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Fast-neutron interaction with elemental zirconium, and the dispersive optical model

S. Chiba, * P. T. Guenther, A. B.Smith, M. Sugimoto, * and R. D. Lawson
Argonne National Laboratory, 9700 South Cass Auenue, A rgonne, Illinois 60439

(Received 25 July 1991)

Differential neutron elastic- and inelastic-scattering cross sections of elemental zirconium were mea-
sured from = 1.5 to 10 MeV. Below 3 MeV the measurements were made at incident-neutron energy in-
tervals of = 100 keV, from 3 to 4 MeV in steps of =200 keV, and in =500 keV increments at higher en-

ergies. The angular range of the measurements is =18' to 160', with up to more than 100 differential
values per distribution. This comprehensive database, augmented with a 24 MeV elastic-scattering dis-
tribution from the literature, is used to develop two phenomenological optical-statistical models, both of
which describe the data very well. First, the parameters of the conventional spherical optical model
(SOM) are deduced. Second, the model in which the dispersion relationship, linking real and imaginary
interactions (DOM), is considered. The SOM parameters are consistent with systematics previously re-
ported from this laboratory, and the volume integral per nucleon of the real potential strength, Ji., and
the radius, rv, are energy dependent. Although the energy dependence of Ji. is reduced by about 30% in

going from the SOM to the DOM, there is little change in the E variation of ry between the two models.
Both models are extrapolated to the bound-state regime where they have modest success in predicting
the binding energies of the single-particle and single-hole states in Zr.

PACS number(s): 25.40.Dn, 25.40.Fq, 24.10.Ht, 27.50.+e

I. INTRODUCTION

The total and elastic-scattering cross sections of fast
neutrons from nuclei are generally described in terms of
an optical model having real, imaginary, and spin-orbit
components. For spherical nuclei, there are two variants
of this model in vogue at present. The first is the spheri-
cal optical model (SOM) with a real Woods-Saxon poten-
tial, an imaginary surface-peaked derivative Woods-
Saxon well with perhaps a volume absorption setting in at
energies of ~20 MeV, and a spin-orbit potential of the
Thomas form [1]. In the second formulation the funda-
mental dispersion relationship [2] linking the real and
imaginary optical-model potentials is taken into account.
This will be referred to as the dispersive optical model
(DOM). In this paper parameters defining both a SOM
and a DOM describing neutron scattering from elemental
zirconium are deduced. To apply this model to specific
isotopes one must know the magnitude and sign of the
(N Z)/A lane ter—m of the potentials [3]. This cannot
be determined from our elemental data, but can be de-
duced from the Ohio University isotopic zirconium stud-
ies [4,5]. It should be noted that the coefficient of the
(N Z)/A term ext—racted from the Ohio data has the
opposite sign for the imaginary potential than that given
by global models [6,7]. This sign is, however, consistent
with the results of 8-MeV cross-section ratio measure-
ments made on adjacent nuclei at this laboratory [8], and
with the fact that the imaginary potential increases rapid-
ly as one moves away from a closed shell [9].

Since we consider the differential elastic scattering be-

tween =1.5 and 24 MeV and the total cross sections
from thermal to 20 MeV, the energy variation of the
model parameters is reasonably defined over a wide
range. As both the SOM and the DOM are fitted to the
same data, we can check the conjecture [10] that the en-

ergy dependence of the geometric model parameters of
the real SOM are due entirely to the fact that the disper-
sion contribution to the real potential was neglected —a
conjecture the present work does not support. Further-
more, as discussed by Mahaux and collaborators [11—13],
once the energy variation of the optical-model parame-
ters is known, one can use the dispersion relationship to
extrapolate to the bound-state regime; that is, deduce the
shell-model potential. Combining this result with the
(N —Z)/A dependence, one can examine the neutron
binding energies of the single-particle and single-hole
states of the closed-shell nucleus Zr.

In Sec. II the experimental procedures used in the mea-
surements are outlined. In Sec. III the experimental re-
sults are presented. Sections IV and V are devoted to the
determination of the parameters of the SOM and the
DOM, respectively, and to comparing their theoretical
predictions with the experimental results. The predicted
binding energies of the neutron single-particle and
single-hole states in Zr are discussed for both the SOM
and the DOM in Sec. VI. Finally, in Sec. VII our results
are summarized and discussed.

II. EXPERIMENTAL PROCEDURES

All of the measurements were made using the pulsed-
beam fast-neutron time-of-Aight technique. The neutron
angular distributions were determined using the Argonne
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10-angle time-of-flight apparatus with flight paths of =5
m [14,15]. Higher-resolution measurements were made
at selected energies using a heavily shielded 14.52-m
fiight path at a scattering angle of 80' [16].

The scattering samples were solid metal cylinders of
elemental zirconium 2 cm in diameter and 2 cm long.
The chemical purity of the samples was )99%%uo. Below 4
MeV, reference standard samples of carbon (pile grade
graphite) were used, and above 4 MeV the reference stan-
dard was hydrogen in the form of polyethylene (CH2).
The standard samples were the same dimensions as the
zirconium ones, and of better than 99% chemical purity.
The weights of all the samples were measured to an accu-
racy of better than 0.01% using conventional techniques.

Below 4 MeV the Li(p, n) source reaction [17) was
used, with the lithium metal vacuum evaporated onto
tantalum backings to thicknesses giving neutron energy
spreads of =50—70 keV at a 0' source-reaction angle.
Above 4 MeV the H(d, n) reaction [17] was used, with
the deuterium gas contained in a cell =2 cm long. The
deuterium gas pressure within the cell was adjusted to
give neutron energy spreads of =250 keV at 4.5 MeV, de-
creasing to = 125 keV at 10 MeV at O'. The mean energy
of the neutron sources was determined to ~20 keV by
magnetic analysis of the incident charged-particle beam.
The neutron sources were pulsed at a repetition rate of 2
MHz, with a burst duration of = 1 nsec.

The scattering samples were placed = 17 cm from the
neutron source at 0' reaction angle. In the angular-
distribution measuremerits, a massive collimator system
defined the ten approximately 5-m flight paths, distribut-
ed over scattering angles between 18' and 160'. The rela-
tive angular scale of the scattering apparatus was deter-
mined to 0.05' using optical instruments. Below an in-
cident energy of 4 MeV, the zero of this angular scale was
determined to =0.2' using optical methods. Above 4
MeV, the zero for the angular scale was determined to
better than 0.15' by the observation of neutrons scattered
from a relatively heavy target both right and left of the
apparent center line, over a forward angular range where
the elastic scattering from the sample is very rapidly
changing with angle. In the higher-resolution long-
flight-path measurements, the neutron source and sample
were surrounded by a massive concrete shield =1.5 m
thick. The interior of this shield was a room =2.5 m on
a side, lined with polyethylene, cadmium, and boron in
order to reduce backscattering to the sample position. A
precision collimator penetrated this shielded vault at an
80 scattering angle.

The neutron detectors used in the angular-distribution
measurements were organic liquid scintillators 2 cm thick
and 12.5 cm in diameter. Their y-ray response was
suppressed using pulse-shape-sensitive techniques. Simi-
lar scintillators were used for the long-Bight-path higher-
resolution measurements, but they were larger (5 cm in
thickness and 25 cm in diameter), and four of them were
arranged in a square array. This array was then placed
within a heavy concrete shield approximately 1 m thick
in order to suppress the ambient background. The rela-
tive energy dependence of the efficiency of each detector
was determined by the observation of neutrons emitted in

the spontaneous fission of Cf, as described in Ref. [18].
These relative detector efficiencies were then normalized
to either hydrogen or carbon reference standards [19]by
observing either differential elastic scattering from po-
lyethylene (for measurements )4 MeV) or the total cross
section of carbon as described in Ref. [20] (for measure-
ments (4 MeV).

The incoming experimental information was sorted
and stored in a digital computer, and then reduced to
cross sections using a complex data-processing system
that has been developed over many years [21]. A part of
this system includes Monte Carlo corrections for
multiple-event, angular-resolution, and beam-attenuation
effects [22].

III. EXPERIMENTAL RESULTS

A. Elastic neutron scattering

At energies of a few MeV, the elastic-scattering cross
sections of zirconium may fluctuate with energy due to
residual resonance effects. Therefore, at energies below 4
MeV the elastic-scattering measurements were taken in
considerable energy detail. The scattered-neutron resolu-
tion was sufficient to separate the elastic and inelastic
contributions. The angular distributions were measured
at =70—100-keV intervals from =1.5 to 3.0 MeV. At
these lower energies, and with the broad incident-energy
spreads, the observed angular distributions do not display
a great deal of structure, so they were reasonably defined
by ten differential measurements at each incident energy,
distributed between =25' and 155' (distributions ob-
tained with small incident-energy spreads fluctuate by
large amounts as the individual resonances become ap-
parent). From 3 to 4 MeV, the elastic-scattering distribu-
tions were measured at =200-keV incident-energy inter-
vals, with 20 differential values per distribution. The to-
tal uncertainties in the individual differential values (in-
cluding counting statistics, angular uncertainties, correc-
tion factors, and normalizations) were estimated to be

5'. These lower-energy results were obtained at this
laboratory some time ago, and are discussed in more de-
tail in Ref. [23].

Above 4 MeV, the measurements were made at ap-
proximately 0.5-MeV intervals from 4.5 to 10.0 MeV, and
the angular range was = 18' to 160'. The data were taken
over a several-year period in sets of 20—40 angular values
at each measurement period and incident energy. When
combined, the average number of differential values per
distribution was 107, sufficient to give good definition of
the angle-dependent structure. Throughout the measure-
ments, the scattered-neutron resolution was sufficient to
reasonably resolve the elastic and inelastic contributions.
In a number of ways (e.g., angular scale, detector normal-
izations, etc.) the measurements at the various experi-
mental periods were independent; thus, reproducibility is
some indicator of reliability. The uncertainties associated
with the differential values varied a great deal depending
on the care given a particular measurement and on the
scattering angle. Except at the very minima of the distri-
butions, statistical uncertainties were relatively small
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( ~ l —3 % ), as were those associated with the Monte Car-
lo correction procedures ( + lgo). The reference H(n, n )

scattering standard is known to better than 1%. The
detector calibration procedures were complex, and it is
difficult to quantify the uncertainties associated with
them. A subjective estimate is 3%%uo below 8 MeV and
&5% at higher energies. The above elastic-scattering
results are illustrated in Fig. 1. Some isotopic elastic-
scattering results have been reported, and these will be
compared with the present measurements in Sec. IV.

B. Inelastic neutron scattering

At 1ower energies, the broad resolution required for a
reasonable energy averaging of Auctuations precludes op-
timum resolution of the inelastically scattered neutron
groups. Moreover, the element consists of four isotopes
of significant abundance, resulting in a large elemental
level density and thus very complex inelastically scattered
neutron spectra. Despite this, the discrete inelastic-
scattering cross sections were determined at incident en-
ergies of less than 4 MeV, and the results largely consist-
ed of the composite contributions from the excitation of
levels in several isotopes. Nine such "elemental" inelastic
groups were identified and attributed to the excited levels
as given in Table I. The corresponding angle-integrated

inelastic-scattering cross sections of the first five of these
groups, shown in Fig. 2, were obtained by fitting the mea-
sured differential cross sections with second-order
Legendre-polynomial expansions. The illustrated errors
are larger than for elastic scattering due to lower count-
ing rates and to uncertainties in the experimental resolu-
tion of the underlying complex structures. There have
been remarkably few measured discrete inelastic-
scattering cross sections of elemental zirconium reported,
doubtless because of the experimental difficulties outlined
above. There have been some isotopic results, and these
are discussed and compared with the present work in Sec.
IV.

Above 4-MeV incident-neutron energy, the inelastical-
ly scattered neutron spectrum blends into a continuum
upon which is superimposed some small structure due to
clumping of neutron groups from levels in the various
isotopes. Spectra obtained with the 5-m Bight paths
displayed only a trace of the excitation of the 941-keV
"level" observed at lower energies. The contribution was
generally a very sman artifact on the shoulder of the
much larger elastic-scattering peak. Therefore, no at-
tempt was made to deduce the corresponding cross sec-
tions from the 5-m measurements. There were two prom-
inent structures in the 5-m spectra, one corresponding to
excitations of =1.85—2.2 MeV and the other to excita-

10 =

lao0
0
C
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QO1

0 90 180 0
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90 180

FIG. 1. Measured and calculated elastic-scattering cross sections of elemental zirconium. The measured data are indicated by 0
symbols, where all results for E & 10 MeV are from the present work and the 24-MeV distribution is from Ref. [5]. The results of
SOM calculations are indicated by curves. Incident energies are given numerically in MeV. The data are in the laboratory coordi-
nate system.
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TABLE I. Discrete inelastic-neutron excitation energies of elemental zirconium (in keV) at incident
energies of less than 4 MeV.

No. Exp.

941+25
1476+37

1787+23
2101+26

2221+17
2363+14
2791+15

3101+25
3331%?

90Zra

1761(0+)

2187(2+ )

2319(5—)

2739{4—)

2750(3—)

3077(4+ )

3309(2+ )

Excitation energies
91Z a

e ~ ~

1205{2+ )

1466( 2+ )

1882( —+ )

2042( 2+ )

2131(—+ )

many

92Zra

934(2+ )

1383{0+)

1495(4+ )

1847(2+ )

2067(2+ )

2150(?)
many

many

many
many

94Z a

919(2+ )

1300(0+}

1470(4+ )

1671(2+)

2058(3—)

2151(2+ )

many
many

many
many

'Nuclear Data Sheets as given in Refs. [24-27].

tions of =2.6-2.9 MeV. The corresponding emitted-
neutron distributions were essentially isotropic, and the
angle-integrated cross sections, given in Table II, were
obtained assuming isotropy.

The 14.5-m measurements were limited to one scatter-

ing angle, 80', but gave superior energy resolution. Su-
perimposed on the neutron continuum some neutron
groups stood out, and assuming isotropy of emission,
their cross sections are given in Table II. The measured
cross section for the first 941-keV "level" is more than an

TABLE II. Comparisons of measured and calculated compound-nucleus inelastic-scattering cross
sections as discussed in the text.

E„=0.941 MeV
E;„{MeV) 14.5-m Bight path

do/dQ (mb/sr) o (mb)

CN cal.'
cr {mb)

6.0
7.0
8.0

2.6
2.9
2.5

32.7
36.4
31.4

2.2
0.6
0.2

E„=(1.85-2.2) MeV
E;„(MeV)

4.5
5.0
5.5
6.0
6.5
7.0
8.0

5 m
& (mb)

321
235
163
125
107
83

Flight path
14.5 m

do /dQ (mb/sr)

11.9

4.6
4.4

o. (mb)

150

58
55

CN cal.

o (mb)

307
233
178
137
103
82
49

E„=(2.6—2.9) MeV
E;„(MeV)

5.5
6.0
6.5
7.0
8.0
8.4

5 m
o (mb)

147
133
103
95

54

Flight path
14.5 m

do. /d Q (mb/sr)

12.7

5.8
3.4

o. (mb)

160

73
43

CN cal.

o. (mb)

162
139
107
85
53
42

aCN denotes compound-nucleus calculations.
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order of magnitude larger than the compound-nucleus
prediction. Thus a strong direct-reaction component
must be present (see Sec. IV) and the isotropy assump-
tion, leading to the numerical values of Table II, is not
valid. Two other "levels" evident in the long-flight-path
results corresponded to the = 1.85—2.2- and =2.6—2.9-
MeV groups. Assuming isotropy, their respective cross
sections are given in Table II. There is reasonable con-
sistency between the results obtained with the two fight
paths, and with the predictions of the compound-nucleus
model (see Sec. IV), so that the assumption of isotropy is
reasonable. The uncertainties associated with the mea-
sured 14.5-m Bight-path values in Table II are estimated
to be =10%, with a larger value for the 0.941-keV level
due to its very small cross sections and probable anisotro-
py.

0.8—

2221

0
0.4—

2101

0.6

1787

0
0.4—

1476

0
0.8

941

0
0

E„(MeV)

FIG. 2. Cross sections for the excitation of elemental "levels"
in zirconium. Symbols indicate the present experimental results
and curves the calculated values as discussed in Sec. IV of the
text. Observed excitation energies are given in keV.

IV. PHENOMENOLOGICAL OPTICAL-STATISTICAL
MODEL

This portion of the interpretation is based upon the
conventional SOM [1], and is complicated by the multi-
isotopic nature of the elemental samples used in the mea-
surements. More than half of the element consists of Zr
(51.45%), and the remaining isotopes are 'Zr (11.27%),

Zr (17.17%), Zr (17.33%), and Zr (2.78%) [28]. In
view of the very small elemental abundance of Zr, it
was ignored in the present analysis. The remaining four
isotopes have quite difFerent excited states, particularly

Zr, and thus each will have a different compound-
elastic-scattering contribution. These differences, togeth-
er with size and isospin effects, should be considered in
the interpretation. In the present work a special version
of the spherical optical-model code ABAREX was used
[29]. This formulation of the code has the capability to
y fit the experimental observables, explicitly treating the
individual direct and compound-nucleus contributions
from up to ten isotopes, and combining them to obtain
the elemental result directly comparable with experiment.
The excitation of the discrete levels, as well as the statisti-
cal level properties, of each of the contributing isotopes
were explicitly treated in the fitting. Compound-nucleus
processes were calculated using the Hauser-Feshbach
theory [30], as corrected for resonance width fluctuation
and correlation effects by Moldauer [31].

The primary database for the derivation of the model
parameters consisted of the present elastic-scattering re-
sults extending from =1.5 to 10 MeV (Fig. 1). Elastic
scattering at energies of less than 1.5 MeV was not con-
sidered since fluctuations in the cross sections, primarily
due to the prominent closed-shell Zr isotope, make the
results suspect in the sense that they are not consistent
with the energy-average concept of the SOM. To guard
against such fluctuations above 1.5 MeV, the database
was averaged over =200-keV incident-energy intervals

up to 4 MeV. Above 10 MeV, only one set of good quali-

ty differential elastic-scattering cross sections was found
in the literature, the 24-MeV distributions of Ref. [5].
The latter results are isotopic, but from them an elemen-
tal distribution was constructed. It was added to the pri-
mary database to give a higher-energy elastic-scattering
distribution for the fitting. This database was y fitted, as
described in Ref. [32], to determine the SOM parameters.
The analysis also gave consideration to the elemental
neutron total cross section, as summarized in Ref. [33],
and to the isotopic s- and p-wave strength functions,
though these observables were not a part of the g fitting
procedure.

All the discrete levels [24—27] below 4 MeV in Zr
and below 3 MeV in 'Zr, Zr, and Zr were taken into
account in these calculations. Although most of them
have known J values, there were a few cases where am-

biguity existed. However, these were all at a fairly high
excitation energy, where many exit channels are open, so
that the calculated results are not very sensitive to the as-
sumed J estimates. The effect of compound-nucleus
processes involving excitations above the discrete levels
was calculated using the statistical level representation of
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Gilbert and Cameron [34]. The temperatures, Eo values,
and spin cutoff factors used in the calculations are given
in Ref. [32]. They provide a reasonable extrapolation to
the known discrete level structure, and modest variations
in them did not significantly change the results of the
fitting.

The SOM was assumed to have Woods-Saxon and
derivative Woods-Saxon forms for the real and imaginary
potentials, respectively, and a Thomas spin-orbit term
[1]. Although the neutron polarization data are sensitive
to the spin-orbit potential, the Zr elastic-scattering
cross-section data are not. Since comprehensive polariza-
tion data is not available for zirconium, the choice of this
interaction is, within reason, rather arbitrary.
Throughout most of the present analysis, it was assumed
that

500

4oo

320
100

20
0 10 15

E„(Mev)

20 25

J;= f V~(r)r dr .
0

(2)

The values of Jz and J&, shown in Fig. 3, were deduced
from the strengths and geometries of the optical-model
potentials assuming that A =91.3 (i.e., the weighted
average for the elemental sample). From Fig. 3, it is clear
that the J values resulting from the fitting varied in an
approximately linear manner with energy. The uncer-
tainties in these J,. values are related in a complex manner
to the Inodel interpretation and the underlying data. For
J~ they were estimated to be 1.5~o above 4 MeV and 2%
below 4 MeV, whereas for Jz these estimates become 5
and 10%%uo, respectively. An error weighted least-squares
fit to the values shown in Fig. 3 gives the results quoted
in Table III where the geometric parameters of the SOM
are also tabulated.

The results calculated with the SOM are compared
with the experimental data from which it was developed

V, , =5.5 MeV,

r, =1.005 fm,

a, , =0.65 fm .

These parameters are similar to those given in global
SOM's deduced when polarization data were available

[6]. (Throughout this paper radii are expressed in the
form R; = r; A '~3. }

The effect of the isovector interaction, the (N Z)/A—
term [3], would be to decrease the real and imaginary
strengths by about 1.2%%uo and 7.4%, respectively, in going
from Zr to Zr if, for example, the global 10-MeV pa-
rameters of Walter and Guss [6] are used. Such changes
were examined and found to have little impact, and hence
were neglected in the subsequent analysis. In addition,
even though the database extended to 24 MeV, no evi-
dence for any significant volume absorption was found.
This result is in agreement with the findings of Wang and
Rapaport [5].

The details of the SOM parameter search, first deter-
mining the real potential geometry, then the imaginary-
well geometry, and finally the potential strengths, are
given in Ref. [32]. The strengths were expressed as
volume integrals per nucleon, J;, where

FIG. 3. Real (Jv) and imaginary (Js) volume integrals per
nucleon as a function of incident energy for the SOM. Experi-
mentally deduced values are indicated by symbols, and the
straight lines indicate the results of weighted fits given in Table
III. The J; unitsare MeVfm.

J&=Jo[1+az(N Z)/A ]+P&—E, (3)

with Jo and a~ independent of energy, and P~ indepen-
dent of (N Z)/A. The glob—al models of Walter and
Guss [6] and of Rapaport [7] give a&= —0.31 and—0.42, respectively. The fitting of the separated isotopic
data [5] at 8, 10, and 24 MeV leads to a„=—0.35, and
we shall use this value. In order that Jz has the value
given in Table III when Z =40, %=51.3, and A =91.3 it
follows that

TABLE III. Comparison of SOM and DOM optical-model
parameters.

SOM DOM

Real potential
Jv =471.17—5.09E
rv = 1.310—0.0063E
av=0. 667
Imaginary potential
Js =58.36+0 74E
r~ = 1 ~ 390—0.0063E
a@ =0.310+0.0180E

J,g =455.6—3.41E MeV fm
= 1.300—0.0054E fm
=0.685 fxn

Js =60.59+0.58E MeV fm'
=1.385—0.0071E fm
=0.255+0.0253E fm

in Fig. 1, and the agreement is generally very good. The
same model gives a good description of the elemental zir-
conium neutron total cross section from a few keV to at
least 20 MeV as illustrated in Fig. 4. The measured and
calculated values agree to within several percent over the
entire energy range.

To apply this model to the data observed for the vari-
ous zirconium isotopes, one must make some assumption
about the (N Z}/A depende—nce of the deduced poten-
tials. For this purpose, we assume that J~ can be ex-
pressed in the form
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10:t

+ Q~~
u ~ +

0
0 $0 20

E„(MsV)

FIG. 4. Comparison of measured (symbols) and SOM calculated (curve) neutron total cross sections of elemental zirconium. The
various experimental values are taken from the literature as described in Refs. [32,33].

Jz= [492.50[1—0.35(N —Z)/A ]—5.09E] MeV fm

(4)

A similar expression can be written for Jz. According

to the global models [6,7], as is negative and has an abso-
lute magnitude greater than unity. On the other hand,
the zirconium isotopic data [5] clearly indicates that the
value of Js increases with increasing (N Z)lA —i—n

0.1

0.01

0.001 =-

0 180 0

e(deg)
90 180

FIG. 5. Comparison of measured (symbols) and SOM calculated (curves) differential elastic-scattering cross sections of Zr and

Zr. The measured values were taken from Refs. [S,32,36,37]. Incident energies are numerically given in MeV. The data are given

in the laboratory coordinate system.
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other words, the sign is opposite to that given by the glo-
bal models. This is understandable since Zr has 50 neu-
trons, and it is well known that J& increases rapidly as
one moves away from a closed shell [9]. Physically, Js is
a measure of the softness (ease of excitation) of the core,
and it is well known that closed-shell nuclei, such as Zr,
have stiffer cores; i.e., fewer low-lying states with smaller
excitation probability. Thus, for these nuclei a smaller
absorption potential is needed. The Zr isotopic data of
Wang and Rapaport [5] indicate that as could be as large
as 5—10. However, in view of the uncertainties in the
data and in the derivation of the model from the data, we
feel a more realistic estimate of a& is probably about 2.
Accepting this, in order that Jz have the values given in
Table III for Z=40, N =51.3, and A =91.3, one finds
that

0.4— 92z

2398

0
Q.4

differences in nuclear structure, small resonance samples,
or other experimental uncertainties. The calculated
scattering length R' decreases from 6.95 fm for Zr to
6.86 fm for Zr and is in reasonable agreement with the
experimentally deduced value [35] of 7.2+0.2 fm for all
the isotopes.

In Figs. 5 and 6 the predictions of the model, with the

Js = [46.78[1+2(N Z)/2—]+0.74E] MeVfm . (5)

The low-energy strength functions deduced from reso-
nance measurements were not a part of the database used
in the fitting. However, the calculated values, using the
geometries of Table III and the potential strengths given
by Eqs. (4) and (5), are in reasonable agreement with
those deduced from resonance measurements [35], as list-
ed in Table IV. The predicted s-wave strength function
decreases slightly as one goes to the heavier isotopes, and
the p-wave values increase. Although the experimentally
derived data has a great deal of scatter, it does exhibit the
same general mass-dependent trends. Of course, since
the model has only a smooth dependence on (N Z)/A, —
it cannot reproduce the fluctuations evident in the experi-
mentally based data which may reQect detailed

10 5

94

Q.4

0
Q.4

b 0.4

0
Q.4

2340

2067

1847

1495

OI

1383

10L
0

1.0—

0.1

0.01

0.001

90

e(deg)

0
0

E„(MeV)

FICs. 6. Comparisons of measured (symbols) and SOM calcu-
lated (curves) differential elastic-scattering cross sections of 'Zr
and Zr. The measured values were taken from Refs. [5,3$].
Incident energies are numerically given in MeV. The data are
given in the laboratory coordinate system.

FIG. 7. Illustrative comparisons of measured (symbols) and
SOM calculated (curves) cross sections for the excitation of
specific levels in Zr. The notation is identical to that of Fig. 2.
The measured values are taken from the literature as described
in Refs. [32,33].
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potential strengths of Eqs. (4) and (5), are compared with
experiment. The data for the two isotopes Zr and Zr
are reasonably extensive [5,33,36,37], and agreement be-
tween measured and calculated results is remarkably
good from 1.5 to 24 MeV, as illustrated in Fig. 5. The ex-
perimental data [5,38] for 'Zr and Zr are less
comprehensive, but again the model appears reasonably
suitable, as shown in Fig. 6.

It is difficult to relate observed elemental inelastic-
scattering cross sections to the excitation of specific levels
in individual isotopes. However, there is some isotopic
inelastic-scattering information reported in the literature,
and summarized in Ref. [33],which is primarily confined
to inelastic scattering from Zr and Zr. Some of these

Zr experimental results are compared with the predic-
tions of the model in Fig. 7, and similar Zr comparisons
are given in Ref. [32]. Given the experimental uncertain-
ties, the agreement is acceptable. The calculated results
are also compared with the present elemental measure-
ments in Fig. 2. The agreement between the first few
measured and calculated excitations is reasonably good at
the low energies where the processes are primarily due to
compound-nucleus reactions, but the complex elemental
level structure makes comparisons for the higher-energy
excitations less reliable. At higher energies, the inelastic
scattering is observed as essentially a continuum distribu-
tion upon which is superimposed some structure due to
clumps of levels. The measured composite inelastic-
scattering cross sections are summarized in Table II. The
inelastic-scattering cross sections implied by the two
prominent scattered-neutron groups corresponding to ob-
served excitations of =2.05 and 2.75 MeV are in good
agreement with the predictions of compound-nucleus cal-
culations using the SOM. However, the cross section at,
for example, 8 MeV for the excitation of the 941-keV
"level" is two orders of magnitude larger than predicted
by compound-nucleus calculations. The observed excita-
tion is primarily due to the yrast 2+ levels in Zr and

Zr, and these are known to have a strong direct-
reaction component. For example, at 8 MeV the work of
Wang and Rapaport [5] indicates similar 2+ cross sec-
tions for Zr and Zr with a magnitude of =60 mb.
Thus, the direct-reaction contributions of these two iso-
topes to the 941-keV level in elemental zirconium would
be about 20 mb, and this is in reasonable agreement with
the value given in Table II. Similar direct-reaction effects
undoubtedly contribute to the higher-energy cross sec-
tions listed in that table, but their effects are not as

10=

0.1

0.01

I I

90

e(deg)
FIG. 8. The effect of the isovector potential on 10-MeV elas-

tic scattering from the isotopes of zirconium. The heavy curves
(A) were calculated using the same potential strengths given un-

der SOM in Table III and taking into account the R; =r; A '

size effect for each isotope. The light curve (B) included the
(N —Z)/A dependence of the potential strengths as given by
Eqs. (4) and (5).

dramatic as those of the 941-keV level, since in these
cases the compound-nucleus cross section is =50 mb.

In fitting the elemental zirconium data the size depen-
dence (R, =r; A '~

) was taken into account, but the po-
tential strengths were assumed to be the same for all con-
stituents of the sample. The (N Z)/A depen—dence of
the strengths was assumed to be unimportant and was ig-
nored. We now return to quantitatively address this as-
sumption. The darker curves (A) in Fig. 8 show the pre-
dicted 10-MeV elastic-scattering cross sections for the
various isotopic constituents of elemental zirconium
when the size variation is taken into account but the po-
tential strengths, given in Table III (with A =91.3) are
assumed to be the same for each isotope. The lighter
curves (B) show the effects of varying size and also in-

TABLE IV. Comparison of measured and SOM calculated strength functions ( X10 ) for the iso-

topes of zirconium.

Isotope
s-wave strength function

Exp. ' Cal.
p-wave strength function

Exp.' Cal.

90Z

"Zr
92Z

94Z

96Z

'From Ref. [35].

0.7+0.2
0.36+0.08
0.50+0.10
0.50+0.15
0.34+0.14

0.64
0.63
0.62
0.61
0.59

4.0+0.6
6.7+1.3
7.0+1.3
9.8+2.0
6.0+1.8

5.19
5.45
5.69
6.10
6.40
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elude the isovector component of the potentials —that is,
take different strengths for each isotope deduced from
Eqs. (4) and (5}. For A =91 and 92 the two results are in-

distinguishable. For A =90 they differ only at very large
angles where no data exist. Thus, for nearly 80% of the
sample there is no experimentally accessible evidence of
the (N Z—)/A dependence of the potential. There are
only slight differences between the two curves near the
minima of the Zr distribution, and these are smaller
than the experimental uncertainties. It is only for Zr
that the differences are significant, and this isotope is less
than 3% abundant. Thus, the assumption in the elemen-
tal fitting that the isovector effects could be ignored was
valid.

V. THE DISPERSIVE OPTICAL MODEL

V(E)V(E)+PJWEdE (6)

Since the foregoing analysis did not take into account
the fundamental dispersion relationship [2], it is of in-
terest to see what happens when this feature is incor-
porated.

The dispersion relationship links the real and imagi-
nary OM potentials, or radial moments of these interac-
tions, by the expression

sumptions, EJs(E) was evaluated and is shown in the
lower portion of Fig. 9. In the upper half of this figure
the ratio

A(E )=b Js (E ) /Js(E )

is shown, and it was assumed that this is the factor by
which the imaginary potential should be multiplied to
give the surface-peaked component of the real OM poten-
tial.

With the spin-orbit parameters held fixed to the values
given by Eq. (1), a fit to the Zr elastic-scattering database,
including the surface-peaked real component, was carried
out in the same way as for the SOM, and the resulting pa-
rameters are listed under the heading DOM in Table III.
The predictions for the elastic-scattering angular distri-
butions and the total cross sections [33] obtained with
this model agree very well with experiment, and are quite
similar to the SOM results shown in Figs. 1 and 4. (The
actual curves for these quantities obtained using the
DOM are explicitly given in Ref. [32].) When the
(N Z)/A—dependences of the potential strengths, as
given in Eqs. (4) and (5), are incorporated, the s and p--
wave strength functions deduced by use of the DOM are
only a few-percent different from those given in Table IV,
and this difference is considerably smaller than the uncer-

where V(r, E) and W(r, E) are the total real and imagi-

nary potentials, respectively, VHF(r, E) is the Hartree-
Fock component, and P denotes the principal value in-

tegral. In the SOM, a derivative %'oods-Saxon form was
used for the imaginary potential, and this implies that the
real interaction should have a surface component. In or-
der to estimate the magnitude of this surface component,
consider Eq. (6) expressed in terms of volume integrals
per nucleon,

p + „Js(E')dEJ (E)=J, (E)+—f
In this expression Js(E ) is the surface-peaked component
of the imaginary potential, and J,tr(E) is the sum of the
contribution due to VHF(E } and any possible volume ab-

sorption. In order to evaluate the effect of the surface in-
teraction on the real potential we define

-1
0

+50

I

10 15 20 25

p + „Js(E')dE
(E E')— (8)

where Js(E) must be known for all values of E. In order
to estimate this quantity, Js(E) is assumed to be (i) sym-
metric about the Fermi energy EF, where

E~= ,'(ed+as)—
= —9.6 MeV,

-50
-25

E„(MeV)

+25

and ed and eg are the binding energies of the d»2 and
g 9/p neutron states to the Zr core. (ii) For 2EF ~ E & 0,
Js =Jo(E EF ) /EF, where J—o =58.36 MeV fm is the
value of Js at E=O (see Table III). (iii) For O~E ~25
MeV, Js has the values given in Table III. (iv) For
E ~ 25 MeV, Jz decreases linearly with energy to 0 at 60
MeV, and remains 0 at higher energies. With these as-

FIG. 9. The upper portion of the figure shows the A, factor of
Eq. (10). The lower portion of the figure shows the volume in-
tegral per nucleon obtained for the surface potential hJ& calcu-
lated using Eq. (8), and the assumptions directly following this
equation. EJv, the possible addition due to volume absorption,
was calculated using Eq. (12) with the magnitudes based on the
assumptions discussed in the text.
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tainties associated with the experimentally deduced
values [35].

From a comparison of the SOM and DOM parameters
given in Table III, it is clear that the inclusion of the sur-
face real potential barely changes the E dependence of
the geometrical parameters rv, av, r~, and a~. Further-
more, the values of J& are similar to those obtained using
the SOM. This is fortunate since the value of A,(E), Eq.
(10), should have been calculated using the DOM imagi-

nary potential, i.e., an iterative procedure should have
been used. However, since Jz for the two models is so
similar, a single iteration is suScient. On the other hand,

J,z and Jv of the SOM are quite different, as they should
be. Only when b,Js, Eq. (8), is added to J,fr(E) should

the two be compared. In the positive energy range
(0—25 MeV), b,Js(E), shown in Fig. 9, can be reasonably
represented as a linear function of energy,

b,Js =(25.6—2. 1E) MeV fm

and when this expression is added to J,z, a relationship
quite similar to that describing Jv is obtained.

In the DOM fit to the data, J,z is the sum of a
Hartree-Pock component and a possible contribution
from volume absorption. Since JH„ is expected to have a
simple E dependence and J,& is known experimentally to
be almost linear in E for E & 0, it follows that AJv should
be approximately a linear function of energy. To check
this contention, and to estimate the magnitude of EJv,
we assume that the volume absorption is symmetric
about Ez, is zero for 0~ E ~Eo, increases linearly start-
ing at Eo, attains a maximum value of J at E=E, and
then is constant for all E greater than E . With these as-
sumptions, EJv becomes

J E —E —2E~+E +E
b J~(E)= (E Eo) ln — +(E Eo) ln-

rr(E Eo ) — Eo E- E —E
—2E~+Eo+E—

( 2E++E—o+E) ln —2EF +Em +E (12)

Jv=11.0+1.1E (13)

If one, somewhat arbitrarily, takes EO=25 MeV (the
value of E at which the surface absorption was assumed
to begin to decrease), E =60 MeV (the value of E at
which the surface absorption was assumed to reach zero),
and J =76.86 MeV fm (the peak value of the SOM sur-
face absorption according to Table III), then b,J&(E),
shown in the lower portion of Fig. 9, is obtained. Over
the energy range —25 to +25 MeV, it is clear that 6Jv is
considerably smaller than JHF and, moreover, is nearly a
linear function of E,

V, , =(6.84 —0.033E) MeV,

p 1 14 fm

a, , =0.5 fm

(14)

was examined by making a second DOM fit to the data.
The parameters resulting from this fit are

I

[39] of data on the neighboring nucleus Y, the strength
of this interaction is somewhat smaller than used in other
analyses of data on the separated zirconium isotopes
[4,5]. The effect of changing the spin-orbit potential to

Thus, in the energy region of interest, J,z, JH„, and Jv
are all approximately linear functions of E.

Although the spin-orbit parameters given in Eq. (1) are
within the error bars of the values found in the analysis

10

J,tr
= ( 435.94—1.46E ) Me V fm

ry=(1.2533 0 0007E) —fm. ,

v=0 839

Js =(59.18+0.89E) MeV fm

r~=(1.3748 —0.0048E) fm,

a ~ =(0.3419+0.0111E) fm .

(15)

J
J-

0
0

I
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FIG. 10. Comparison of measured and calculated neutron to-

tal cross sections of zirconium. The upper curve was obtained

with the DOM parameters of Table III and the spin-orbit in-

teraction of Eq. (1). The lower curve was obtained using the

DOM with the parameters of Eqs. (14) and (15).

A comparison of these DOM parameters with those of
Table III shows that the changes are mainly in the real
potential —the energy dependence of rv has essentially
vanished and that of J,& has become quite small. The
description of the elastic-scattering distributions is simi-
lar to that obtained with the spin-orbit potential of Eq.
(1). However, the description of the neutron total cross
section has markedly deteriorated at energies below
about 4 MeV, and this is shown in Fig. 10 where the
low-energy predictions for the two DOM's are plotted.
Thus, a better overall description of the neutron interac-
tion with zirconium is obtained with the DOM of Table
III and the spin-orbit potential of Eq. (1).
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VI. THE BOUND-STATE POTENTIAL

A. SOM

where, for example,

(r(E)q) z = f rqW(r, E)dr .
A 0

(17)

For Pb, Y, 'V, and ~Ca the q=0. 8, 2, and 4 mo-
ments of the SOM potential [12,40—43] have been used to
investigate the properties of the real interaction implied
by Eq. (16) when E(0 (i.e., the shell-model potential
which is assumed to be a Woods-Saxon well). In these
calculations, the Brown-Rho [44] form for the radial mo-
ments of the imaginary potential was used,

Cq(E Ep)—
(E)q

(E E) +—D
(18)

The dispersion relationship, Eq. (6), linking the real
and imaginary potentials also relates the radial moments
of these interactions,

p ( r(E')q)
( r(E )q) z = ( r(E )q) Ht;+ —f, dE', (16)

anomaly and, as usual, this occurs at negative energies.
The neutron-scattering values for r~, a~, and J~, given in
Table III, are shown as broken lines in the figure for
E ~0. It is clear that the dispersion-obtained parameters
of the Woods-Saxon well reproduce the positive-energy
neutron-scattering results to good accuracy.

If one takes the shell-model spin-orbit strength as given
by Eq. (1), this can be combined with the values of
Vo(E), rt.(E), and at,(E), shown in Fig. 11, to predict
the binding energies of the various single-particle and
hole states in Zr with the results shown under the head-
ing "SOM" in Fig. 12. The figure also shows the experi-
mental data under the heading "EXP." The energies of
the Og7/2, 1d3/2, 2s, /2, and 1d5/2 particle states were ob-
tained by combining the Zr(d, p)q'Zr data of Graue
et al. [45] with the binding energy tables [46], and from
this one concluded that they are bound by 4.4, 4.8, 5.5,
and 7.1 MeV, respectively. The Og9/2 1p, /2, 1p3/2,

48

so that (r(E)q) ~ was assumed to be symmetric about
the Fermi energy Ez. Using the geometry of the imagi-

nary well given in Table III, together with the 21 values
of Js shown in Fig. 3, radial moments for the above q
values were calculated. The parameters C and D of Eq.
(18) were then determined so as to give the best fit to
these moments. No assumption was made about the
form of the imaginary potential for E &24 MeV except
that as E~ 00 the various moments become constant and
equal to the values C determined from the fit to the
0-24-MeV data.

Because of the simple form, Eq. (18), assumed for
(r(E)q) ~, the principal value integral of Eq (16) can be
carried out analytically. If one assumes that the
Hartree-Fock contribution to (r(E)q) ~ has at most a
linear dependence on E, Eq. (16) becomes

C D (E Ep)—
(r(E)q) r = Aq+BqE+

(E E~) +Dq— (19)

Using the geometry of the real well given in Table III, to-
gether with the Jz values of Fig. 3, the moments of the
real potential, (r(E)q) ~, were calculated for q =0.8, 2,
and 4. Using the previously determined Cq and D, the

Aq and Bq of Eq. (19) were determined by least-squares
fitting, and the values for the various coefficients are
given in Ref. [32].

If one assumes that Eq. (19) for the three moments of
the real potential also holds for negative energies, and if
one takes a Woods-Saxon form for the interaction, values
of the parameters Vo(E), rt, (E), and av(E) needed to
characterize the bound-state region, as well as the
neutron-scattering potential, can be deduced. These are
shown as a function energy in Fig. 11, together with the
values of Jz, the volume integral per nucleon of this po-
tential. J~ exhibits the characteristic Fermi surface

40
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FIG. 11. The energy variation of Vo, rl, and av characteriz-

ing the effective Woods-Saxon well deduced using Eq. (19) and
the parameters given in Ref. [32]. For positive energies, the
values given by a fit to the neutron-scattering data (see Table
III) are shown as broken lines.
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FIG. 12. Comparison of experimental (EXP) binding ener-

gies (E& ) of the particle and hole states in ' Zr with model pre-
dictions. The SOM results were obtained with a Woods-Saxon
well using the parameters shown in Fig. 1 1. The DOM results
were obtained with the surface-peaked potential added to the
Woods-Saxon well as described in the text, and the E=0
geometry given in Table III was used. The strength of the
volume Woods-Saxon well was J&= (457.7 —3.41E ) MeV fm'.
In both cases the spin-orbit potential was of the Thomas form
with the parameters of Eq. (1).

e= g O';E; (20)

Using the known values [25] of E; and 4, , and assuming
all the I = 5 strength has been observed, one concludes
that the Oh» /2 level is bound by 4.5 MeV.

From a comparison of the SOM and EXP columns in

Fig. 12, it is clear that there is good agreement for the
states with 1 (2—in these cases the rms deviation be-
tween theory and experiment is 400 keV. An increase in
the spin-orbit force would improve the situation for the
l =4 and 5 states, provided the parameters of the
Woods-Saxon well, shown in Fig. 1 1, were not appreci-
ably changed. A stronger spin-orbit interaction, which
would be consistent with the Y results of Honore et al.
[39],would lead to tighter binding of the Og9/7 and Oh f f/7

Of 5/2, and Of7/2 hole-state energies can be obtained from
the Zr(p, d) Zr results of Kasagi et al. [47], and their
data imply bindings of 12.1, 13.2, 13.9, 1 5.2, and 22.3
MeV for these states, respectively. Finally, one would ex-
pect the Oh» /2 level to come into binding in this region,
and there is evidence for a large number of l = 5 states in
the stripping data. The center of gravity of these states
can be calculated from a knowledge of the spectroscopic
strength 1, to an l=5 state at energy E; from the rela-

tionship

states, would push up the Og7/2 state, and would have a
minimal effect on the low-spin levels with I ~ 2. Howev-
er, because the Of levels are tightly bound, they would be
less affected by the surface-peaked Thomas term. Thus,
the Of7/2 level would still be too loosely bound, and cer-
tainly the Of1/2 level would be pushed up. Consequently,
a simple increase in the spin-orbit force alone will not be
sufficient to bring theory and experiment into better
agreement for all bound states.

B. DOM

In the analysis of neutron-scattering data using the
DOM the usual Woods-Saxon real well has added to it a
real surface term whose strength is given by Eq. (10). In
the bound-state regime we again assume a real surface
term whose strength is determined by Eq. (10), but in this
case the geometry of the well is taken, somewhat arbi-
trarily, to have the values of a ~ and r ~ that arise when
E =0. These terms should be added to the real Woods-
Saxon well listed under DOM in Table III. However, as
we shall subsequently discuss, much better agreement
with the bound-state data is obtained when the slight E
dependence of r v is ignored. The results, shown in Fig.
12 under the column headed DOM, were obtained when
the real Woods-Saxon potential for negative energies is
given by Jv=(457 7 3 41E. )—M. eVfm (the value ap-
propriate to Zr), the geometries have the E =0 DOM
values given in Table III, and the spin-orbit interaction
has the Thomas form with the parameters of Eq. (1).
From Fig. 12 it is clear that going from the SOM to the
DOM changes the s and d states insignificantly, provides
a distinct improvement for both f and g levels, and only
slightly deteriorates the prediction of the h» /2 binding.
On the other hand, the 1p, /z and 1p 3/2 binding energies
are significantly worsened, the former now being over-
bound by 1 .3 Me V and the latter by 2.1 Me V. Overall,
the general description of particle and hole-state binding
energies is slightly better using the DOM than the
SOM —for the former the rms deviation between theory
and experiment is 1.2 MeV, whereas for the latter it is 1.4
MeV.

To use the DOM consistently, one should have taken
into account the small energy variation of rv given in
Table III. Since the particle states have small values of
E, the effect on them of including this energy dependence
is unimportant. On the other hand, the continued in-
crease of rv with increasing binding energy has a devas-
tating effect on the hole-state predictions: the rrns devia-
tion between theory and experiment is increased from the
constant r v value of 1 .2 to 3.2 MeV. As an alternative,
one might assume that r ~ has the same energy depen-
dence as given in Table III, but is symmetric about the
Fermi energy EF. If this is done, the rms deviation of the
hole states shrinks 2.1 MeV, but still remains much worse
than the constant rz value.

In evaluating the strength of the added surface poten-
tial we have assumed that, for E )24 MeV, 8' decreases
linearly with increasing E, becoming zero at 60 MeV and
at higher energies. In order to check the sensitivity of
bound-state predictions to this somewhat arbitrary as-
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sumption, we have redone the calculation assuming that
8'becomes zero at 150 MeV. With this change, the par-
ticle states become more tightly bound and the hole states
more loosely bound. However, the effect is small: the
Og7/2 Oh»/2 1d3/2 2s&/2, and 1dz/2 particle states
change by 0.05, 0.12, 0.06, 0.05, and 0.04 MeV, respec-
tively, whereas the Og9/2 1/p, /z, lp3/2, Of 5/z, and Of 7/2
hole states shift by 0.02, 0.06, 0.07, 0.04, and 0.10 MeV,
respectively.

More important for the bound-state problem is the be-
havior of Js at low scattering energies. Unfortunately,
because of fluctuations, it is diScult to pin this behavior
down. Although it is not shown explicitly for the DOM,
the behavior is quite similar to that obtained for the
SOM, shown in Fig. 3. From these results, it would ap-
pear that between 1.65 and 3.1 MeV Js increases with E,
between 3.1 and 5 MeV it decreases, and then for E) 5
MeV it again increases with energy. Assuming these
variations are not a manifestation of fluctuations, we
have fitted Js with the expression Js=a+PE indepen-
dently in the three different energy intervals 0-3.1,
3.1-5, and 5-24 MeV, and investigated the change
brought about in the predicted binding energies. The
effect is in the opposite direction to that discussed in the
preceding paragraph: all of the particle states are less
tightly bound, and with the exception of the Of7/p level,
the hole states are more tightly bound. The magnitude of
the effect is larger than that in the above paragraph: the
Og7/2 Oh»/2 1d3/2 2s, /2, and 1d, /, particle and the

Of7/2 hole states are less tightly bound by 0.33, 0.35,
0.38, 0.35, 0.26, and 0.10 MeV, respectively, whereas the
Og9/2 ip, /p lp3/2 and Of 5/2 hole states are more tight-
ly bound by 0.14, 0.29, 0.25, and 0.19 MeV, respectively.
Although the predicted binding energies of the Og7/2,

1d3/2 and 2s&/2 states are now closer to experiment,
those of the Oh»/2 and 1d»2 states are worsened, so that
the rms deviation between theory and experiment is
essentially the same as for the original calculation. On
the other hand, the incraa~e in the binding of the hole
states worsens the agreement between theory and
experiment —the rms deviation is now 1.4 MeV com-
pared to 1.2 MeV for the results shown in Fig. 12.

Thus, it is concluded that the extrapolation of the
neutron-scattering potential to the bound-state regime
meets with only modest success. The energy-independent
version of the DOM provides a significantly better pic-
ture of the bound-state data than do the two rz-energy-
dependent versions discussed, and it is also slightly better
at describing the experimental results than is the SOM
model.

VII. SUMMARY DISCUSSION

When the spin-orbit interaction of Eq. (1) is combined
with SOM or DOM parameters given in Table III, a good
description of both the elemental zirconium differential
elastic scattering and neutron total cross sections between

1 and 24 MeV is obtained. From Table III, it is evi-
dent that the volume integral per nucleon of the DOM
real potential is smaller in magnitude and less energy
dependent than its SOM counterpart. This is consistent

with the fact that the added surface component AJS has
the same sign and energy slope as J,z. Thus, although
b,Js is only about 5% of the total J~, it appears that
about 30% of the E dependence of Jv in the conventional
SOM is due to the dispersion-integral contribution. As
discussed in Ref. [32], it is also clear that use of the DOM
should decrease the energy dependence of r~ relative to
that of the SOM, and indeed, this is true. However, a
small but significant E dependence of rv remains when
the DOM is used. Finally, for both models az is energy
independent, and its SOM and DOM values differ by a
small percentage that is probably not significant.

In a recent paper [48], the dependence of the SOM r~
and Jv on mass number was studied at 8 MeV. Over the
range A =51 to 209, it was found that both rz and Jz de-
crease with increasing A. The 8-MeV values found in the
present SOM interpretation fit nicely into the systematics
of Ref. [48], and the present az is nearly identical to the
average value, 0.67 fm, found for the A =51 to 209 nu-
clei. Since the SOM real potential is the sum of a smooth
Hartree-Fock term and a nucleus-dependent dispersion
contribution, one might have expected some deviation
from the smooth A dependence that was found. Howev-
er, as already noted, the dispersion-integral contribution
is only about 5% of Jz, and also, as can be seen from Fig.
9, at 8 MeV AJs, is almost zero.

Turning to the imaginary potential, one sees from
Table III that for both the SOM and the DOM r~ de-
creases with increasing energy, whereas a~ increases.
This behavior has been already noted in our analysis of
the neutron-scattering data for other nuclei [42,48—52]
( 'V, Ni, Co Y, " In, and Bi). As expected, Js
increases with energy since at higher energies more in-
elastic channels are open. Up to and including the 24-
MeV data, we find no evidence for volume absorption,
and this is consistent with the findings of Wang and Ra-
paport [5] who studied 24-MeV scattering from separated
zirconium isotopes. From our work on elemental zirconi-
um; — we~an- ~my-nothing--about- -the 'sotopic - behavior--of--

the potential. However, from the work of Wang and Ra-
paport [5], it is clear the Js increases with increasing
(N Z)/A [see Eq—. (5)]. This result has been found for
other nuclei near closed shells [9], and reflects the fact
that there the number of open channels is at a minimum.
This finding is contrary to the (N Z)/A depende—nce of
Js proposed in global models [6,7], and again points at
the fact that the imaginary potential is nuclear-structure
dependent.

When the (N Z)/A depen—dence of the potentials,
given by Eqs. (4) and (5), is invoked, our model describes
quite well the elastic scattering from the various Zr iso-
topes (see Figs. 5 and 6). At low energies, compound-
nucleus inelastic scattering to individual levels is predict-
ed to be fairly large and agrees reasonably well with the
elemental and isotopic experimental data (see Figs. 2 and
7). At higher energies, experimental resolution limits our
inelastic-scattering results to groups consisting of contri-
butions from several isotopes. Inelastic scattering to both
the 1.85 —2.2- and 2.6—2.9-MeV groups is predicted to be
~ 100 mb on the basis of compound-nucleus theory, and
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this is in reasonable agreement with experiment. On the
other hand, the predicted compound-nucleus cross sec-
tion for the excitation of the 941-keV "level" is much
smaller than observed, clearly indicating a large direct-
reaction component. Its required magnitude is about the
same as that found by Wang and Rapaport [5] for
scattering to the yrast 2+ states in Zr and Zr.

The real optical-model potentials have been extrapolat-
ed to negative energies, and the predicted binding ener-
gies of single-particle and -hole states of Zr are com-
pared with experiment in Fig. 12. In the SOM, this po-
tential was assumed to have a Woods-Saxon form with
the parameters shown in Fig. 11. In this case, the rms
deviation between theory and experiment is 1.4 MeV for
the particle states, and the same magnitude was found for
the hole states. For the DOM, the shell-model potential
is a sum of two terms: a Woods-Saxon well whose pa-
rameters are given in the caption of Fig. 12, plus a deriva-
tive Woods-Saxon well whose strength is determined by
the dispersion relationship, Eq. (8), and whose geometry
is given in Table III at E=O. The DOM description of
the binding energies is somewhat better than obtained
with the SOM model —the rms deviation of both the par-
ticle and hole states is 1.2 MeV. Delaroche et al. [4]
have also studied the bound-state problem using a DOM
determined from a fit to their Zr data. With their in-
teraction the predicted particle states are somewhat
closer to experiment —the rms deviation is 0.8 MeV. On
the other hand, their predicted hole states have an rms
deviation of 2 MeV.

In determining the binding energies of the Zr states it
was assumed that all the stripping and pickup strength
had been observed. Any missed stripping strength would
imply looser binding for the particle states, and any
missed pickup strength would lead to tighter hole-state
binding. With the exception of the Oh &&/2 level, both our
calculations and those of Delaroche et al. [4] predict par-
ticle states more tightly bound than experiment. Thus,
except for the Oh»/2, any missed stripping strength
would worsen the agreement between theory and experi-
ment for the particle states. On the other hand, with the
exception of the Og9/2 state, all hole states are predicted
to be too tightly bound on the basis of both our DOM
and that of Delaroche et al. Thus, missed pickup
strength would improve the agreement between theory
and experiment for all the hole states except the Og9/2.
For the SOM, shown in Fig. 12, only the 1p3/2 state is
predicted to be too tightly bound, so for this model
missed pickup strength would worsen the agreement be-
tween theory and experiment. Thus it would appear that,
even with the optimum scenario on missed stripping and

pickup strengths, the extrapolation of the Zr scattering
potential to the bound-state regime leads to predictions
for binding energies that are considerably worse than
were obtained, for example, from a similar extrapolation
[42] in 'V. In this latter case, the rtns deviation between
theory and experiment for the particle states was 550
keV, and for the hole states 700 keV.

The data [39] on the neighboring nucleus Y indicates
that the spin-orbit strength may be slightly larger than
given by Eq. (1), and indeed, two recent analyses [4,5] of
zirconium data have used a larger value for this interac-
tion. Although the values of the spin-orbit parameters
[Eq. (1)] are within the uncertainties given in the Y
analysis, we have redone the DOM interpretation using
the strength determined from studies of this neighboring
nucleus [39]. As shown in Fig. 10, the low-energy neu-
tron total cross sections predicted by this model are sub-
stantially smaller than experiment. This shortcoming is
mainly due to the small value of r~ at low energies in this
model: models based upon low-energy data, for example,
that of Moldauer [53], generally lead to rv values in the
neighborhood of 1.3 fm. When the potentials described
by Eqs. (14) and (15) are extrapolated to the bound region
and E=O values are used for V... rv, r~, and a~, all
states except the 1p3/2 are predicted to be less tightly
bound than experiment because of the very slow increase
in Jv with decreasing energy. This actually lowers the
rms deviation between theory and experiment for the par-
ticle states to 0.8 MeV, but worsens the predictions for
the hole states to an rms deviation of 1.7 MeV. Thus, if
zirconium data are to be analyzed using the DOM the pa-
rameters of Table III and the spin-orbit strength of Eq.
(1) should be used.

Finally, most of the parameters of the above SOM and
DOM have energy depend ences that are reasonably
represented by linear expressions. These are clearly first
approximations, valid only over the energy range of the
present interpretations, and should not be used to extra-
polate to far higher energies. It is reasonable to expect
that energy-independent values are asymptotically ap-
proached above 20 to 25 MeV. This transition may al-
ready be underway between 10 and 24 MeV, but it is im-
possible to tell due to absence of experimental informa-
tion in this energy region.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy under Contract No. W-31-109-Eng-38.

[1]P. E. Hodgson, Nuclear Reactions and Nuclear Structure
(Clarendon, Oxford, 1971).

[2] G. R. Satchler, Direct Nuclear Reactions (Clarendon, Ox-
ford, 1983).

[3]A. M. Lane, Phys. Rev. Lett. 8, 171 (1962).
[4] J. P. Delaroche, Y. Wang, and J. Rapaport, Phys. Rev. C

39, 391 (1989).
[5] Y. Wang and J. Rapaport, Nucl. Phys. A517, 301 (1990).

[6] R. L. Walter and P. P. Guss, in Proceedings of the Confer
ence on Nuclear Data for Basic and Applied Science, edited

by P. Young, R. Brown, G. Auchampaugh, P. Lisowski,
and L. Stewart (Gordon and Breach, New York, 1986),
Vol. 2, p. 1079.

[7] J. Rapaport, Phys. Rep. 87, 25 (1982).
[8] R. D. Lawson, P. T. Guenther, and A. B. Smith, Nucl.

Phys. A519, 487 (1990).



45 FAST-NEUTRON INTERACTION WITH ELEMENTAL. . . 1275

[9] A. M. Lane, J. E. Lynn, E. Melkonian, and E. Rae, Phys.
Rev. Lett. 2, 424 (1959);W. Vonach, A. B. Smith, and P.
A. Moldauer, Phys. Lett. 11,331 (1964).

[10]P. E. Hodgson, private communication.
[11]C. Mahaux and H. Ngo, Phys. Lett. 100B, 285 (1981);

Nucl. Phys. A378, 205 (1982).
[12]C. Mahaux and R. Sartor, Phys. Rev. Lett. 57, 3015

(1986).
[13]C. Mahaux and R. Sartor, in Advances in Nuclear Physics,

edited by J. W. Negele and Erich Vogt (Plenum, New

York, in press).
[14]A. Smith, P. Guenther, R. Larson, C. Nelson, P. Walker,

and J. Whalen, Nucl. Instrum. Methods 50, 277 (1967).
[15]C. Budtz-Jorgensen, P. Guenther, A. Smith, J. Whalen,

W. McMurray, M. Renan, and I. Van Heerden, Z. Phys.
A319, 47 (1984).

[16]S. Chiba, P. T. Guenther, and A. B. Smith, Argonne Na-
tional Laboratory Report ANL/NDM-112, 1990.

[17] M. Drosg, Production of Monoenergetic Neutrons Be-
tween 0.1 and 23 MeV: Neutron Energies and Cross Sec-
tions, IAEA-TECDOC-410, 239 (IAEA, Vienna, 1987).

[18]A. Smith, P. Guenther, and R. Sjoblum, Nucl. Instrum.
Methods j.40, 397 (1977).

[19]Nuclear Standard File, IAEA Technical Report No. 227,
edited by H. Conde, A. Smith, and A. Lorenz (IAEA,
Vienna, 1983).

[20] A. B. Smith, P. T. Guenther, and R. D. McKnight, in
Proceedings of the Conference on Data for Science and
Technology, edited by K. H. Bockhoff (Reidel, Dordrecht,
Holland, 1982), p. 39.

[21]P. T. Guenther, PhD. thesis, University of Illinois, 1977.
[22] A. B. Smith, Monte Carlo correction computer codes

MONTE-SPHERE and MONTE-POLY, unpublished memoran-
da (1988) available from the author.

[23] A. B. Smith and P. T. Guenther, Argonne National Labo-
ratory Report ANL/NDM-69, 1982.

[24] D. C. Kocher, Nucl. Data Sheets 16, 55 (1975).
[25] H. W. Muller, Nucl. Data Sheets 31, 181 (1980); 60, 835

(1990)~

[26] P. Luksch, Nucl. Data Sheets 30, 573 (1980).
[27] H. W. Muller, Nucl. Data Sheets 44, 277 (1985).
[28] Chart of the Nuclides, 13th ed. , prepared by F. W. Walker,

D. G. Miller, and F. Feiner (General Electric Co., 175
Curtner Ave. Mail Code 684, San Jose, CA, 95125, 1983).

[29] P. A. Moldauer, private communication (1982) as modified

by S. Chiba (1989).
[30] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
[31]P. A. Moldauer, Nucl. Phys. A344, 185 (1980).
[32] S. Chiba, P. T. Guenther, A. B. Smith, M. Sugimoto, and

R. D. Lawson, Argonne National Laboratory Report
ANL/NDM-119, 1991.

[33]S. Chiba, P. T. Guenther, J. W. Meadows, R. D. Lawson,
A. B. Smith, D. L. Smith, and R. J. Howerton, Argonne
National Laboratory report (to be published); A. B.Smith,
P. T. Guenther, and J. F. Whalen, Argonne National Lab-
oratory Report ANL/NDM-4, 1974.

[34] A. Gilbert and A. Cameron, Can. J. Phys. 43, 1446 (1965).
[35] S. F. Mughabghab, M. Divadeenam, and N. E. Holden,

Neutron Cross Sections (Academic, New York, 1981).
[36]S. Tanaka, Data available at the National Nuclear Data

Center, Brookhaven National Laboratory.
[37]R. W. Stooksberry, J. H. Anderson, and M. Goldsmith,

Phys. Rev. C 13, 1061 (1976).
[38] F. D. McDaniel, J. D. Brandenberger, G. D. Glasgow, and

H. G. Leighton, Phys. Rev. C 10, 1087 (1974).
[39]G. M. Honore, R. S. Pedroni, C. R. Howell, H. G.

Pfutzner, R. C. Byrd, G. Tungate, and R. L. Walter,
Phys. Rev. C 34, 825 (1986).

[40] C. Mahaux and R. Sartor, Nucl. Phys. A468, 193 (1987).
[41]C. Mahaux and R. Sartor, Phys. Rev. C 36, 1777 (1987).
[42] R. D. Lawson, P. T. Guenther, and A. B. Smith, Nucl.

Phys. A493, 267 (1989).
[43] C. Mahaux and R. Sartor, Nucl. Phys. A484, 205 (1988).
[44] G. E. Brown and M. Rho, Nucl. Phys. A372, 397 (1981).
[45] A. Graue, L. H. Herland, K. J. Lervik, J. T. Nesse, and E.

R. Cosman, Nucl. Phys. A187, 141 (1972).
[46] A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables

19, 177 (1977).
[47] J. Kasagi, G. M. Crawley, E. Kashy, J. Duffy, S. Gales, E.

Gerlic, and D. Friesel, Phys. Rev. C 28, 1065 (1983).
[48] S. Chiba, P. T. Guenther, R. D. Lawson, and A. B. Smith,

Phys. Rev. C 42, 2487 (1990).
[49] A. B.Smith et al. (in preparation).
[50] A. B. Smith, P. T. Guenther, and R. D. Lawson, Nucl.

Phys. A483, 50 (1988).
[51]R. D. Lawson, P. T. Guenther, and A. B. Smith, Phys.

Rev. C 34, 1599 (1986).
[52] R. D. Lawson, P. T. Guenther, and A. B. Smith, Phys.

Rev. C 36, 1298 (1987).
[53]P. A: Moldauer, Nucl. Phys. 47, 65 (1963).


