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Calculations have been performed to explore the effect of configuration mixing in a large basis on
the fragmentation of "stretched" M6 strength in the sd-shell nuclei Ne, Mg, Si, S, and Ar.
This work elaborates on results for Si given previously, extends those calculations to neighboring
N = Z nuclei with the same basis restriction (one particle in the 1frlq orbit and up to four particles
in the 1dslq orbit) used in that earlier paper, and examines all self-conjugate sd-shell nuclei in a
basis with one particle in the 1f7t2 orbit and unrestricted occupancy of the sd-shell orbits. It is
found that configuration mixing in a large basis reproduces interesting features of the spectrum for

Si arid S and gives an improved description of other properties of the observed 6 states, but
fails to describe the observed spectrum in Mg. Emphasis is placed on the location of additional
obser vable fragmen ts of the M 6 response.

PACS number(s): 21.10.Re, 27.30.+t, 21.60.Cs, 23.20.Js

I. INTRODUCTION

In an earlier paper [1] we reported evidence that the
distribution of stretched spin strength that has been the
subject of much experimental and theoretical activity
[2—12] could be explained, in the case of 6 states in
the 2sSi nucleus, as a consequence of fragmentation in a
suitably large shell-model basis. In this paper we provide
more information on those calculations and present new
results for the other N = Z sd-shell nuclei that reinforce
our conclusion that fragmentation is the principal source
for the reduction, relative to single-particle estimates, of
observed stretched spin strength.

"Stretched" particle-hole states, for the even-even nu-
clei typically studied, have negative parity and total an-
gular momentum J = jI, + j& that is the fully aligned
sum of the maximum possible hole and particle angular
momenta, jp —8I, + 2 and jp

—
L& + 2, in the valence

shell and the shell lying immediately above it, respec-
tively. In the Sd-shell nuclei of interest here, these are 6
states. To be more precise, it is the unique (If7lqld~&2)
configuration that is "stretched" and not the 6 states
themselves. (Our language tends to reflect early expecta-
tions that this stretched configuration would appear as a
single state [3].) These 6 states have the property that
the strength observed via one-step inelastic-scattering re-
actions is due only to the single stretched component of
its wave function, whether it appears as a single state or
is fragmented by configuration mixing, when interpreted
within a (0+1)hen model space [4—8].

This crucial property, that excitation of any 6

state via a one-step M6 transition from an sd-shell 0+
ground state proceeds through the stretched configu-
ration, means scattering experiments can be used to
map out the distribution of this unique configuration
among all the 6 states. Further, interpretation of such
inelastic-scattering data is simplified because this config-
uration gives rise to a single spin transition density, p&L
with J = 6, L = 5, and S = 1 for an lll6 excitation, that
is the sole common source for the cross section, given
schematically [11] in the plane-wave approximation by

measured in electron, nucleon, and pion inelastic scatter-
ing reactions. In this expression, t, is a probe-dependent
interaction strength [11] and p, is the reduced total en-
ergy of the projectile. (These statements are based on
the assumption that 3hcu states do not intrude [4—8] and
that exchange nonlocalities can be modeled with a sin-
gle effective coupling strength [13]; note that the former
assumption remains valid even in the presence of config-
uration mixing as emphasized in Ref. [8].) This is to be
contrasted with the situation for Ml excitations where
the presence of convection currents (see Ref. [11] for t, he
relevant version of Eq. (1)) complicates the analysis of
scattering data.

The fact that a single transition density drives the ex-
citation of these states in inelastic-scattering reactions,
regardless of the probe used, provides us with a very
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powerful tool. Because magnetic electron scattering is
mainly (by a factor of 28) sensitive to isovector excita-
tions, we can employ it to deduce the strength of those
excitations with great precision. Iiadronic probes can
then be calibrated against the isovector excitations and
subsequently used to deduce the strength for isoscalar
transitions. Experiments with a variety of intermediate
energy probes give consistent results for the spin strength
attributable to the "stretched" configuration [5—12], ver-

ifying this model.
The observed strength is typically a small frac-

tion of the strength expected for a pure particle-hole
excitation —generally less than 3 for isoscalar excita-
tions and less than

&
for isovector excitations. What

this means, of course, is that the stretched configuration
makes up only a small fraction of the total wave function
of the so-called "stretched state. " It is this depletion of
strength that we wish to understand, because it provides
information on the spin-dependent parts of the effective
interaction in nuclei.

Since the wave function is normalized, it must be that
the "missing strength" has been displaced by other con-
figurations. A convenient language for discussion of this
redistribution of strength can be obtained by expressing
the closure relation schematically as

[M6)(M6[+ [1hu)(lb'[+ [C)(C~+ [b)(A~ = 1,

where ~M6) is the stretched 1hu configuration,
~lb~)(lb') implies a summation over the set of all other
possible 6 configurations in a 1h~ basis, ~C)(C~ implies
a summation over the remaining () 3hu) core excita-
tions, and we have included ~b)(b. [, indicating a sum-
mation over all 6 configurations in the non-nucleonic
sector, such as b;hole states, that have been considered

by some workers. Each term in this expression is thus a
projection operator for the key elements that enter vari-
ous structure calculations.

The reduction in observed strength is generally referred
to as "quenching" in the literature, but we prefer to re-
serve "quenching" for the specific case where strength is

removed by mixing with states far away in the spectrum
(such as is the case for 6-hole states, which lie hundreds
of MeV above the states of interest, or highly excited
core polarization contributions) so there is no expecta-
tion that the displaced strength will be seen in the re-

gion of excitation being studied experimentally. In that
case, use of "quenched" effective operators makes sense,
We prefer to use the term "fragmentation" to describe
the situation where strength is redistributed by mixing
with nearby configurations, as when mixing with ~lb')
configurations is considered, so there is a chance that
other fragments of the stretched configuration might be
observable. In the latter case, the spectral distribution
of strength, and not just an overall scale factor for the
strongest state, is of interest and can give us important
information about the mixing that took place.

The effects of non-nucleonic degrees of freedom, im-
plied by the ~A)(A~ projection operator in the expression
above, are largest, for Ml and Gamow-Teller (GT) tran-
sitions. Calculations [14—16] indicate that non-nucleonic

degrees of freedom such as the 4 might give up to '20%

contributions to the transition matrix elements in those
cases. These same models [14—16] indicate negligible cor-
rections to stretched transitions due to 6 degrees of free-

dom. We will not consider them further.
Many studies have used the perturbative approach

whereby particle-hole excitations involving high-lying
shells, the space denoted by ~C) above, polarize the
core and reduce the one-step M6 transition rate. How-

ever, when realistic interactions are employed, these
core-polarization effects produce only half of the re-

quired strength reduction [17—24]. Further, the core-

polarization corrections tend to be nearly identical for
T = 0 and T = 1 excitations [22, 24], as emphasized
in Ref. [7], while the reduction in strength is markedly
asymmetric. These arguments indicate that "quenched"

effective operators arising from the omission of ~C) wave-

function components from the Hilbert space used for our
calculations cannot be the dominant source of the ob-
served strength reduction.

Studies also have been made where the nonperturba-
tive effects of valence-space configuration mixing were es-

timated in a rotational model [25—27]. This approach has

the advantage that important ground-state correlations
(including those from the ~lhasa) space and some from

the ~C) space) are included in a compact fashion, which

makes the calculations more practical in heavier nuclei

than the corresponding shell-model calculation. From
our point of view, it is also important that these mod-
els make predictions for the spectrum of the stretched
strength. The location of potentially observable weak
fragments of the stretched configuration provides an im-
portant test of any configuration-mixing model.

The expectation that valence-space configuration-
mixing effects are primarily responsible for the observed
depletion of "stretched" spin strength has motivated sev-
eral shell-model studies of stretched transitions within
the ~lb~) space. Initial studies [28—30] were able to ex-
plain only about half of the depletion of strength, with
the exception of some studies of "stretched" 4 states
in p-shell nuclei where the small basis size allowed full

(0 + 1)h~ calculations. In the ' C case examined by
van Hees and Glaudemans [30], the T = 1 state is pre-
dicted to contain 58% of the extreme single —particle-hole
model (ESPHM) estimate and the T = 0 state is frag-
mented into several states with the strongest contain-
ing 40% of the ESPHM estimate. These compare fa-
vorably with the 32—40% fraction of the ESPHM seen
experimentally for the T = 1 state [31], with the exact
number depending on whether one deals with the known
isospin mixing [32], and the (38 6 11)% seen experimen-
tally for the T=O state [31,33]. Calculations by Millener
[31], based on the work of Ref. [28], give similar results.
We should add that the work of Yokoyama. and Horie
[23] indicates that core polarization (i.e. , adding the ~C)
space perturbatively) can explain much of the remaining
discrepancy between the isovector strength predicted by
van Hees and Glaudemans and that observed experimen-
tally; however, Ref. [23] did not examine the isoscalar
states, where no additional reduction seems necessary.
The point is that core polarization is expected to provide
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a small, perturbative correction to the spectrum obtained
in the 1k~ space. We emphasize that it is this spectrum,
which shows the location of the "missing" fragments of
M6 strength, that is most crucial to understanding the
physics of these states.

The challenge has been to extend such relatively com-
plete calculations to the sd shell (and beyond) so that
systematic comparisons can provide additional tests of
the model. In an earlier shell-model study in the sd shell,
Amusa and Lawson [29] (hereinafter to be called AL) ex-
amined the effect of limited configuration mixing on sev-
eral aspects pertaining to the single particle transition
1ds/z ~ 1f7/q in Si. Liu and Zamick [26] have made
related studies using the rotational model with Corio-
lis mixing. In the work of AL, significant improvement
in the inelastic-scattering cross sections and transfer-
reaction spectroscopic factors for the lowest T = 0 and
T = 1 6 states and the B(M 1) transition rate between
them was found when the zero-order (pure particle-hole)
prediction based on the (1ds/z) ~ (1ds/z) (1f7/z)
transition is extended to include the 1si/z level in the
core.

This limited success, and the remaining discrepancies
between their findings and the experimental limits on
the full spectrum of 6 strength determined from pion,
proton, and electron scattering, motivated us to extend
the model space further by allowing up to 4 particles to
populate the 1ds/z level. This basis contains 75% of the

6 states in a full (sd)ii f7/z basis for ~sSi, and thus gives
a good measure of the results to be expected from full
(0+1)hu configuration mixing in sd-shell nuclei. Here we

report further on that work [1],extend it to provide more
systematic results that include the neighboring N = Z
nuclei of szS (some of which were presented in Ref. [34])
and 24Mg within the same basis truncation, and show
results for the full sd space in calculations for all N = Z
sd-shell nuclei [35]. We restrict our discussion to self-
conjugate nuclei to avoid the additional complications
produced by neutron-proton mixing.

In the remainder of this paper we first describe, in
more detail than was possible in our previous paper [1],
the model and methods used to calculate the M6 strength
distribution and other properties of the 6 states in these
sd-shell nuclei. We then present results for each of the
nuclei in turn and close with a discussion of their impli-
cations for future work in this area.

II. METHODS

The calculations described in this work were performed
in the bases

and

(ds/2, si/2)

(d5/2) s,/~)
" '

ds/2 f7/~)

where m = A —16 and 0 & & + &max& with Amax

4, and 8 used as different basis restrictions. We use a
Hamiltonian that consists of the Wildenthal (BHW) ef-
fective Hamiltonian for the full sd shell [36] and the "best-

fit" Shiffer-True (ST) central spin-dependent interaction,
constructed from the second set of entries in Table XVI
of Ref. [37] with ri —1.45 fm and rq ——2.0 fm, to connect
the sd and f configurations. The latter is evaluated for
harmonic-oscillator radial functions using v = 0.293, cor-
responding to a size parameter 6 = 1.847 fm, to be con-
sistent with previous work ['29]. The f7/2 single-particle
energy (s.p.e.) is adjusted to give the correct excitation
energy for the lowest 6 T = 0 state in Si. (This makes
that s.p.e. depend slightly on the basis truncation used;
its value is about 6.8 MeV. )

We also have repeated the AL calculation for 2sSi,
corresponding to n „=0 in our notation above, and
did a similar calculation for the ~4Mg case they did
not do. This calculation requires use of a, Hamilto-
nian consisting of the Wildenthal, McGrory, Halbert, and
Glaudemans (WMHG) effective interaction appropriate
to the d5/z, si/z space [38] plus the same ST central spin-
dependent interaction to connect the two spaces. A sig-
nificantly different f7/z s.p.e. is required to locate the
lowest T = 0 state correctly for this case. (Calibrat-
ing on the lowest isovector state would reduce the need
for this big change between the AL case and the present
work, since the isovector eigenenergy is less affected by
the mixing, but we choose to stay with the AL procedure,
for now. ) The WMHG/ST Hamiltonian is used only to
explore the systematic trends attributable to the change
in basis size that was the main point of our earlier paper.

Since our main concern is with the depletion of
strength seen in inelastic scattering, we are interested
in matrix elements

(2)

(reduced in spin-space only), the Raynal Z coefficient
[39], of the operator

. 6,M
(3)

for the full spectrum of 6 states in Si. In this ex-
pression, a~ creates a particle, a annihilates one, and the
square brackets indicate coupling to the total angular mo-
mentum 6 and isospin T with the usual factors to ensure
the correct rotational properties [39]. Note that, @s, hasJ" = 0+ and T = 0 so the A& operator connects to a
state with the isospin T carried by the operator.

The simplicity of the "stretched" states guarantees
that the inelastic-scattering cross section is proportional
to Z& for all probes considered, but the large number of
possible states (up to 82000 in our largest basis) makes
it impractical to evaluate Z explicitly for each eigen-
state of the model system. The Lanczos algorithm pro-
vides a convenient alternative [40], since it obviates the
need to pursue a full diagonalization in this space but, as
Whitehead [41) has shown, still gives a description of the
distribution of strength as a function of energy accurate
to the (2N —1)th moment after N Lanczos iterations.
This algorithm also converges fastest for the lowest-lying
states, so we get "sharp" states for the yrast T = 0 and
T = 1 levels observed experimentaly. .

The specific procedure is to start from a, good ground
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state for the nucleus obtained by diagonalization within
the (relatively small) sd-shell basis. Then we form the
"collective vector" [42] for the 6 state of isospin T de-
fined by

l&T) = AT"plug. ) (4)

that contains all of the M6 strength in this basis and
thus determines

(6)

making it trivial to follow the fragmentation of this spe-
cific configuration. This follows since we can compute
Z directly and cheaply from E and the coefficient of
this vector —a clear measure of its fragmentation —in each
pseudoeigenvector at any stage of the calculation. (This
method is simplest to use for an I = T = 0 ground state
such as we consider here. ) Specifically, when we find the
pseudoeigenstates

I& ) = ).n&(i) 14)

after N iterations of the Lanczos algorithm, it is easy to
compute the spectrum from

and the eigenenergies E; and widths

(9)

The theorem mentioned above guarantees [41] that the
resulting spectrum has the same moments as the exact
spectrum up to F

At this point we wish to call the reader's attention
to some key differences between this method and that
used in more familiar shell-model structure calculations.
Normally one defines a model space and diagonalizes the
Hamiltonian to obtain the full spectrum of eigenstates
and their associated many-particle eigenvectors, subject
only to the limitations of the model used. We cannot do
this for the problem under study, and we use the jargon
pseudoeigenstates to indicate that only part, albeit the
most important part, of the exact model eigenvector is
included in our answer. Unimportant, in this context,
means that the coeKcients for the many Lanczos basis
vectors that would be added to the expression of Eq. (7)
for the low-lying states, if we were to iterate to comple-

Z = (XTIXT),

a "sum rule" that gives the integral of ZT~ over all M6
transitions for a given isospin transfer in our model space;
the value of E is determined by the occupancy of the
d5~z orbit in the ground state (Z. is independent of T.)
Zamick [25] has pointed out that the reduction of E from
unity (for 2sSi) is a natural consequence of deformation
of the core and the resultant depletion of the d5~~ orbit.
The "collective vector" is used as the first Lanczos vector

tion, are extremely small. For example, the 24th vector
only contributes 10 to the magnitude of the yrast
T = 0 state for 2sSi. The width I' defined in Eq. (9) re-
sults from the fact that the pseudoeigenstate in Eq. (7)
is not an eigenstate of the model H.

We use the spectra generated by the procedure de-
scribed above as a. compact means of displaying the scat-
tering strength expected for the lowest 6 states as a
result of using different model space truncations, as well

as the distribution of M6 strength at high F that results
from the fragmentation of the single-particle configura-
tion. Following the Livermore approach [42], the curves
in the figures are based on the magnitude of Z~ for the in-
dividual pseudoeigenstates spread by a Gaussian of width
I' or 100 keV, whichever is larger. Such a curve is pro-
portional to the inelastic-scattering cross section at the
peak of the angular distribution, except one must keep
in mind that the broad bumps represent a large number
of small states with the given distribution. It is prob-
able that the strength will actually appear spread over
all of these states if the Lanczos iterations were carried
to convergence, but we have no way to know whether it
actually appears in a few stronger states with the same
moments.

This ambiguity regarding the location of the actual
eigenstates leads to some difficulties when we wish to
compare our predictions to the observed spectrum. How-
ever, the states at higher E are unbound so their large
real widths tend to mask this problem. (Of course, calcu-
lations in that domain should also include explicit cou-
pling to the continuum [43]. Such work is beyond the
scope of the current project. ) In addition, we typically
have experimental data for the yrast states where our
calculation is sufficiently converged so that only a small
energy error (r & 10 s MeV) remains from the fact that
the wave function is not quite a proper eigenstate of the
model Hamiltonian. The artificial width of 100 keV keeps
the spectrum looking normal, and we place the "data
points" at a height corresponding to the top of a Gaus-
sian of this same 100 keV width and an area equal to
the measured strength. The reader should compare these
data points to the extreme top of the theoretical peak for
converged states, We will also find it convenient to dis-
play some data with histogram bars. Provided we choose
the width of a rectangular bar to be 250 keV, we can com-
pare the height of the bar to these "data points" and the
area of the bar to the area under the Gaussian curve.

The eigenvectors for the observed states are formed at
the end of the sequence of iterations so that we can cal-
culate such things as the spectroscopic factor for proton
stripping to these states and the B(M1) transition rate
between them. The spectroscopic factor defined by

~p (@6, (T" )Zll u&„„„.... Il~.+(" 'Z —1))'

(reduced in spin space only) is calculated directly from
the respective wave functions, where we form the A —1

ground state following the same procedure that we used
for the mass-A ground state. (Note that the square of the
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isospin Clebsch-Gordan coefficient is C2 =
2 for the cases

considered here. ) The B(M1) rate for electromagnetic
decay of the 6, T = 1 state to the yrast 6, T = 0 state
is evaluated by using the appropriate J = 1 spectroscopic
amplitudes [defined similarly to those given in Eq. (2)]
in ALLWRLD [44].

Following AL, we do not do anything about the pres-
ence of spurious center-of-mass motion in our wave func-
tions. There is no practical way to separate spurious
motion in anything less than a full 16~ calculation. We
do measure the spuriosity of the states of interest by eval-
uating the diagonal matrix element of the center-of-mass
Hamiltonian. These results and their significance are dis-
cussed in Sec. IV, where it is clear that spurious compo-
nents are of consequence for mass 20 and 24 only.

All calculations were done with the VLADIMIR system
of codes [45] adapted to UNIX and optimized for the
ETAi and Cray Y-MP computers at Florida State.

III. RESUI.TS
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We now discuss, in turn, our results for z Si (some of
which were presented previously in Ref. [1]), szS (some
of which were shown in Ref. [34]), ~4Mg, ~oNe, and ssAr.
For each case we summarize our main findings in a figure
showing the spectrum of T = 0 and T = 1 M6 strength,
constructed as described above in conjuction with Eq. (8)
and Eq. (9), compared to existing experimental data. Ta-
bles give additional detail on states of particular interest.

A. Si

The zsSi case, since it is in the middle of the sd shell,
requires the largest basis space of the nuclei studied here.
There are 28 908 T = 0 and 53 637 T = 1 6 states in
a basis of 420814 Slater determinants for the nm „=8
case, which is to be compared to 321876 Slater deter-
minants for the n „=4 case reported earlier [1] and
802 for the Al (n „=0) case [29]. Although the large
basis size makes calculations for Si more diHicult than
the other cases considered, the additional degrees of free-
dom also make this case arguably the most interesting
to study since deformation and collective behavior in the
core should be handled better than in a. smaller basis
space; nonetheless, as we shall see later, this does not
guarantee that all of the important degrees of freedom
have been included in the calculation. It is also the case
that the Si stretched states have been studied exten-
sively [2, 46—58], providing a diverse set of experiments
to test our model wave functions.

Figure 1 and Table I show the results of our cal-
culations after 24 Lanczos iterations for each isospin.
The solid curve in Fig. 1 is the spectrum predicted by
the nm~„= 8 work, while the dashed curve shows the
u„, . = 4 result that was the subject of the prelimi-
nary study reported in our earlier paper [1]. The two
curves are essentially the same, justifying the truncation
used in that preliminary study. The curves in the figure
compare well with the two sets of data shown in the fig-
ure. The "data points" represent strengths deduced from

0
5 10 15 20

E„(MeV )

25

FIG. 1. Solid curves showing the predicted strength func-
tion for inelastic scattering to T = 0 (top) and T = 1 (bot-
tom) 6 states in Si obtained with the n~,„=8 basis are
compared to "data points" (denoting the inelastic scattering
results) and a histogram [denoting the (p, n) results) repre-
sentative of the observed scattering strength. As discussed in
the second half of Sec. II, the data points should be compared
to the peak of the strength-function curve and the top of the
histogram bar; the shaded area of the histogram also can be
compared to the area under the strength-function curve, The
dashed curve shows our earlier results [1] with the nm, „=4
basis.

electron [46] and/or proton [49,53—55] and pion [50] scat-
tering and are displayed as described in the second half
of Sec. II. (These points should be compared to the top
of the peak in the theoretical spectrum. ) The shaded
histogram represents strengths deduced from the (p, n)
reaction [47, 48], again displayed as described in Sec. II.
(The height of the histogram bar can be compared to
the data point and the shaded area of the bar can be
compared to the area under the theoretical curve. ) The
excitation energies in P have been shifted based on the
9.316 MeU excitation energy of the 3+ T = 1 ground-
state analog in Si. The experimental strengths given
in Table I are a composite of the two isovector strengths
shown in the figure, with a larger error bar to accommo-
date the scatter in the measurements. (Remember that
the energy of the yrast 6 T = 0 state is in perfect agree-
ment with experiment since it was used to fix the f7~2
single-particle energy. ) One notes quite good agreement
for the energy gap between the T = 0 and T = 1 states
and for their respective strengths.
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We can summarize the theoretical results for both
isospins as follows: almost 4 of the strength is lost be-
cause of depletion of the ds/q orbit (E = 0.77 instead
of 1) in the ground state; from

&
to 2 of the remaining

strength is in the yrast state, which is the strongest state
in the spectrum; about

&
is in a cluster about 3—4 MeV

above the yrast state; and the remainder is scattered
thinly over the next 30—40 MeV. Configuration mixing
leads to a single yrast state with a small fraction of the
total strength while the bulk of the ESPHM strength is
diScult to observe. (The figure in Ref. [1] contrasted the
spectra predicted by AL with the n „=4 curve shown
here, emphasizing the fact that the extra T = 0 strength
predicted by AL to lie below the T = 1 states, which
should be seen experimentally but is not, is essentially
eliminated now. ) The fragmentation effects are greater
for the T = 0 states, explaining their relatively greater
reduction in strength. This is the key result, emphasized
in Ref. [7], that cannot be obtained in core polarization
models with realistic forces [22, 18]. We will discuss the
bump region above the yrast state more extensively at
the end of this section.

Table I provides a summary of the JI&I6 transition rate
and other predicted properties of the lowest 6 states

and compares them with the measured values [46—59].
Results from the simple model (ESPHM) and the AL
calculation [29] are included to illustrate the apparent
slow convergence of the calculations toward experiment
as the basis size increases. Notice that the results for
the isovector state are very good, and one anticipates
that core polarization corrections such as those made in
Ref. [23] could easily remove the remaining small discrep-
ancies. In contrast, the isoscalar state seems to require
some additional mixing to push more strength to higher
excitation energies. It should be noted, however, that if
we reconstruct Table I to include all observable low-lying
strength, as we did in Ref. [61], it is clear that a steady
improvement is being made.

Examination of effects from the core

Although the results above clearly indicate a problem
with t, he T = 0 spectrum in Si, they do not shed much
light on the precise reason for the slower convergence of
the T = 0 calculation. Another approach to the analysis
of our results, proposed in a, Comment by Geesaman and
Zeidman [6'2] on our original paper, does provide some in-

TABLE I. Measured properties of the lowest observed T = 0 and T = 1 6 states in Si compared to results from the
simple model (fr~ d, z~z), the AL model (n~ „=0) from Ref. [29], n~« ——4 results from our earlier paper [1], and the full space(u„„„=8) re, sults of this work. The energies of these states are from the compilation of Ref. [59].

0bser vable

"Sum rule" E

Simple

1.0

'+ max

0.854

~max =4
0.785

'+max

0.771

Experiment

E (T = 0) (MeV)
Z2

+2S
Ap = Zp/S„'

1.0
0.5
1.0

11.58
0.258
0.206
0.63

11.58
0 ~ 203
0.156
0.65

11.58
0.198
0.154
0.64

11.576
0.13 + 0.04
0.22 + 0.04
0.27 + 0.10

E (T = 1) (MeV)
Z2

C Sp
Rt ——Zt'/Sp

1.0
0.5
1.0

13.02
0.522
0.368
0.71

14.23
0.374
0.234
0 ~ 80

14.23
0.369
0.228
0.81

14.35'7 + 0.002
0.29 + 0.04'
0.20 + 0.02
0.73 + 0.12

8 = Ap/Rt 1.0 0.88 0.81 0.80 0.37 + 0.15

T = 1 ~ T = 0 transition
B(M1) (e fni )

DE (MeV)
0.162
0.70

0.073
1.44

0.052
2.65

0.053
2.65

0.031 + 0.004
2.78

Basis size (6, T = 0)
Basis size (6, T = 1)

95
144

21 653
40 386

28 908
53 637

' Average of values obtained from the data in Refs. [49], [50], and [53—55] by the analyses of Refs. [6—8,11], and [60] with

appropriate error estima. t,e; value is rela. tive t.o T = 1 value from electron sca,ttering.
Average of results from Refs. [56] and [57] with appropriate error estimate; values differ slightly from those quoted in our

previous paper [1] to correct, errors in rounding.
'Average of values obtained from the data, in Refs. [46—48] and the analyses of Refs. [5—12] with appropriate error estimate;
value given is intermediate to the electron scattering result of 0.31 + 0.01 and the (p, n) result of 0.25 6 0.04. This average

value, which is smaller than that quoted in our earlier paper [1], is more reasonable because of possible meson-exchange effects

[12] not included in the (e, e') analyses.
Reference [58].
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sight. As Geesaman and Zeidman reminded us, the ratio
of inelastic scattering strength [the square of Z defined in

Eq. (2)] to single-particle transfer strength [the S defined
in Eq. (10)] is a measure of the interference between the
different fragments of the d&~~ strength in the 6 wave
function. (This observation was first made in Ref. [63].)
This ratio provides a useful method for examining issues
related to core polarization and fragmentation.

We can see the relationship between the scattering and
transfer strengths most clearly if we rewrite Eq. (2) as

ZT' = ) .(@s-,z ling„,lli)(ill«. „[les.. &

where ~i) represents a z state in the A —1 nucleus.
The right-hand factor is then the proton-pickup strength
going from zsSi to z Al (for example) and the left-hand
factor is the proton-stripping strength going from zTA1 to
a particular 6 state in zsSi (the S& in Table I). Hence,
the ratio RT =

ZTz /S&+ for a state of isospin T is unity if
the relevant d~&z configuration in the 6 wave function is

concentrated in a single
&

state. Deviations from unity
reflect the interference between different ways of making
the 6 state that result from configuration mixing driven
by the residual interaction. These ratios, and the double
ratio R = Ro/Ri, are given in Table I.

[Note that the Comment discussed but never presented
the ratio RT, preferring to employ ratios Zoz/Ziz and
S„/S~ that help cancel systematic errors in the data.
These ratios do not tell us anything until we form the
double ratio R, thus hiding information that is specific
to a particular isospin. In addition, systematic errors
related to the treatment of the unbound nature of the
T = 1 state, when reducing the data to Z and S factors,
are still present because of the large (up to 40%) correc-
tions required. We prefer to rely on a comparison to data
from a number of sources where some of the systematic
errors are accounted for in the uncertainties from forming
the average. ]

Two things are immediately evident from the trends
in RT and a comparison to the data. One is that the
ratios do not change much as we increase the basis size.

This slow variation, particularly in R, is the signature
of "fragmentation" and is to be expected. (There would

be no change in R if we were in a pure weak-coupling
regime. ) The other observation is that Ri is in agreement
with the data. Deficiencies in the double ratio R are,
again, due to shortcomings in the isoscalar results. It
is important, however, that the gradual improvement in
R with increasing basis size is due to Rq getting larger
rather than Rp getting smaller as is required. A more
detailed examination of Eq. (11) will illustrate where the
problem lies.

We have the ability to determine the individual single-
particle matrix elements that contribute to the sum in

Eq. (11). The relevant matrix elements, their products,
and the sequence of partial sums for the series giving Z
are shown in Table II. The dominance of the first term,
which provides from 86%o to 97% of the total, explains the
slow variation in R. Notice that three terms suffice to get
within 5% of the total, and that the relative phases of the
respective terms in the T = 0 and T = 1 series are the
same until that (relatively small) third term. It is this in-

terference that causes Ro (Ri) to become smaller (larger)
than the value of 0.72 that would result from using only
the first two terms in the series. Differences between the
two isospin states arise entirely from the f7/z matrix ele-
ment with the hole state, so further investigation should
emphasize the sd fp Ham-iltonian and the role of the fs~2
spin-orbit partner.

We also have examined the internal structure of these
wave functions using a graphical tool that explicitly dis-
plays the occupancy of the single-particle orbits, allowing
us to deduce the relative importance of various core-state
spins in a weak-coupling picture of the 6 states. These
pictures (not shown) suggest that a small family of rel-
atively low-spin (2, z, zs, 1'�)core states suffice to span
the important degrees of freedom in the calculation. It
might be useful to perform a diagonalization in such a
weak-coupling picture rather than perform the full cal-
culation.

2. Bern@ region

The preceding discussion has covered issues concerning
M6 strength in zsSi that were considered in our earlier

I'ABLE II. Individual contributions to the series in Eq. (11) for the lowest 6 state of each isospin in Si.

State i ( II".„Il~'-)
0.7761

—0.2443
0.2033
0.0390
0.1371

Term

0.4309
0.0415

-0.0267
—0.0025
-0.0033

T=0
Partial sum

0.431
0.472
0.446
0.443
0.440

Term

0.5242
0.0476
0.0138

—0.0002
0.0108

Partial sum

0.524
0.572
0.586
0.585
0.596

Total 0.445 0.607

'We use "Term" to denote the product (ills- T[[at& ()i)(i))aq,
&

)[@s.- ).
The "Total" value is the (Z( from Eq. (2), that is, the positive root of the sum of the full (infinite) series on the right-hand

side of Eq. (11).
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paper and other papers on the subject of stretched-state
structure. There is, however, an important point that
was overlooked in previous discussions of our results. We
emphasized [1] the fact that our calculations eliminated
the low-lying, relatively strong, easily observed T = 0
states evident in the AL spectrum. We failed to com-
ment on the concentration of M6 strength about 3 MeV
above the yrast state because we did not think it could be
observed. Examination of the (p, n) spectrum in Fig. 1 of
Ref. [64] shows a structure 3 MeV above the yrast T = 1

state that might suggest otherwise.
The data shown in Ref. [64] were subsequently ana-

lyzed and the strength in that bump appears to have an
L = 5 angular distribution that would be consistent with
a 6 assignment [48]. There are indications that, for at
least one state in this same region, electron-scattering
data are consistent [65] with an M6 form factor that
has a strength comparable to that measured in the (p, n)
reaction. The bump in the (p, n) work contains about
0.17 + 0.04 of the ESPHM strength, which should be
compared to our result of 0.24 for the same region. This
very good agreement can also be seen in Fig. 1, where it
is clear that we get reasonably correct values for the cen-
troid and width of this collection of fragmented strength.

The point we wish to make is that where the strength
goes is an important test of the mechanism that removes
it from the narrow, yrast state that has received most
of our at tention in the past. Although there are great
difhculties in making such measurements, such studies
are valuable. The biggest challenge will be in tracking
the isoscalar strength, which easily can be lost in the
background at high excitation.

Clearly a large basis with configuration mixing is an
essential element in any detailed explanation of the spec-
tral distribution of M6 strength in Si. Diminishing
returns from the effort to expand the basis are also evi-
dent. In particular, truncations that do not significantly
a.lter the level occupancies of the ground state, such as
that used in Ref. [1], gave essentially the same results as
the full sd-shell calculation. Remaining disagreement be-
tween theory and data is limited mainly to the isoscalar
strength distribution, which must require the inclusion
of more complicated correlations in the core that would

decouple Z from Sp for T = 0 states only.

B. S

The space for the S calculations is also quite large,
with 16392 T = 0 and 29840 T = 1 6 states in a ba-
sis of 221418 Slater determinants for the nm» ——8 case,
although only a third as many states are needed for the
n,„„=4 case. (Comparison with the AL basis is mean-

ingless, since it is the same as the ESPHM result. ) The
nm „=4 calculations described here were reported in

conjunction with a paper [34] presenting new (e, e') data
for S.The only other data for M6 excitations in mass 32
are from a (p, n) experiment [48] that had been reported
in preliminary form at a conference [64] and was included
in the analysis of Ref. [34]. There are no published data
concerning the T = 0 spectrum, although pion scattering
experiments have been performed [66] that would provide

such information.
Figure 2 and Table III show the results of our calcu-

lations after 56 Lanczos iterations for each isospin. The
additional iterations were required in this case so that we
could obtain converged (narrow) states for the addtional
observable fragments seen in this nucleus. As before, the
solid curve in the figure displays the nm» ——8 spectrum
and the dashed curve shows the nm» ——4 result. How-
ever, since the f7~2 single-particle energy was fixed by the

Si calculation described above, the theoretical excita-
tion energies are now parameter-free predictions. The
"data points" represent strengths deduced from electron
scattering [34], while the shaded histogram represents
strengths deduced from the (p, n) reaction [48], both con-
structed as described in the second half of Sec. II. The
excitation energies in s2CI from the (p, n) measurement
have been shifted based on the 7.002 MeV excitation en-

ergy of the 1+ T = 1 ground-state analog in S. Some
of the data are also given separately in Table III.

There are significant qualitative differences between
the spectra shown in Fig. 2 and the spectra for Si shown
in Fig. 1. Both theory and experiment have the new fea-
ture that the lowest 6 T = 1 state is not the strongest
state. Further, the number of observable fragments has
increased for both T = 0 and T = 1 transitions, although
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FIG. 2. Solid curves showing the predicted strength func-

tion for inelastic scattering to T = 0 (top) and T = 1 (bot-
toru) 6 states in S obtained with the nm „——8 basis are

compared to "da.ta points" [denoting (e, e') results] and a his-

togram [denoting (p, n) results] representative of the observed

sca.ttering strength. The dashed curve shows our ea,rlier re-

sults [34] with the n „=4 basis.
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TABLE III. The predicted locations and strengths of the first few M6 transitions in S are given in the first four columns,
with results for the truncated basis given first. The energies are in MeV. The n „=4 basis gives a total of 5545 T = 0
and 10002 T = 1 states and E = 0.936. The full n „=8 basis gives a total of 16392 T = 0 and 29840 T = 1 states and
2 = 0.903. The data for the T = 1 strength from Refs. [34] and [48] are presented so that corresponding states are listed on
the same line. We assume a Coulomb shift of about 7.0025 MeV for the Cl data based on the location of the analog of the

Cl ground state in S. Uncertainties in the data are about 0.1 MeV in excitation energy and about 10+0 in strength for the

(e, e') data and about 20% in strength for the (p, n) data.

&max = 4

Egh( 'S)
8.55
10.02
10.71

ZQ

0.023
0.098
0.138

'+max
(32S)

8.54
9.20
10.36

ZQ

0.011
0.028
0.152

11.23

12.45
12.91

13.57

+max = 4
Z1

0.055

0.051
0.306

0.053

+max
E ( S)

11.24

11.84
12.74

13.42

Z1

0.042

0.007
0.302

0.033

(e, e') data'
E*("S)

10.98
11.17
11.94
12.74
13.26
13.54

Z$

0.135
0.030
0.126
0.121
0.036
0.087

(p, n) data'
E ( Cl)

3.8

4.7
5.6

6.3

Zg

0.068

0.077
0.119

0.102

'Reference [34].
Reference [48].

details concerning the number and location of these frag-
ments varies with the basis truncation. The most obvious
difference is that the number of T = 0 peaks is reduced
in the larger space, much as we saw for ssSi. The change
is large enough to make the table in Ref. [34] obsolete,
since that work only included the nm» ——4 results.

Although theory places too much strength in a sin-

gle state near the centroid of the experimental isovec-
tor strength, it is clear that the experimental distribu-
tion has similar low-order moments to that predicted
by our model. This appears to support our contention
that fragmentation is responsible for the redistribution
of stretched strength, even though we do not get the de-
tails precisely correct. To make this spectral comparison
quantitative, we have evaluated the various moments over
the region studied in these experiments. This is more ac-
curate than a simple comparison to E since there is a fair
amount of unobservable strength in the long t, ail above
about 17 MeV excitation in 2S. We get f = 0.77 for the
integral of the theoretical T = 1 spectrum over the 7
MeV region where data were measured. This is reduced
from E = 0.90 and compares very well to the electron-
scattering total of 0.71+0.05 [34], although it does exceed
the result of 0.55+ 0.09 from the charge-exchange exper-
iment [48] by a substantial amount. The centroid of this
strength is predicted to occur at 13.6 MeV, and is seen
at 13.1 MeV (electron scattering) and 13.3 MeV (charge
exchange) in the experiments. The width is predicted to
be 1.5 MeV, and is observed to be about 2.0 MeV (elec-
tron scattering) and 1.8 MeV (charge exchange) in the
experiments. This is quite good agreement.

Examination of Fig. 2 and the various integral mo-
ments shows that there is a significant disagreement be-

tween the (e, e') and (p, n) experiments on some details
of the strength distribution. (Recall that the height of a
histogram bar would be the same as a data point if the
measured scattering strengths were the same. ) The states
at and above 12.7 MeV are perfectly consistent given the
differences in experimental resolution, the possible size
of meson-exchange corrections [12], and the reliance on
distorted-wave approximation calculations for extraction
of the charge-exchange strengths. The level of agreement
is similar to that seen in other cases. The difference be-
tween the two data sets is limited to the strength of the
first two states, where the two experiments disagree by a
factor of more than 2. Since we do notice the predicted
presence of T = 0 states within an MeV of these states,
it is possible that isospin mixing could be the source of
these differences. The (p, n) experiment would be seeing
the "true" (unmixed) isovector spectrum. Comparison of
sr+ to ~ scattering would tell us if mixing is the source
of this disagreement.

As one might expect [34], the additional information
seen in the M6 spectrum is associated with some differ-
ences in how the d5~2 strength is fragmented in the core.
The structure of the S ground state, where the 2s~~~ or-
bit has been filled, is noticeably different from that of the

Si ground state. Single-nucleon pickup reactions popu-
late several dsy2-hole states (with similar strength) in P
but only one in Al [59]. The same pattern is seen in the
ground-state wave functions calculated with the BHW
Hamiltonian. The entry in the second column of Ta-
ble IV, when squared, is proportional to t, he ding~ pickup
strength. These values indicate that the pickup strength.
is more balanced between the first three z states in P
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TABLE IV. Individual contributions to the series in Eq. (11) for the third excited 6 state of each isospin in S. For
comparison, note that the series for the first T = 0 state only gets to 68% of the total after 5 terms with the first term of the
series being three times bigger than the final answer, while the series for the first T = 1 state gets to 83% of the total after 5
terms but also starts out about twice as big as the final answer.

State i (ill«. r, ll@s - )

0.5762
0.3632

-0.3662
0.1668
0.2417

Term

0 ~ 2652
0.1045
0.0654

-0.0123
-0.0207

7=0
Partial sum

0.265
0.370
0.435
0.423
0.402

Term

0.2620
0.1546
0.1280

—0.0175
0.0138

Partial sum

0.262
0.417
0.545
0.527
0.541

Total 0.390 0.549

'We use "Term" to denote the product (its- 7 ))a& )[i)(i((uq, &, [)ills .. ).
The "Total" value is the ~Z~ from Eq. (2), that is, the positive root of the full sum of the (infinite) series on the right-hand

side of Eq. (11).

than it was in 27AI (cf. Table II), in rough agreement
with experiment.

Table IV also shows the decomposition of Eq. (11) into
the sequence of partial sums for the third 6 states, which
are the strongest T = 0 and T = 1 states in our calcu-
lations. It is clear that the fragmentation of the JI&I6

strength is reflected in the convergence of the sequence
of partial sums for the series giving Z. The first, term is
no longer dominant, providing only 48% of the total for
the T = 1 state. Both series oscillate so that 5 terms are
required before the series begins to settle down near the
answer. This effect is most dramatic for the T = 0 case.
The situation for the lowest states is much worse, with
larger oscillations and much slower convergence. Thus, it
is clear that increased fragmentation is associated with
a breakdown in simple weak-coupling pictures of these
states. It might be interesting to see the results of 3-
particle transfer reactions for these states. Certainly the
fragmentation of the dq~~-hole strength has an important
role in spreading the M6 strength as we approach the end
of the shell. Model-space limitations on our description
of this effect are discussed at the end of Sec. III D.
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this case since they go quite fast) for each isospin. The
solid curve in the figure is from the n „=8 run while
the dashed curve shows the result in the n,„~„=4 basis,
both compared to "data points" representing the electron
[68], proton [49], and pion [69] scattering results and to

C. MK

The size of the basis for the 24Mg calculations is rela-
tively small, with 5111 T = 0 and 8919 T = 1 6 states
in a basis of 58902 Slater determinants for the n „=8
case, which is marginally larger than the 57 764 Slater de-
terminants for the nm~„= 4 case. There are 2116 Slater
determinants in the AL basis (n „=0) where there are
only a few hundred states possible. (AL never did this
particular calculation, although they did publish results
for 2sMg [63].) The experimental situation is fair for

Mg, consisting of early electron and proton scattering
data on the T = I states [67,68, 49] and recent results for
the T = 0 state from pion scattering [69] and the T = I
strength distribution from the (p, n) reaction [48].

Figure 3 and Table V show the results of our calcula-
tions after 30 Lanczos iterations (we did a few more in

0. 5—

0 i I I I I I I I I

5 10

E„(MeV )

20

FIG. 3. Solid curves showing the predicted strength func-

tion for inelastic scattering to T = 0 (top) and T = 1 (bottom)
6 states in Mg obtained with the n „=8 basis are com-

pared to "data points" (denoting inelastic scattering results)

and a histogram [denoting the (p, n) results] representative

of the observed scattering strength. The dashed curve shows

results with the n „=4 basis.
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TABLE V. Measured properties of the lowest observed T = 0 and T = 1 6 states in Mg compared to results from the

simple model (f7~2d~&z), our results within the AL model space (n,„=0), and this work.

Observable

"Sum rule" E

Simple

0.667

'+max

0.576

&max = 4

0.501

'+ max

0.498

Experiment

E (T = 0) (MeV)
Z2

C S„
Ro ——Zo /S~

0.667
0.5

0,67

13.63
0.315
0.326
0.48

14.36
0.264
0.271
0.38

14.30
0.202
0.271
0.37

12.05 + 0.10
0.05 6 0.02

E (T = 1) (MeV)
Z2

C Sp
Ri ——Z,'/S'

0.667
0.5
0.67

15.49
0.450
0.404
0.56

16.90
0.322
0.344
0.47

16.83
0.320
0.344
0.46

15.135 6 0.03
0, 19 + 0.02'

R = Ro/Ri 1.0 0.87 0.80 0.80

T = 1 ~ T = 0 transition
B(M1) (e fm )

DE (MeV)
0.142
0.66

0.050
1.86

0.044
2.53

0.044
2.53 3.1 + 0.2

Basis size (6, T = 0)
Basis size (6, T = 1)

214
341

4963
8686

5111
8919

Value reported by Ref. [69] with an estimate of its uncertainty; a previous analysis, by Ref. [7] of data from Ref. [49], gave

upper limit of 0.07 on the strength in a region around 11.3 MeV.
The value in Ref. [59] is based partially on an excitation energy from Ref. [67] that was subsequently corrected [68] to

15.13 6 0.04 MeV; our value is an average of this new value with that of Ref. [49].
'Average of values obtained from the data of Refs. [67] and [68] by the analyses of Refs. [5—7) and [9,10,12] with appropriate
error estimate; may need reduction for meson-exchange effects,

a shaded histogram representing the results for isovector
strength from a (p, n) measurement [48]. The data are
plotted following the procedure described in Sec. II, and
the excitation energies in Al from the (p, n) measure-
ment have been shifted based on the 9.515 MeV excita;
tion energy of the 4+ T = 1 ground-state analog in 2~Mg.

The experimental entries in Table V are a composite of
both data sets. The calculated energies given in Table V
and Fig. 3 are predictions since the s.p.e. is fixed by the

Si results shown previously. The two curves in the fig-
ure are essentially identical because the spaces are nearly
the same size; the diA'erences are due mainly to the fact
that we performed fewer iterations (24 instead of 30) for
the smaller case in our initial runs.

In contrast to the ~sSi situation, there is a significant
disagreement between theory and experiment for "Mg.
We predict a single strong state that is not seen in the
data. Our initial interpretation, prior to the availabil-
ity of the (p, n) data, was to identify our peak with the
T = 1 state seen in electron and proton scattering. It
~ould then appear that we place the strength about 2
MeV above the data and that we overpredict the M6
strength by factors of 1.7 and 4 for the T = 1 and T = 0
transitions, respectively, as indicated in Table V. The
result is an improvement over the AL basis but remains
far from the data. The new (p, n) data suggest a very
diferent interpretation [48]: that we predict the cen-
troid for the M6 strength within about a MeV but that
we do not have sufficient fragmentation of the strength

about that centroid. If we examine the strength over the
13 & E & 20 MeV region covered in the experiment,
we predict an integrated strength of about Z~ = 0.37
compared to the 0.41 6 0.06 observed, and we predict
a centroid of 17.1 MeV compared to the 15.9 MeV cen-
troid of the observed strength. The strength is correct,
but a stronger Hpd-fp interaction seems required to pull
the centroid down about 1 MeV. We will say more about
this issue later.

The primary uncertainty with regard to the interpre-
tation above is whether the (p, n) experiment is see-
ing M6 strength accurately despite the relatively poor
resolution achievable in such experiments. The charge-
exchange and electron-scattering experiments agree on
the strength of the state near 15 MeV, so the method
employed is consistent for strong states. [The (e, e') and

(p, n) results for 2sSi (Fig. 1) and a2S (Fig. 2) also agree
quite well for most cases. ] It is unfortunate that the
electron-scattering work [68] does not include results for
form factors of the complexes seen around 13—13.5 MeV
and 18 MeV in the (e, e') spectrum, complexes that could
plausibly be associated with the strength seen in (p, n)
The proton scattering spectrum [49] and the pion scatter-
ing spectrum [69] do not show states at the particular en-
ergies expected from the (p, n) work, but there are peaks
in the vicinity whose cross-section angular distributions
are not shown. Isospin mixing could move the strength
from the position expected based on simple analog argu-
ments and would require careful analysis, and perhaps
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TABLE VI. Individual contributions to the series in Eq. (11) for the lowest 6 state of each isospin in Mg.

State i (ill«. ..Il@s'- )

0.6524
0.0323
0.1991
0.0795

-0.0161

Term

0.4805
0.0007

-0.0300
—0.0003
-0.0007

T=0
Partial sum

0.480
0.481
0.451
0.451
0.450

Term

0.5410
—0.0041

0.0141
0.0030
0.0005

Partial sum

0.541
0.537
0.551
0.554
0.555

Total 0.449 0.566

'We use "Term" to denote the product (mls T)(art )(i)(i))aq, ()@s,. ).
The "Total" value is the ~Z~ from Eq. (2), that is, the positive root of the full sum of the (infinit) series on the right-hand

side of Eq. (11).

new experiments, to decide if this low-lying strength is
real.

Conclusions about the isoscalar spectrum are more dif-
ficult to reach. Such experiments are diflicult because
background problems are more severe than with reac-
tions that select the isovector channel in isolation. There
is only a single 6, T = 0 state known [69], and it is
very weak. Given that we presume our theoretical T = 0
spectrum has the same defects as our T = 1 spectrum,
it seems likely that many unseen fragments of T = 0
strength are distributed between 12 and 16 MeV. Find-
ing these fragments would be very helpful, but, will pose
a challenge experimentally.

Table V summarizes what we know about the main
states in the spectrum and how the predictions depend
upon basis truncation. As is also clear from I"ig. 3, the
tiny increase in basis size from n,„„=4 to n „=8 has
negligible effects on the spectrum, but there is a marked
iiuprovement from what AL would have obtained in the
n,~ „=0 basis truncation. There is also a systematic
decrease in botll Bp and R&, with a marginal decrease in
the ratio of ratios R. (Unfortunately, there are no trans-
fer reaction data for t;his nucleus that would provide the
proton stripping value we require. ) Notice that the value

for R is essentially identical to that in ' Si (cf. Table
I). Inspection of Table VI, which shows the convergence
of the series defined in Eq. (11), makes it evident that
this occurs because the states in ~4Mg are driven by a
dominant core configuration just as was the case in Si;
however, the data tell us that this picture is wrong for

Mg. Assuming that the core structure from the BHW
Hamiltonian is reasonably correct, we should investigate
the role of 1p ~ sd excitations (and perhaps the role of
the fs~2 orbit) on fragmentation of these states.

We now return to the question of the validity of the
II,p g& from ST that we employed in our calculations
(cf. Sec. II). Our calculations did not introduce any A
dependence for the strength of this part of the Hamilto-
nian (while we did include the slow A dependence of
the BHW H, d) because our original goal was to leave this
part of the AL interaction fixed. Further, it is difficult
to obtain guidance from electron-scattering fits because
of their scatter: fits for Si and "-S have ranged over
1.63 ( 6 ( 1.80 [46, 34], reflecting the di%culty fitting

the radial form of these unbound states. The ST interac-
tion was evaluated with b = 1.847, corresponding to the
value predicted by h~ 41.4/A ~s for A = 40, which is
reasonable for these states in Si and S. Qfe would expect
b to get larger for smaller A, thereby strengthening the
sd fp Ham-iltonian as is clearly required here.

We made some test runs to verify the sensitivity of our
results to the strength of the coupling between the shells.
A search between b = 1.65 and b = 1.85 quickly verified
that use of b = 1.745 (a standard A 28 value) gives
a centroid at 15.9 MeV with a strength of Z& ——0.387
when integrated over the same 13 MeV & E & 20 MeV
region where we have experimental data. Qualitatively
the isovector spectrum is not changed, with a strong peak
containing Z2 = 0.306 at 15.3 MeV. Hence it is clear that
a plausible increase in the strength of H, d ~„is enough
to fix the 1 MeV error in the centroid location but will
not change the fragmentation of the spectrum. There are
somewhat larger effects on the isoscalar spectrum, with
more fragmentation accompanying the lower energy for
the centroid, but there are no data we can use to evaluate
the significance of this change.

D. Ne au. d Ar

For conipleteness, we also present results for the other
two N = Z sd-shell nuclei. The number of degrees of free-
dom is quite small (similar in magnitude to the size of
the AL space for mid-shell nuclei) so close to the closed-
shell nuclei, hence they should be interpreted with cau-
tion; they mainly serve to illustrate the limitations of
our model-space truncation. There are only 318 Slater
determinants (57 T = 0 and 79 T = 1 6 states) for
2oNe and 7178 Slater determinants (816 T = 0 and 1315
T = 1 6 s'. ates) for Ar. Only the I'ull-space calcula-
tions were done since other truncations make no sense
for these nuclei.

Figure 4 and Table VII show the results of our cal-
culation for the Ne nucleus after 20 iterations. Our
model places essentially all M6 strength in a single peak,
which is at variance with the charge-exchange data [48]
shown with the shaded histogram. This histogram was
constructed by the procedure described in Sec. II, and
the excitation energies in Na have been shifted based
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FIG. 4. Solid curves showing the predicted strength func-

tion for inelastic scattering to T = 0 (top) and T = 1 (bottom)
6 states in Ne obtained with the nm~„=8 basis are com-

pared to a histogram representative of the scattering strength
observed with the (p, n) reaction.

on the 10.274 MeV excitation energy of the 2+ T = 1

ground-state analog in Ne. (Data have been taken with
the (p, p') reaction also [70], but no analysis has been
published. ) The situation is similar to the problem noted
in the s4Mg case (Fig. 3) above. The centroid of the

(p, n) data is at about 18.5 MeV with a total strength
of Z = Q.107 + 0.017 compared to our total strength
of 0.176 (essentially all of E = 0.201) located at 20.2
MeV. Clearly we require a stronger H, d fp to lower the-
centroid by about 1.7 MeV —more than was required for

24Mg, as might be expected. (If such a shift is required,
and given our underestimate of the isovector fragmen-
tation, we would expect the isoscalar strength will be
distributed within a severaI-MeV-wide region centered
around 17 MeV. ) The amount of isovector M6 strength
is consistent with our model prediction, but we have no
explanation for the fragmentation that has been seen here
and in Mg.

The 2 Ne case, because of its small basis size, is a good
candidate for exploring the effects of 1p ~ sd excitations
on the fragmentation of M6 strength in the lower part of
the shell. Indeed, full 1h~ calculations should be feasi-
ble for Ne, thereby allowing study of the importance of
these excitations and also permitting the elimination of
spurious motion problems that, as discussed in Sec. IV
below, are significant for this nucleus. We have not pur-
sued such calculations at this time because our focus has
been on a schematic f7~2 + sd model consistent with our
principle emphasis on mass 28 and 32 nuclei, but they
would certainly be of interest.

Figure 5 and Table VIII show our results for 6Ar af-
ter 56 iterations of the Lanczos process. The additional
iterations were required by the complexity of the spec-
trum at low excitation energy, as is evident from the fig-
ure. There are no data for M6 strength in this nucleus,
but we add for future reference that excitation energies
in ssK from (p, n) data would need to be shifted based
on the 6.611 MeV excitation energy of the 2+ T = 1
ground-state analog in Ar. It is immediately evident
that our predictions for ssAr are qualitatively similar to
those for s~S, with a number of observable fragments of
M6 strength. The fragmentation has continued to in-
crease as we approach the end of the shell, with only
a small fraction (about 18%) of the total isovector M6
strength Z = 0.956 in states below 12 MeV. About 23%
is in the complex of states predicted at 12.3 + 0.2 MeV
that give rise to the peak seen in Fig. 5. It would be
interesting to measure this spectrum, although caution
is urged: the strongest states here are bigger than some

TABLE VII. Predicted properties of the lowest T = 0 and T = 1 6 states in Ne with the
n „=8 model space compared to results from the simple model (f7gqd~~2) and the available data.

0bser vable

"Sum rule" E
Simple

0.333

'+max

0.201

Experiment

E (T = 0) (MeV)
Z2 0.333

18.74
0.164

E (T = 1) (MeV)
Z2 0.333

20.18
0.176

17.8
0.034 + 0.006

T = 1 ~ T = 0 transition
B(M1) (e fm )

b, E (MeV)
0.142
0.98

0.084
1.44

Basis size (6, T = 0)
Basis size (6, T = 1)

57
79

Value for strongest state from Ref. [48] with appropriate error estimate; there are weaker states
at both higher and lower energy for a total Z of 0.107.
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I I I I pulse approximation norm quoted to Z, but it should be
noted that the t matrix used in Ref. [71] is not the same
as the one used in Ref. [48].) Thus our prediction is lower
in energy, as might be expected as we move to heavier
nuclei without adjusting H, d g&, and fails to account for
the observed spreading and reduction of M6 strength,
The failure of a simple closed-shell model for Ca is also
evident in the fragmentation of 2 states seen in single-
nucleon pickup reactions [59]. We conclude that the sd-
shell model space and BHW Hamiltonian cannot account
for some important sources of d5~2 spreading near the end
of the shell, and thus our predictions for Ar (and to a
lesser extent, for S) must underestimate the fragmen-
tation of stretched MG strength.

IV. DISCUSSION

10 15

E„(MeV )

20 25

FIG. 5. The solid curves show the predicted strength func-
tion for inelastic scattering to T = 0 (top) and T = 1 (bottom)
6 states in Ar obtained with the n,„=8 basis.

TABLE VIII. Predicted M6 strength for the lowest 6

sta, tes in Ar that were reasonably well converged. These are
in the n „=8 basis space, where there are 816 T = 0 and

1315 T = 1 states and E = 0.956. Energies are in MeV, with

the error indica. ting the width due to incomplete convergence
of the calculation.

5.52
7.46
8.49
8.88+0.01
9.31+0.02
9.86+0.06

10
0.016
0.065
0.001
0.011
0.057

8.35
9.59

10.68
11.03+0.11
11.23+0.28
11.54+0.50

Z2

0.009
0.064
0.029
0.008
0.012
0.019

of t, hose actually observed in -"S, but the states may be
weaker than predicted because it is liliely that we have
underestimated the fragmentation, as was the case for
32

For perspect, ive on this last st, atement, it is useful to
look at what happens in ~oCa. Our n „=8 model
space corresponds to the simplest model for ~nCa, giving
Z = 1 with all of the T = 0 strength in a single state at
E = 11.9 MeV and all of the T = 1 strength in a sin-
gle state at 12.6 MeV. A (p, n) experiment [71] sees 6
T = 1 strength spread between 13 and 16.5 MeV with a
centroid at about 14.7 MeV and a total strength of about
Z2 = 0.42. (Here we have converted the excitation en-
ergies in 4oSc to ~oCa based on the 7.7 MeV excitation
energy in " Ca of the 4 T = 1 analog to the ground state
of Sc. We have also converted the distorted-wave im-

Our particular emphasis in this paper has been on t, he
new information that can be obtained by examining the
spectrum of "stretched" strength in nuclei r ather than
focusing on just the size of the strongest state. It is im-

portant, t,o remember what is special about these spin ex-
citations: a one-step M6 transition from the 0+ ground
state to any 6 state proceeds (within the limits of a 1k~
picture) through a unique configuration so that scatter-
ing experiments can be used to follow the fragmentation
of this configuration among the many 6 states. These
transitions are interesting because they provide a means
for looking at the spectrum of a particular configuration,
i.e. , the response to a single particle-hole creation oper-
ator rather than the response to more complicated oper-
ators that involve many particle-hole creation operators,
such as Ml or E2 operators.

We have shown that the reduction and redistr ibu tion
of M6 strength in N = Z sd-shell nuclei can be de-
scribed well by large-basis shell-model calculations; the
loss of M6 strength results from fragmentation of the
"stretched" configuration by conventional configuration
mixing. The model gives a nearly quantitative descrip-
tion of the data for 2sSi and s~S despite significant qual-
itative diR'erences between the two spectra. In addition,
the model shows greater fragmentation of T = 0 states
than T = 1 st;ates as is required by the data in Si. We
fail to describe the spectra for nuclei in the lower half of
tlie sd shell (~~Mg and ~nNe), but we do get the correct
amount of low-lying observable strength. The results for
the isovector response are summarized in Table IX. It
appears that we need the full 1h~ space to get a correct
description of the lighter nuclei.

The key ingredients in these calculations appear to be

the use of a basis with sufficient degrees of freedom and
an effective Eiamiltonian that describes the correlations
in the sd shell reasonably well. Both are important since
it is the admixture of other 6 configurations by mixing
within the sd shell that has fragmented the "stretched"
configuration. In the language of the projection-operator
picture employed in Sec. 1, it is the set of ~lb~) config-

urations that seems crucial to getting the spectral dis-

tribution of the ~M6) configuration correct. Once this
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TABLE IX. Summary of the isovector M6 strength pre-
dicted and observed in the N = Z sd-shell nuclei. Here E
is the "sum rule" defined in Eq. (5) while f theory (fdata)
is the sum of predicted (observed) strength over the approxi-
mate 6—8 MeV region of excitation energy where M6 strength
has been extracted from the experimental data.

Nucleus

Ne
24Mg
28S
32S

Ar
40'

0.201
0.498
0.771
0.903
0.956
1.000

J theory

0.18
0.37
0.70
0.77
0.80
1.00

jdata
0.11 + 0.02
0.41 + 0.06
0.43 + 0.07
0.63 + 0.08

0.42 + 0.06

Ref.

[48]
[4g]
[4S]

[34, 48]

spectrum is satisfactorily established from a nonpertur-
bative calculation, the effect of the ~C) space on the
strength distribution can be handled perturbatively as
core-polarization modifications to the transition opera-
tor. The ~C) configurations would act to fine tune the
strength distribution once diminishing returns from en-

larging the basis space are encountered —which would
seem to be once the dominant effects of the ~1 fi~) space
have been included.

This work raises a number of issues that need to be ad-
dressed experimentally. The present situation is that the
T = 1 M6 response has been characterized by fairly com-
plete (p, n) measurements that are calibrated by (e, e')
data, but that very little is known about the T = 0
response. Knowledge of the T = 0 strength distribu-
tion from high-resolution (p, p') and (z., n') measurements
would provide a crucial test of these model predictions.
It is also unfortunately the case that the analysis of the
older (e, e') data on z4Mg and Si did not report the
form factors for peaks other than the isolated T = 1 6
states known to be interesting at the time. Repeating
or reanalyzing these experiments would provide a valu-
able check on the isovector strengths extracted from the
(p, n) data. Pion scattering data would be most helpful
if it turns out that there is isospin mixing in s~S, or to
prove that there is no mixing in the nuclei considered
here.

There are also a number of unresolved theoretical is-
sues. Although we describe the zsSi T = 1 spectrum very
well, we do not get quite enough isovector strength in the
lowest states in s2S and we badly underestimate the frag-
mentation for Mg and Ne. The remainder of the full
1h~ basis, particularly that of the f5g2 spin-orbit part-
ner, may be important in this regard. It would certainly
be interesting to see if the fs~2 orbit would help with the
M1 transition rate between the T = 1 and T = 0 states
in Si; unfortunately, this is a very large calculation.
The rather crude choice for the Hamiltonian connecting
the sd and fp spaces would need to be replaced if such
work is pursued.

Another limitation on our calculations is that there is
no practical way to separate spurious states and intrin-
sic states without doing a full 1h~ calculation. We can,
however, evaluate the magnitude of the spurious center-
of-mass motion in our wave functions as a measure of the

errors introduced by our truncation. It turns out that
this is not a serious problem for the mass-28 and -32 nu-

clei that are of primary interest to us. The measured
spuriosity is small, typically less than i%%uo and decreas-
ing with increasing A, for the states examined in mass
A & 28 nuclei. The situation is worse in the lighter nu-

clei, with as much as 9% spuriosity in the strong T = 0
state in 24Mg and more than 12' spuriosity in the

T = 1 6 state in 2 Ne. The results for these nuclei
cannot be trusted completely until full 1h~ calculations
are done to permit the separation of center-of-mass and
intrinsic states. As noted above, a larger model space
for A & 24 calculations is suggested by other arguments
also.

The full model interaction may need to be examined
more closely also. Some of our failures are certainly an in-
dication of the need for additional mixing, perhaps from
different core deformation effects or mixing with config-
urations in the fp shell. The difficulty is that effects due
to collective correlations in nuclei are not treated very ef-
ficiently in the shell model. Some are surely incorporated
into H~ft, but the corresponding change in the effective
M6 operator has not been calculated. Core polarization
and weak mixing calculations can help to clarify further
the physics of stretched strength fragmentation. Also
note that Schmid's work [72] for the positive parity states
in Si, with much larger model spaces and a different in-
teraction in the Sd shell, gives Z = 0.57 which could elim-
inate much of the remaining discrepancy between theory
and experiment for the T = 1 states. However, this result
seems at variance with the d5~2 occupation probability
[73], which supports a E 0.75 close to that obtained
with the BHW Hamiltonian.

Finally, it is important to add that the experimentally
observed states are slightly unbound, and the resulting
change in the wave functions would affect both the M6
strength extracted from experiment, [74] and the matrix
elements that enter our Hamiltonian. Proper inclusion
of continuum effects is an important open problem that
is beyond the scope of this work, but there are methods
[75] that can be used to address this problem [43].

In sum, fragmentation of the "stretched" state via con-
ventional configuration mixing provides, within the lim-
itations of our model space, a clear explanation of many
observed properties of 6 states seen in inelastic scat, -
tering from sd-shell nuclei. Effects due to our choice of
interaction and basis truncation need to be explored to
see if the remaining discrepancies can be understood. We
emphasize that it is the full spectrum of the M6 response
that provides the most stringent test of any model. The
remaining experimental challenge is to devise means of
using spin observables to map out the full strength distri-
bution, even when it is otherwise obscured by background
states.
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