y)= X() JN„(X, py)=b, JN, „(Xp,y) .

p p
(E4)

Here JR„(Xp,y ) and b JR„(Xp,y ) are given by Eqs. (Cl) and (C2) in Appendix C with x =Xp and these results are the

same as the x; =xy " case considered in Ref. [2]. The results of Eqs. (E2)—(E4) are independent of X, and that is un-
derstandable since the quantity X& is the same for every nucleon independent of the cluster to which it belongs and thus
cannot aff'ect the clusterization process. For x;(t = 1/T) of Eq. (86), we have (M ) =1 at T=O and (M ) = A at T= ()D

since Xp(T}~0 as T goes to zero and Xp(T}~ ()o as the temperature T becomes infinitely large (see Appendix F}.
Furthermore, the fiuctuation in the multiplicity bA „(Xp,y ) is zero at both T=0 and T= ()() .

APPENDIX F: ASYMPTOTIC BEHAVIOR AT LOW AND HIGH TEMPERATURES

Asymptotic behaviors of Eq. (87) are

X, (T=O)=e

—a~ /Ty(T=O)=e

TpT
X, ( T»Mt) —a~ ) =exp —

T+ Tgp T+ Tp

0 0

(Fl)

Tp T
y( T )&as ) =exp

Ep T+ Tp

0 0

All of Xp( T), X) ( T), and y ( T) are zero at T=0. At high temperature T~ ~, X, ( T) =exp( Tp /ep) and
y( T}=exp( —Tp/Ep) are finite and Xp( T)~ (x) . The asymptotic form [2] of the Q„(x,y ) of Eq. (B3) is

Q„(x,y)=g„(x)+ A [x(y —1)]Q„,(x),
for x =0 or y =1, i.e., for [x(y —1)]=0 and

(F2)

A(A —1)Q„(x,y ) =(xy )"+, (xy )",
2xy

for x )& A since Q„(x)=l (x+y")/1 (x)=x "+—'p(r —1)x" '. Thus at low and high temperatures, the partition func-
tion Q„(X(),y ) in Eq. (El) becomes

Qq(X(),y; T=O) =X()( A —1)!=x(v)T ( A —1)!,
T /e

Qg (Xp y; T~ (x) )=(Xpy )"=[x(v)T e ' ']" (F4)

Notice here also that Qp(x) =1 in general.
We have the following asymptotic behaviors [2] for the cluster distribution. The asymptotic behavior at low and high

temperatures of the average cluster distribution Eq. (E2) are
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Xy k, 1
S

k Xp

k, A
ki1 B

A —k

& nk &(T~ m )=
X k, lS

k
A! 1

(A —k)! Xpy

k

[ ( )T3/2](1 —k) " k) 0 0

k (A —k)!

(F5)

and their fluctuations Eq. (B5) are

2

Xy k, 1

[& n/', &
—

& n/, &'](T=0)=
k

8(A —2k)
Xp

SXy k, 1

k
A

A —k Xp

k, A

2
k, l

k Xp

2S

k A —k k, A) ~

2

Xy ' A! 1

k (A —2k)! Xpy

(F6)

k, 1
S

k
A! 1

(A —k)! Xpy

2

Xpy ' A!
k (A —k)!

2- 2k
1

Xpy

[x (u) T ]" "'e "' ' '[1—5 ]k (A —k)!

The step function 6)(a) is 1 for a )0 and is zero otherwise. Thus & n, & =0 and &n„&=1 at T=O, and &n, &
= A and

& n „&=0 at T= 00. The fluctuation becomes zero at both T=0 and T= 00.
The asymptotic behavior at low and high temperature for the mean multiplicity of Eq. (E3) are, from Eq. (Cl),

Xp AXp(y 1 ) 1 A —aB /T
&M &(T=O}=1+g + =1+x(v)T / g + x(v)T / [e —1],zr —1 (A —1) 2r —1 (A —1)

M&(T= )=A A(A —1)
A

A(A —1) [x( )T3/2] —le2T0/e0

2Xpy

(F7)

In Eq. (F7), we have retained both terms in Eqs. (F2) and (F3). Since ~z(x,y)=[xdldx]A(x, y) [Eq. (C2)], we have,
for the fluctuation of the multiplicity Eq. (E4),

Xp AXp(y —1) 3/2 ~B /T
&(M —&M&) &(T=O)= g + =x(u}T g + x(v)T [e —1],zr —1 (A —1),2r —1 (A —1)

(FS)
&(M —&M &) &(T=00)= = [x(v)T ) 'e

Xpy

Thus & M &
= 1 at T=0 (Xp =0) and & M &

= A at T= 00 (Xp = 00 ). Furthermore, the fluctuation of the multiplicity is
zero at both of T =0 and T= ~.
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