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A new microscopic nuclear mass formula is derived from the fermion dynamical symmetry model. A
Strutinsky-like spherical single-particle shell correction is introduced, but the principle part of the pair-
ing and deformation are treated microscopically through the pairing and quadrupole-quadrupole two-
body interaction, without introducing a deformed mean-field or BCS approximation. The results are in
excellent agreement with existing mass data in the actinide region and suggest the possibility of a new re-
gion of superheavy elements near Z = 114 and N= 164. This mass formula has been utilized in the study
of r processes in astrophysical problems with encouraging preliminary results.
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I. INTRODUCTION

The masses of nuclei contain fundamental information
about the physical Universe. Indeed, one of the aims in
theoretical nuclear physics is to provide a sufficiently ac-
curate mass formula in the P-stable regions so that extra-
polation into unknown neutron- and proton-rich regions
can be carried out with a reasonable degree of confidence.
Such extrapolations have important consequences in oth-
er fields of physics as well. An archetypical application
of using the masses of such exotic yet unknown nuclei is
in astrophysics studies [1], where the heavy nuclear
masses are important ingredients in the r-processes and
galactic age determinations [2].

There exist many versions of mass formulas [3], and
the number of parameters in these formulas range from
as few as 12 to as many as 928. Roughly speaking, they
can be grouped into three classes: (I) formulas that are
interpolated and extrapolated from known nuclear sys-
tematics, (II) formulas that are based on phenomenologi-
cal nuclear models, and (III} formulas that are based on
microscopic nuclear models. If the physics dictates that
one needs to go only slightly beyond the known regions,
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then some of the phenomenological formulas in classes I
and II may be accurate and convenient to use. However,
if the physics requires knowledge of nuclear masses far
from P stability, as in the astrophysical processes, the mi-
croscopic formulas from III would seem to be preferred,
because the more physics one incorporates in the formula
the more reliable we may hope it to be for distant extra-
polation (unless new physics of a radically difFerent na-
ture appears in the unknown region of interest). The
traditional microscopic mass formulas are based on the
deformed shell model plus a Strutinsky shell correction
[4]; the Moiler-Nix formula is a typical example [5].

In the past few years, a new microscopic fermion
dynamical symmetry model (FDSM) for nuclear struc-
ture has been developed [6]. This model is based on an
effective interaction theory of the spherical shell model
and is motivated by the concept of dynamical symmetry
as a truncation principle. One of the first tests of the
FDSM was to ascertain whether it can describe nuclear
masses in the actinide region (Z & 82, N ) 126). Simplici-
ty in the symmetry was the reason for choosing the ac-
tinide region: According to the model, the shell structure
here possesses a rather simple dynamical symmetry struc-
ture [Sp (6) XSp"(6}for the nucleons in the normal pari-
ty levels and Su (2}XSu"(2) in the abnormal parity lev-
els]. In the first version of the FDSM mass formula (we
shall refer to it as version I) [7], not only were we able to
obtain excellent results in fitting the 332 known nuclear
masses in the actinide region (the root-mean-square devi-
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ation, rrns, was 0.34 MeV, which is better than that of the
Moiler-Nix mass formula in this region), but we found
the first evidence for the dynamical Pauli effect, which
turns out to be of central importance in understanding
the saturation of deformation for normally deformed nu-
clei [8], the formation of superdeformed nuclei [9], and a
variety of other phenomena [10]. Still, several important
questions regarding this mass formula persist. Attempts
to answer these questions have led to an in-depth refor-
mulation of the mass formula (the new formula will be
termed version II). The purpose of this paper is to de-
scribe version II.

Version II is based on three principle ingredients: (1)
the dynamical symmetry limits of the FDSM, (2) the in-
clusion of diagonal matrix elements of symmetry-
breaking interactions, and (3) a Strutinsky-like spherical
single-particle (s.p.) and pairing shell correction. The re-
sult is that version II is able to produce an excellent fit of
the 332 known nuclei with a better rms error of 0.22
MeV (vs the 0.34 MeV of version I), and parameters that
are fewer in number and have a clearer microscopic inter-
pretation. More important, the new approach is rather
simple and can straightforwardly be extended to other
mass regions. In Sec. II, we shall give an outline of the
difficulties encountered by version I. In Sec. III, a
Strutinksy-like approach for the spherical s.p. shell
correction and a pairing shell correction are discussed in
detail. These corrections are of great conceptual and
practical importance in deriving version II of our mass
formula. This is followed in Sec. IV by a comprehensive
discussion of the present formulation. Finally, in Sec. V
the results and conclusions are presented.

II. A BRIEF OUTLINE OF VERSION I
OF THE FDSM MASS FORMULA

We have previously obtained a microscopic formula
for heavy and superheavy nuclei (82~Z ~126 and
126 N 184, version I) [7] that can be written as fol-
lows:

M(Z, X)=M( Pb)+n M +n„M„+(Hpns~}. (2 1)

In Eq. (2.1), M( Pb) is the closed-shell lead mass (as-
sumed known), ( Hzns~ } is the FDSM Hamiltonian ex-
pectation value, n =Z —82 and n„=N—126 are the
valence proton and neutron numbers, respectively, and
M and M„are the free proton and neutron masses, re-
spectively. Although the agreement obtained from this
mass formula is rather impressive (a 16-parameter fit to
332 known nuclei in the actinide region yields a rms error
of 0.34 MeV), it is designed only for heavy and su-
perheavy nuclei. Hence one is immediately faced with a
problem of how to extend it to other regions of the
periodic table.

It is well known that an accurate treatment of the
single-particle energies in any microscopic formulation of
masses is difficult. For example, it is for this reason that
one does not expect the shell model to produce
sufficiently accurate masses for medium-heavy and heavy
nuclei. Not only is the shell model faced with the in-

herent difficulty of diagonalizing an astronomically large
many-body Hamiltonian matrix, but the s.p. energies are
not sufficiently accurate to allow one to extract informa-
tion confidently about the masses. For example, a mere
0.1 MeV uncertainty in the s.p. energies could result in
errors as large as several MeV in a mass calculation for a
nucleus with 10 particles.

In traditional mass calculations the large dimension
problem is overcome by utilizing the deformed mean-field
approximation, while the difficulty of the accuracy of s.p.
energies is treated by the Strutinsky procedure [4]. The
Strutinsky procedure provides a clever empirical recipe
to compute shell corrections to the smooth liquid drop
mass from a given set of deformed s.p. energies, and the
nuclear mass is then obtained by combining the liquid
drop mass and the shell corrections.

On the other hand, the FDSM elegantly solves the
many-body shell-model problem without the deformed
mean-field approximation. This means that important
many-body correlations may be treated more accurately,
but the problem associated with a lack of precise
knowledge of the s.p. energies is even more serious here
since in the FDSM symmetry limits one assumes that the
spherical s.p. energies are degenerate. This difficulty
must be overcome before the FDSM can be utilized as a
general theoretical framework to compute nuclear
masses.

An important question one may ask at this point is
why version I, which lacks the proper spherical s.p. split-
tings, should work so well. The reason turns out to be
rather simple. The expectation value of the FDSM Ham-
iltonian (H„os~} is essentially a quadratic function of n~
and n„,plus some symmetry correction terms. The latter
are not smooth functions of n and n„,and correspond
physically to nuclear shape changes. For example, the
transition from Su2 to Su3 signals a spherical to deformed
shape transition, while that of Su3 symmetric (A, , O) to
nonsymmetric (A, ,p%0) representations corresponds to
an axial to triaxial deformed shape transition
[10(b),10(c)]. It is likely that these symmetry correction
terms are the primary source for the parts of the usual
Strutinsky shell correction that are not smooth. These
parts, which are mostly associated with deformation and
pairing effects, are treated microscopically in the FDSM
at the two-body level without deformed mean-field and
BCS-type approximations. What remains (which seem-
ingly is missing in version I) is the Strutinsky-like shell
correction due to the spherical s.p. energy splitting and
the spherical liquid drop mass; these are presumably
smooth functions of n and n„,and can be approximated
by quadratic functions. Higher powers of n and n„in

the expansion with respect to the closed-shell Pb
should be small in comparison to the leading-order terms
since n /82 and n„/126 are relatively small numbers.
This means that once the coefficients of the quadratic
functions of (H„z,s~} are determined empirically, both
the spherical liquid drop mass and the spherical s.p. shell
correction contributions are implicitly included. Thus,
these important physical effects are effectively present in
version I, but they may be entangled with other contribu-
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III. THE SPHERICAL SINGLE-PARTICLE
AND PAIRING SHELL CORRECTIONS

tions to the coefficients of the quadratic expansion in par-
ticle numbers.

The preceding argument implies that version I cannot
be easily extended to other mass regions, since higher-
order terms in the expansion of the spherical liquid drop
mass and the spherical s.p. shell corrections may no
longer be negligible. Therefore, in order to extend the
FDSM mass formula to other mass regions, and to allow
an unambiguous microscopic interpretation of parame-
ters, one is compelled to incorporate the spherical liquid
drop mass and to compute explicitly the spherical s.p.
shell correction. Since the spherical liquid drop mass for-
mula is known [5], the key to this task is to find a way to
compute the spherical s.p. shell corrections accurately
and efficiently. In the next section, we shall show how
this can be accomplished.

First, let us consider the spherical single-particle ener-
gies for neutrons and protons:

z NE'g= g s;n, + g sn',
i =83 i =127

(3.1)

Here the philosophy of Strutinsky plays a crucial role.
We shall introduce a shell correction M', h" that can be
computed by subtracting from E,'h a smooth component
given by the standard Fermi-gas (FG) model:

z
M,'g =M,'g (Z)+M,'g (N) = g s,"n, [E„o(Z—) EFo(82—)]+tt„s~

i =83

N
+ g E,"n [E—Fo(N) E„o(126—)]+n„s„

i =127
(3.2)

Proton Single-Particle EnergiesIn Eq. (3.2) E„o(n)represents the Fermi-gas energy for
n nucleons [11]:

5.099 p1/2 p 1/25.100

EFo(Z) =(—',Z' ')C~/R~,

E„o(N)=(—,'N ~ )C„/R„
(3.3a) 4.080 f 5/2

f 5/2

p 3/2

3.880

3.850 3.633 p1/2

3.118 p 3/2
2.822 f 5/2

p 3/23.060
and

' 1/3 2.040 i 13/21+I
(1—3e)(1+5)n, p

1.684 i 13/2 1.609 i 13/2

1.020 f 7/2(3.3b) 0.921 i'7/2 0.897 f 7/2pI=(N —Z)/A;
[I+ —,', (c, /Q )ZA ]5=
[1+94(J/Q)A '

]

h 9/20.000 0.000 h 9/2 0.000 h 9/2

Experiment

p

Woods-Saxon Equal Spacing

(3.3c) Neutron Single-Particle Energiese=[—2a, A
—'~'+L, g'+c, Z'A -""]/It, 5-

The quantities c. and c.„arethe difference of energy zero
points of the two s.p. energy level schemes; n and n„are
the number of valence nucleons, n~ =Z —82 and
n„=N—126. Since the spherical shell-model s.p. energy
levels are chosen such that the first s.p. levels beyond

Pb for both protons and neutrons are set to be zero, it
is convenient to define c and c„asfollows:

=(—'83 ~ ——'82 ~ )C /R +e
p 5 5 JI JI

4- 3.808

3.452

d 3/2

s 1/2
3.780 d 3/2

3.150 s 1/2
2.950 g 7/23

2.537 d 3/2

2.491 g 7/2
2.032 s 1/2

1.567 d 5/2

2.520 g 7/2

1.89Q d 5/2

1.260 j 15/2

0.630 i 11/2

0.000 g 9/2

Equal Spacing

2.355 d 5/2

2-

1.201 g 15/2

0.665 i 11/2

1.423 j 15/2
0.798 i 11/2

(3.3d)c„=(—'127 —
—,'126 )C„/R +e„. 0.000 g 9/2 0.000 g 9/2

Experiment

p-

Thus the constant e (e„)determines the relative position
of the proton (neutron) Fermi-gas s.p. level scheme with
respect to the corresponding shell-model s.p. level
scheme: If e and e„arezero, the two s.p. schemes will
coincide with each other at the 83th proton and 127th
neutron; otherwise the Fermi-gas s.p. scheme will be

Woods-Saxon

FICx. 1. Single-particle energies used in the heavy and su-
perheavy mass calculations. The experimental single-particle
energies are obtained from the spectra of Pb and Bi
[Table of Isotopes, 7th ed. , edited by C. M. Lederer and V. S.
Shirley (Wiley, New York, 1978)].
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shifted up or down with respect to the shell-model s.p.
scheme. The values of e and e„aredetermined by re-
quiring the maximum cancellation in Eq. (3.2), or
equivalently by minimizing gz —]]3M h (Z ) and

g]v —]27M f (N ) . In the context of this variational prin-
ciple, there are no freely adjustable parameters in the
spherical s.p. shell correction M,'& . The values and
meaning of the parameters appearing in Eqs.
(3.3a)—(3.3d) are [5,12] e~=3.212 MeV, proton scaling
parameter; J=38.2 MeV, symmetry energy; e„=3.477
MeV, neutron scaling parameter; L =100 MeV, density-
symmetry coefficient; c, =0.7403 MeV, Coulomb energy
( ,
' e jro—); E=300 Me V, compressibility coefficient;

a2=20. 85 MeV, surface energy; C =72 MeV, neutron
Fermi energy; Q=17.7 MeV, effective-surface stifFness;
C„=71MeV, proton Fermi energy.

In the symmetry limit the FDSM pairing energies for
protons and neutrons correspond to the pairing energies
in a degenerate spherical s.p. scheme. Hence, the spheri-
cal s.p. energy splitting requires one to introduce a pair-
ing shell correction term V,h" as we11:

V „"'=[V"'(BCS)—V "'(deg)]

+[V„"'(BCS)—V„"'(deg)]. (3.4)

In Eq. (3.4), V ""(BCS)is the pairing energy computed
for a given s.p. level scheme in the standard BCS method
(o =7r, v), while V~"'(deg) is the BCS pairing energy for
the degenerate s.p. level scheme, which is known analyti-
cally:

V~"'(deg)=G N (0 N+—N /0 ) (o =7r, v) .

(3.5)

The symbol Q in Eq. (3.5) denotes the shell degeneracy.
The BCS approximation is used here only to calculate the
corrections due to the spherical s.p. splitting. The princi-
ple part of the pairing in the FDSM is treated below as a
two-body interaction, as it should be. Therefore, the er-
ror in the total mass made by using the BCS approxima-
tion to compute the correction (3.4) should be small.

The pairing strength G""' in V""'(BCS) is determined
by requiring it to reproduce the experimental average

TABLE I. BCS pairing used in the pairing s.p. shell correction. The pairing operator is assumed to
be of the form 6 "'STST, where ST=S+4, and 6~"'=0.094, 6„"'= —0.052 MeV, as explained in the
text. Woods-Saxon single-particle energies were used.

1

2
3
4
5
6
7
8
9
10
11

(BCS)

0.0329
-0.6374
-0.4783
-1.0480
-0.7476
-1.2121
-0.7407
-1.0911
-0.3677
-0.5781
-0.4507

12
13
14
15
16
17
18
19
20
21
22

V (BCS)

-1.3617
-1.0510
-1.7339
-1.2351
-1.7630
-1.0383
-1.4448
-1.2143
-2.3015
-1.9626
-2.8372

23
24
25
26
27
28
29
30
31
32
33

V (BCS)

-2.3900
-3.0871
-2.5291
-3.0723
-2.4015
-2.8033
-2.0156
-2.2827
-1.3708
-1.5054
-&.4658

34
35
36
37
38
39
40
41
42
43

V (BCS)

-2.0436
-1.8763
-23283
-2.0710
-2A369
-2.0736
-2.3178
-1.8489
-1.9758
-1.9617
-2.0703

n
V

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

~„(8CS)

0.0197
-0.3787
-0.2832
-0.6218
-0A410
-0.7165
-0.4319
-0.6383
-0.1970
-0.314O
-0.2569
-0.9618
-0.8021
-1.3685
-1.1168

n
V

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(BCS)

-1.5898
-1.2402
-1.6356
-1.1752
-1.5021
-0.9120
-1.1804
-0.9933
-1.7390
-1.4965
-2.1145
-1.8107
-2.3200
-1.9522
-2.3657

n
V

31
32
33
34
35
36
37
38
39
4p
41
42
43

45

(BCS)

-1.9315
-2.2570
-1.7530
-1.9956
-1.4170
-1.5786
-0.9174
-0.9963
-0.9673

1 2AAA

-1.1189
-1.3006
-1.0681
-1.1539
-1.1234

n
V

46
47
48
49
50
51
52
53
54
55
56
57
58

(BCS)

-1.4676
-1.3531
-1.5945
-1.4023
-1.5592
-1.2863
-1.3638
-1.3417
-1.4160
-1.3976
-1.5297
-1.4529
-1.5212
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40--

V~"'(deg) is then fixed by minimizing the ener-

gy gap difference, i.e., minimizing gz —s3[b,Bcs(Z)—b d,s(Z ) ] and XN &2v[EBcs(N ) —b d,s(N )], where
b,Bcs(N ) and b,d,s(N ) are the pairing gaps for V~"'(BCS)
and V~"'(deg), respectively, and

20—
Ad, =G QN (0 N—) (o =m. , v) . (3.5')

O
~~

Le

O

-20—

Therefore, just as for the spherical s.p. energy shell
corrections, there are no freely adjustable parameters
here. For example, if the spherical Woods-Saxon s.p. en-

ergies are used (see Fig. 1), then the values of these fixed
parameters are (in MeV)

-40—

GP"' = —0.094, GP"' = —0.052,
(3.6)

———Experiment

-------- Equal Spacing

-60
80 120 140 160 180

ZorN

FIG. 2. The spherical s.p. shell corrections M', h and pairing
shell corrections V,h" for the single-particle schemes of Fig. 1.
For clarity, only results for even-even nuclei are presented.

6 = —0.047, 6,= —0.023,

and the calculated BCS pairing energies V "'(BCS) are
listed in Table I.

The behavior of the spherical s.p. shell correction M,'hp

and the pairing s.p. shell correction V,&" for three
different s.p. schemes (see Fig. 1) are shown in Fig. 2.

IV. THE FDSM STRUTINSKY MASS FORMULA

pairing gap (even-odd mass differences) for the spherical
nuclei in this region (6„=0.86 MeV and 5 =1.0 MeV,
see Fig. 3). However, it should be noted that the experi-
mental even-odd mass differences do not arise from
monopole pairing alone; there is a contribution from the
quadrupole pairing as well. As we shall see in the next
section, in order to reproduce the empirical 6„=0.86
MeV and hz =1.0 MeV, the corresponding pairing gaps
for an effective monopole pairing interaction are
5„=0.409 MeV and 5 =0.605 MeV. These are values

we actually used to determine 6""'. The strength 6 in

M(Z, N)=Mi +M,h,

sh ™sh+ Vsh + ( FDSM ~

(4.1a)

(4. 1b)

where M&q is the spherical liquid drop mass and M,h is

the total shell correction. We shall now discuss the vari-
ous terms in detail.

(1) The spherical liquid drop mass M~„is

Once the spherical s.p. shell correction M,'hp and pair-

ing shell correction Vph" are computed, we have version

II, which we shall refer to as the FDSM Strutinsky atomic
mass formula. It is written as follows:

M~ =MHZ+M„N a„(1—st+ )A—+a, (1 x;I )B&A +c—oA

Z Z Z+c, , B3—c~, +f(kfrr ) c, (N Z)— —

I/A Z and N odd and equal
+w fI/+ 2.39

el 2/3A
(4.2)

where the parameter h is nonzero only for odd-odd nuclei, and

3 3 3 —2xp8) =1— +(1+xo) 2+ + e ', xo=
Xp xo xo

7'p
(4.3a)

83 =1—5 15 21 3 9 7 7 —
2ype

yp 8y& 8yp 4 2yp yo 2yo

0

~den
(4.3b)

145f(k r )=——
8 y3 48ro

327 2 1527
2800 1 209 600

(4.3c)

The parameters for Eqs. (4.2) and (4.3) are listed in Table II. This liquid drop mass formula is essentially taken from
Ref. [5], except for the removal of the n nand p-p pairing -terms to avoid overcounting, since pairing energies have al-
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TABLE II. Parameters of the spherical liquid drop model.

MH =7.289034 MeV

M„=8.07131 MeV
a =16.000 MeV

a, =21.13 MeV

ad,„=0.99/&2 fm

K =1.911

K~ —2.3
cp=5. 8 MeV

3 e
Cl =

5 rp

a=0.68 fm

' 2/3
5 3

4 2m

c, =0.145 MeV
W=35 MeV

a 1
= 1.433 X 10 MeV

h =6.82 MeV

rp=1. 16 fm
r~=0. 80 fm

1/3
9m.Z
4A rp

e'=1.4399764 MeV fm

ready been included in the effective interaction V„DsMof the FDSM.
(2) The FDSM shell correction ( V„DsM&.

The FDSM shell corrections (V„DsM& are obtained by computing the expectation value of the FDSM effective in-
teraction V„DsM. The spherical s.p. energy splittings have already been incorporated in the spherical s.p. shell correc-
tion. There is no need to introduce deformed s.p. orbitals since we make no deformed mean-field approximation: De-
formation energies are implicitly contained as many-body effects in (V„DsM).

It can be shown that in the symmetry limits (see the Appendix)

(V„DsM&=a +b N +c N +d N„+eN„+fN~N„+Gz (bCs~6) +Gz(ECs~6)

+ Qo ( ECg~~ )~+ Qo( kC@~~ )~+ ( Go G2 )( ECsv2 )~+ (Go G2 )( ECsv2 ) ~

+(B2 —G2)(CSv3& +(B2—G~)(Cs v&s+B2 (Vg") (a=SU2, SU3) (4.4)

In Eq. (4.4) (0) stands for the expectation value of the
operator 0 with the SU3 wave functions (a=SU3) or SUz
wave functions (a=SU2), N~ and N„are the pair num-
bers of valence protons and neutrons, respectively;
ACsts =Csps Qi (QUA+ 12)/4, and b Csv2=Csvz—Q, (Q, +2)/4, with a =3r, v. The quantity Q, is the
pair shell degeneracy of the normal-parity orbitals
[Q& = g(2j+I)/2]. The various symbols C are the
Casimir operators of corresponding groups for protons or
neutrons. The script S8'2 and upper case SU2 are em-
ployed to distinguish between the SU2 symmetry for
abnormal- and normal-parity levels, respectively. In the
calculation, a variational principle is employed to decide
whether the SUz or the SU3 wave function should be
used: we calculate each situation and select the one with
the lowest energy.

The formulas for computing the expectation values in
Eq. (4.4) are listed in Table III. They can be derived

I

straightforwardly following Refs. [6] and [13],except for
the SU3 pairing energy (S (o )S(0 ) &sv3 for which
analytical formulas are available for most cases of in-
terest, but which generally can only be computed numeri-
cally. The formulas to compute the pairing energies in
the SU3 basis, and a detailed discussion of how the quan-
tum numbers vo, u&, u&, N&, A, , and p for the ground
state of a given nucleus are determined, are given in the
Appendix.

It should be noticed that although in this calculation
the symmetry-breaking terms are treated as a first-order
perturbation, this does not mean that the total mass is
computed perturbatively. Taking SU3 as an example, by
perturbative we mean that S~S is treated as a perturba-
tion of the SU3 ground-state wave function, which is a
nonperturbative condensate of S and D pairs, The term
( S S &sv3 induces fluctuations around this correlated
ground state. Thus the perturbed state is still a highly

TABLE III. The formulas for comPuting ( V„osM ). The quantum numbers U o and u f are seniorities
of the SU2 wave functions for normal- and abnormal-parity levels, respectively; u, is the heritage quan-
tum number of the Sp6 group; N, is the pair number in the normal-parity levels; A, and p are the con-
ventional SU3 quantum numbers.

Matrix element

(bCsp6&a
& ~c;.„&.
&bCsUz&a

a=SU2

4 (2Ql +3)u I

4 (2Qp + 1 )vp

4(2Ql + 1)v 1

5NCT ( QCT Nrr ) 5QCT

u l
Q, —1 4(Q, —1)

a=SU3

—(2Ql +3)u l4

4 (2Qp + 1 )vp

(S (o.)S(a))s„3—N, (0, —N, + I)

(A,~+p~+ A,~p~+ 3A,~+ 3p~ ) /2

& CSU3 CSU3 CSU3 &SU3
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nonperturbative one with respect to single-particle de-

grees of freedom. Similarly, for the SU2 case
quadrupole-quadrupole interactions are treated as a per-
turbation of the SU2 ground-state wave function, which is

again highly nonperturbative (the S pair condensate).
However, in such a first-order-perturbation calculation

the phase transition from spherical (described by an SU&

wave function) to deformed (described by an SU3 wave

function) occurs too suddenly. It is anticipated that the
n-p quadrupole-quadrupole interaction VP [2B„"P(~)

.P (v)] is primarily responsible for such a transition.
However, as one sees from Table III, the expectation
value of Uo is zero in the SU2 case, which means that the
first-order perturbation is zero. It becomes dominant in
the SU3 case because the magnitude of & Cs+3-
Cg+3 Cs+3 )s+3 increases quadratically as the number of
valence particles becomes large (subject to Pauli restric-
tions, N, ~ 0, /3, discussed below). In order to provide
a smoother SU&-SU3 transition, we have included a
higher-order correction to V& for the SU2 case:

B2'&Vg" &su
= ~ED ~&g. s. ~V&" exc~~

1 — 1+
(LEO /2)

(4.5)

where EEO is the excitation energy of the first vibrational state that can admix with the unperturbed ground state, and

&g.s.
~
VPexc) is the mixing matrix element of V&". The quantities bEO and &g.s.

~ VPexc) can easily be estimated if
we assume that the unperturbed ground state is a seniority-zero state and the excited state is a seniority-4 state
(v =u"=2), i.e., ~

exc ) =
~
(2 2")0) for an even-even nucleus. It can be shown that for this case

bE() = [(Go —G2 )QI +(Go —G2 )0",], (4.6a)

NI(QI —NI) N"(QI —N", )
&g. s.

~
V "jexc)=2Bz" 5 (4.6b)

We have assumed that Eq. (4.5) is applicable to an odd
system as well. This implies that the low-lying vibration-
al states are assumed to be seniority excitations of an
even-even core.

It should also be noticed that in deriving Eq. (4.4) the
pairing and quadrupole-quadrupole couplings between
the abnornal- and normal-parity levels are only formally
neglected. In the strongly deformed region, neglecting
the pairing off-diagonal matrix elements may not be a bad
approximation. This is because, on the one hand, the en-

ergy difference for different SU3 representations is not
small (roughly 1 MeV, which can be estimated from the
first P- or y-band bandhead energy) and, on the other
hand, the pairing matrix element itself is already
suppressed strongly [as we shall see in Eq. (4.7), the
suppression factor is roughly a factor of 3 compared to
the SU2 cases]. However, the quadrupole-quadrupole
coupling between abnormal- and normal-parity levels is
generally not negligible in the well-deformed region. In
the geometrical picture, this corresponds to the energy
splitting of the abnormal-parity level due to the deformed
mean Geld. To take such an interaction into account mi-
croscopically, one needs to include broken pair (seniority
uAO) states in the abnormal-parity level. This will corn-
plicate matters sufficiently that a large scale numerical
calculation will be required.

In this calculation, we have used a simple way to in-
clude such an effect that allows us to maintain an analyti-
cal form for the mass formula. This is achieved by
empirically determining the polynomial coefficients in
Eq. (4.4) and allowed different values for the SU3 and SU2
cases. It is reasonable to assume that the ground-state

energy gain as a function of N and N„due to abnormal-

parity level splitting is smooth and can be approximated
by a quadratic function. This can be seen by examining
the Nilsson model, which we have shown to correspond
(quantitatively) to a large particle number approximation
of the FDSM [14]. In fact, to a good approximation the
abnormal-parity levels split linearly with deformation
(which is microscopically proportional to particle number
[14(a)]). Therefore, for deformed nuclei the effect of the
quadrupole-quadrupole coupling between abnormal- and
normal-parity levels is de facto included by a renormal-
ization of the coelficients of the polynomial in Eq. (4.4).

The situation is similar for the vibrational case, where
the symmetry is SU2 and the quadrupole coupling is not
important. In this case the pairing coupling between
abnormal- and normal-parity levels can be computed
analytically, and it can be shown explicitly to be a quad-
ratic function of the number of particles. Thus the effect
of this coupling is again simply to renormalize the
coefficients of the polynomial. By determining these
coefficients empirically and allowing then to be different
for SU2 and SU3, the contributions to the ground-state
mass due to the coupling between abnormal- and
normal-parity levels are eftectively taken into account.

(3) Analytical formula for 82 Z 99 and
126 &X & 151 nuclei.

Since the & S (o. )S(cr ) ) s&3 calculation is rather cumber-
some, the FDSM shell correction for the general case can
only be computed numerically. However, for 82 & Z & 99
and 126 & X & 151, which includes virtually all known nu-
clei in the actinide region, one can derive an analytical
expression. The reason is that in this range of Z and X
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the particle number in the normal-parity levels [accord-
ing to Eq. (A3)] is +2Q&/3 (i.e., n

&
+2Q& /3, cr =sr and

v), and therefore the SU3 wave functions belong to the
symmetric irreducible representation (irrep) (2N&, 0). In
this case (S (o )S(o.))SU3 and thus (VFDSM) have been
obtained analytically:

2N1+ 1
(S (o }S(o})SU3= N, (Q, /3 N—

, +1)

2N1+ 1 201 +3

where N, =N1+N1, and

(4.7)

{VFDsM ~sv2 osv2+bsv2N +csv2Np +dsU2N +esU2N +fsU2N N„
5N (Q —N )+ g (B2 —G2 ) +bsv25 +B '

0' —7l, V 1

( VFDsM ~sv3 Qsv3+ bsv3Np +csv3Np +dsv3N„+esv3N„+fsv3Np N„

(4.8a)

+ g [(B2 —G2 )N, (2N) +3)+bsv35, ]+4B2 "N",N'
7

(4.8b)

In Eq. (4.8), hsv2 and b,sv3 are constants that are nonzero
in the ground state only for odd-A or odd-odd systems
(that is, when u =1, where u =u& +U, +vo ). They
correspond physically to the average even-odd mass
differences (or pairing gaps) for spherical and deformed
nuclei, respectively,

neutrons or protons outside Pb, then

E2+( ' Po)= —Qf(GO —G2 )=1.1814 MeV,

E2+( ' Pb)= —Q", (Go —G„")=0.7997 MeV .

(4.10a)

(4.10b)

201+ 1= —9 —'(2Q +1)U —(G —G )

2O;+3 5Q1
G, +(B,—G2) u, ,' 4(Q; —1)

(4.9a)

bsv3= ~o ~(2Qo+1)Uo

1.2

I I I0 a

0.8 - a I II P P
SU

0.6-

0.4-

0.2-

0.0

a g
a I a

SU3

20, +3
G cT

2 4

84 88 92 96 100 104 108

2N1+1 201+3
2N —1 12

1

(4.9b)

Equations (4.8) and (4.9) can also be applied to the
N, )2Q, /3 (that is, n, )4Q, /3) case, if N, in these
equations is replaced by the hole number (Q& —N, ).

(4) Determination of the parameters in version II.
The strengths of monopole and quadrupole pairing, G0

and Gz, respectively, are determined from the first 2+
state excitation energies of ' Pb and ' Po (0.7997 and
1.1814 MeV, respectively [15]), and the average pairing
gap energies for protons and neutrons. The experimental
data on pairing gaps can be obtained from the even-odd
mass difFerences. The average pairing gaps for the de-
formed and spherical nuclei are found to be AsU3 0.75
MeV, hsU3 0.63 MeV, AsU2=1. 0 MeV, and hsU2=0. 86
MeV, as shown in Fig. 3.

If one assumes that the wave functions of the first 2+
states of ' Pb and ' Po correspond simply to a D pair of

1.0- a
a a a

08 a a
a + I a

0.6-

04-

a a a
I
I
I

I a
ii 8

SU3

0.0
133 138 143 153

FIG. 3. Pairing gap energies in the actinide region
(Z ~ 82,N ~ 126). The experimental data (open squares) are ob-
tained from the even-odd mass difference; the solid lines are the
FDSM predictions of average pairing gaps in the SU~ and SU3
limits using Eq. (4.9). Dashed lines are just drawn as interpola-
tions for transitional nuclei. Experimental masses are taken
from Ref. [16].
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=0.75 MeV,

20i+3 20&+3
~sU3= Gz 4

—(Go Gz )

=0.63 MeV,

20& + 1 20& +3
~:Uz=-(G."-Gz }

(4.11a)

(4.11b)

Also, by assuming that the odd nucleon is in a normal-
parity level (u I

= U
&

= 1 and vo =0), one can obtain from
Eq. (4.9) that

20] +3 20& +3
~SU3 2 4 (GO 2)

—(Go —Gz )[(2Qf+3}/12] are the SUz and SU3 Pairing
gaps, respectively. Using the values of Eq. (4.13), the
effective pairing gaps are 0.605 MeV for protons and
0.409 MeV for neutrons. These are the two pairing gaps
used in the calculation of pairing shell corrections.

It should be noted that an ambiguity exists in the
derivation of Eqs. (4.11) and (4.12), because we have as-
sumed that the odd particle is in a normal-parity level.
This is probably a reasonable assumption at the begin-
ning or the end of the shell (mainly the SUz case}, since
the abnormal orbitals are near midshell for this mass re-
gion (see Fig. 1). However, for deformed nuclei (the SU3
case), it is possible that the odd particle resides in the ab-
normal orbital. In that case, u

&

=v
&
=0 and vo =1, and

the gap formulas will be changed to
50'—(Bz —Gz ) =1.0 MeV,

4(Q| —1)

20' + 1 20& +3
~sU2= —«o —Gz )

4
—Gz

(4.12a)

~sU3 ~0 (2QD+ 1)=0.75 McV,

004(2QO+ 1)=0.63 MeV

(4.14a)

(4.14b)
50'—(Bz —Gz ) =0.86 MeV . (4.12b)

4(Q", —1)

We will discuss below the implications if the odd nucleon
is not in a normal-parity level.

Knowing these values, and that for 82 & Z ~ 126 and
126 N 184 the degeneracies are 0& =15 and 0&=21,
from (4.10) and (4.11) one can immediately obtain values
for ( G 0

—G z ) and G z. In principle one can also deter-
Inine Bz from Eq. (4.12). However, we found that these
parameters are small and poorly determined
(Bz =0.03+0. 1 and Bz =0.026+0.04). Hence, for sim-
plicity we have set them to zero. This is consistent with
the common belief that the quadrupole-quadrupole in-
teraction among like particles is small compared with the
n-p quadrupole-quadrupole interaction. To summarize,
the parameters obtained here are

Qo= —0.20 MeV, Qo= —0. 15 MeV . (4.15)

Of course, if the ground-state parity is measured for a
given nucleus, one can identify whether the odd particle
is in a normal- or abnormal-parity orbital and then use
the appropriate formula. However, data indicate that the
pairing gap is relatively independent of which orbital the
odd particles occupies. For convenience in the present
calculation we have assumed that the odd particle is al-
ways in the normal-parity orbital. Nevertheless, one can
take advantage of Eq. (4.14) to determine the pairing
strength in the abnormal-parity level. The abnormal lev-
els for heavy and superheavy nuclei (82 Z(126 and
126~N(184} are i&32 for protons and J|&iz for neu-
trons; therefore, 00 =7 and 00=8 and one obtains

(Go —Gz ) = —0.078 MeV,

G2 = —0.064 MeV, B~ =0;

(Go —Gz)= —0.038 MeV,

G2= —0.044 MeV, B2=0 .

(4.13a)

(4.13b)

Thus, we have reduced the number of adjustable pa-
rameters in the FDSM-Strutinsky mass formula from 16
in version I to 13 in version II. These 13 parameters are
determined by fitting 332 known actinide-region masses.
They are found to be the following (in units of MeV).

For Woods-Saxon spherical s.p. energies:
B = —0.0912,

From Eqs. (4.11} and (4.12) one sees that not only
monopole pairing, but also quadrupole pairing, will con-
tribute to the energy gap (even-odd mass differences).
Nevertheless, it has been shown [6(b)] that to consider
both monopole and quadrupole pairing is equivalent to
considering an effective monopole pairing with a strength
(Go Gz ) Plus a tcIIII Gz X Cs&6 whcle Cs&6 Is t11c ex
pectation value of the Sp6 Casimir operator. The latter
depends only on heritage number u &, and therefore is
merely a constant, although it does contribute to the en-
ergy gap. In Eqs. (4.11) and (4.12), the terms—Gz [(2Qi +3)/4] originate from Sp6 Casimir operator
and the terms —(Go —Gz )[(2Q& + 1)/4] and

a = —5.570, b = —5.790, c =0.3713,
d = —6.806, e =0.3587, f = —0. 1095

For equal
B2 = —0.0899,

(A=SU3) .

spacing spherical s.p. energies:

a = —13.75, b = —4.572, c =0.4293,

d = —4.889, e =0.3306, f = —0.2915

(a =SU2);

&4.16a)
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a = —13.75, b = —4.313, c =0.4182,

d = —5.007, e =0.3248, f = —0.2976

(a=SU2);

(4.16b)

a = —6.506, b = —5.300, c =0.3319,

d = —6.826, e =0.3530, f = —0. 1105

For experimental8" = —0 0909
spherical S.p.

(a=SU3) .

energies:

a = —4. 158, b = —6. 198, c =0.3808,

d = —7. 154, e =0.3568, f = —0. 1045

(a=SU3) .

V. RESULTS

a = —13.75, b = —4.882, c =0.4300,

d = —4.983, e =0.3316, f = —0.3005

(a=SU2);

(4.16c)

for nuclei with stable deformations. This could be the
reason why irregularities occur in the vibrational regions
for such calculations. (ii) The FDSM directly treats the
pairing and quadrupole interactions as two-body interac-
tions, without introducing a deformed mean-field approx-
imation. Hence many-body correlations are better taken
into account. Also, the approach does not suffer appreci-
ably from the number nonconservation caused by the
BCS approximation, nor the angular momentum fluctua-
tions inherent in a deformed mean-field approximation.
Conversely, in the mean-field approach, one anticipates
that some important many-body correlations may be lost.
As we shall see below, there is a suggestion that the sys-
tematic deficit of binding energy for heavy elements that
characterizes the MN calculations may be related
specifically to the failure to include explicitly or
effectively the monopole-monopole interactions.

Before pursuing this point further, let us discuss the
dynamical Pauli effect. This effect can be seen clearly in

Fig. 8. This figure assumes (incorrectly, for illustration)
that the SU3 ground-state wave function is always in the
symmetric representation: (A, p )=, ( n „0). The
discrepancy between experiment and theory is essentially
zero until the valence proton pair number N =8 and
neutron pair number N„=13are reached. After that, the
discrepancy begins to increase linearly. Note that ac-
cording to Eq. (All), N =8.5 (i.e., Z =99}and N„=12.5

With Eq. (4.4) and the previously determined parame-
ters, we are in a position to compute masses for heavy
and superheavy nuclei (82 ~ Z ~ 126 and 126 & N ~ 184).
Discrepancies between the computed and the experimen-
tally known masses are displayed in Fig. 4. The total
shell correction M,h as well as neutron and proton sepa-
ration energies are shown in Figs. 5, 6, and 7. For com-
parison, the Moiler-Nix calculations (referred to as MN)
are also shown. It is clear that for this mass region the
FDSM mass formula is an improvement over the
Moiler-Nix results. (The Moiler-Nix mass formula also
applies to other mass regions. A global comparison of
the two theories awaits the extension of the present
FDSM calculation to these other regions. ) This improve-
ment is particularly obvious at the light and heavy ends.
At the light end (vibrational region), we see that not only
does the FDSM give a smaller rms discrepancy in the
shell corrections, but the unphysical irregularities in the
separation energies S and S„ofthe Moiler-Nix calcula-
tions (see Figs. 6 and 7) are not present. At the heavy
end, one sees that MN systematically predict less bound
systems, while the FDSM results agree we11 with data (see
Fig. 5}. This latter improvement is particularly impor-
tant in the effort to extrapolate to the unknown heavy re-
gions.

The above-mentioned improvements of the FDSM
mass formula over the mass formulas such as MN are
due basically to two physical reasons. (i) The FDSM in-

herently contains SU2 and SU3 dynamical symmetries.
These symmetries can describe well both the vibrational
(SU2) and rotational (SU3) limits. The Moiler-Nix mass
formula is based on the deformed mean-field approxima-
tion, which is expected to be a reasonable approximation

' R.M.S. Error=0. 22 MeV'

-2

-3 I

12 16

2-
"".R.M.S. Error=0. 79 MeV:"

~ ~ ~ ~ ~

'j

N„

I

12 16

FIG. 4. The discrepancy between experiment and theory in

heavy nuclear mass calculations (Z~82, N~ 126). The top
figure is the discrepancy for the FDSM calculation using

Woods-Saxon single-particle energies. For comparison, the
Moiler-Nix calculation [5] is shown at the bottom. Data are
taken from Ref. [16]. Different curves correspond to different

proton numbers.
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-10-

EXP 4 MN

14 I I

0
I

12 16

EXP & FDS
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FIG. 5. The shell corrections for heavy nuclear masses

(Z ~ 82,N ~ 126). The top figure is the FDSM calculation using
Woods-Saxon single-particle energies; for comparison, the
Moiler-Nix calculation [5] is shown in the bottom figure. The
curves are theoretical predictions and the symbols are data [16].
For clarity, only even-even nuclei are presented.

(N = 151) are exactly the numbers of valence proton and
neutron pairs in the normal-parity levels N, and N, cor-
responding to the threshold for departure from ground-
state symmetric representations: 01/3 and 0, /3, respec-
tively. This result seems to provide rather convincing
evidence that (i) when N, ~ Qt /3 (tr =m, v), the
SU3(n„O) representation is a good description for the
ground state of a deformed nucleus, at least in the ac-
tinide region; and (ii) when N I )0, !3 the nuclear
ground state is no longer described by the (n„O)repre-
sentation. Instead, higher representations will be more
favored. This is consistent with the FDSM predictions,
since (n „0)in this case is Pauli forbidden. Indeed, when
the dynamical Pauli efFect is taken into account by re-
quiring (correctly) that the ground state be the lowest
Pauli-allowed representation [see Eq. (A14)], all the large
discrepancies of Fig. 8 disappear (cf. Fig. 4).

The dynamical Pauli effect appears also in the neutron
separation energies, which we display in Figs. 6. Here
one sees that the calculated neutron separation energies
have a kink at N =151 (N; =0",l3). There is a sugges-
tion that the data exhibit a similar kink. From the
FDSM point of view, this kink is also due to the dynami-
cal Pauli effect: When the neutron number goes beyond
N=151 there is a phase transition from an SU3 sym-
metric representation to an asymmetric representation,
for which the ground-state energy is higher. This addi-
tional drop in separation energy adds to the continuous
decrease as neutron number increases and causes a kink.
A similar situation for proton separation energy can also
be seen in the FDSM calculation, but the effect is small
and it is difficult to detect it clearly in the data (Fig. 7).

It is quite interesting that a similar kink appears in the
MN calculations of the neutron separation energy at pre-
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FIG. 6. Neutron separation energies for heavy elements
(Z ~ 82,N ~ 126). The top figure is the result of the FDSM cal-
culation using Woods-Saxon single-particle energies. For com-
parison, we show Moiler-Nix calculations [5] in the bottom
figure. The curves are theoretical calculations and the symbols
are data [16].
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FIG. 7. Proton separation energies for heavy elements

(Z ~ 82,N ~ 126). Details as in Fig. 6.
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FIG. 8. Dynamical Pauli effect in heavy nuclear masses
(Z ~82,N~ 126). For clarity in the figure only even-even nu-
clei are presented. The theoretical mass used in this figure is the
calculation with the same parameters as in Fig. 4, except that
one assumes (incorrectly) that the ground-state SU3 wave func-
tion is the symmetric (n „0)representation (n l

=n l +n l ).
When the dynamical Pauli effect is taken into account by using
the correct representation (see text), the large discrepancies for
N~ & 8 and N„)13 vanish, as we have seen in Fig. 4.

cisely the same location. Since the deformed mean field
knows nothing directly about group representations, this
requires some explanation. The occurrence of such a
kink in the MN approach is presumably due to the large
Z=98 and N=152 energy gaps in the deformed s.p.
spectrum. It is not surprising that these two shell gaps
occur at the same particle number as the dynamical Pauli
effect. When the symmetric SU3 representation is al-
lowed only up to a certain particle number, say N =152,
adding one more nucleon will cause the nucleus to ac-
quire a more than an average amount of energy, because
the many-body system will be forced by the Pauli princi-
ple to move to an asymmetric representation, which is
less bound. In the mean-field language, this is equivalent
to the introduction of a s.p. energy gap at N=152. This
means that the deformed mean fields in common use (e.g. ,
Nilsson or deformed Woods-Saxon models) include at
least part of the dynamical Pauli effect through empirical
adjustment of s.p. parameters to reproduce observed nu-
clear properties. (See Fig. 8.)

Thus the empirical appearance of deformed shell gaps
at Z =98 or N=152 acquires a fundamental interpreta-
tion in the FDSM: these gaps are consequences of an
Sp6DSU3 symmetry of the many-body collective wave
function. Their location is correctly predicted by the
theory in terms of the number of particles occupying
normal-parity orbitals, independent of the detailed s.p.
structure. This is in contrast to the usual deformed
mean-field approach, where the appearance of gaps (and
the corresponding Strutinsky shell corrections) is a conse-
quence of the detailed properties of the s.p. energies for
many orbitals. Since these are ultimately dependent on
phenomenology, such an approach offers no fundamental
explanation of these shell gaps.

An important feature in the mass shell correction for
heavy nuclei (Fig. 5) is that on the heavy end M,h tends
to bend upward. For Z )98 and N & 152, the upward be-
havior of M,h is partially related to the dynamical Pauli

effect, as was explained above: When the number of
valence particles is increased between 20& /3 and 0&, the
expectation value of the SU3 Casimir operator will de-
crease, thus causing the shell correction to become less
negative. However, the upward trend one observes in
Fig. 5 actually begins earlier than Z=98 and N=152
(which correspond to N =8 and N„=13, respectively).
Hence the reason for the increase in this region cannot be
the dynamical Pauli effect alone. An additional source is
found to be the quadratic number-dependent terms (c N
and e N„)in the polynomial of Eq. (4.4), which originate
from the monopole-monopole interactions of the two-
body Hamiltonian.

To see this more clearly, let us separate out the
monopole-monopole interactions from the polynomial of
Eq. (4.4) which is the expectation value of the
Vo(No, N„NO,N~ ) term in Eq. (A3). Using V,

„

to
denote the symmetry-dependent terms, Eq. (4.4) can be
expressed as

&v„, ) =(v, )+(v,„). (5.1)

On the other hand, as shown in the Appendix Eq. (A2),
V„DsM can be expressed as a sum of monopole-monopole
interactions Vmp~p and the FDSM pairing plus quadru-
pole interactions V (including quadrupole pairing), thus

(v„,) =&v .„.)+(v„). (5.1')

Using Eqs (A4), it is easy to obtain the following rela-
tions:

&v .„.) =&v, ) —(v,'„),
(v„)=(v,„)+(v',„),

where

(V,y ) = g [G2N, (0, —N, +6)

(5.2)

M,h
=M',g' + Vg" + (V,„,) + ( V ) . (5.4)

A typical example of the behavior of each term in Eq.
(5.4) and its contribution to the mass shell correction is
shown in Fig. 9. The dynamical Pauli effect shows up
here as the Vpq curve begins its upward climb at N —152.
However, the V,„,curve bends upward earlier (at
N-146) and much stronger. This strength is due to the
repulsive quadratic number-dependent terms in the
monopole-monopole interactions. It is this repulsiveness,
together with the dynamical Pauli effect, that dictates the
upward trend of the shell corrections at the heavy end.
The lack of such repulsive terms presumably gives rise to
a smaller upward curvature in the MN mass shell correc-
tion curves as seen in Fig. 5. This may be the reason why
the MN predictions at the heavy end tend to be less

+ Qo No (00 No + 1)—
+(Go —G~ )N, (0, —N) +1)j . (5.3)

Thus, knowing (Vo) and (V,„)one can obtain
(V,„,) and (V~q), and the total mass shell correction
(4.1b) can be expressed as
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bound (or overbound, if parameters are readjusted to
fine-tune the agreement in the intermediate region).

From Fig. 9 one may notice that the FDSM also pre-
dicts a large positive mass shell correction for very
neutron-rich nuclei (in this Z =98 example, when
N = 184, M,h

=39 MeV). A similar situation occurs for
the very proton-rich side (e.g., when Z = 126 and
N=126, M,h=22 MeV). At 6rst glance this seems
unusual since no known nucleus or previous mass calcu-
lation has ever shown such large positive mass shell
corrections. However, it should be noted that, on one
hand, the large positive shell corrections predicted by the
FDSM occur only in the region far from the p-stability
line (very neutron rich or proton rich), and there are no
known nuclei there. Near the p-stability region, where
data exist, the FDSM predicts no contradiction to the
data because the repulsive n-n and p-p monopole-
monopole interactions are largely canceled by an attrac-
tive n pmonop-ole-monopole interaction (the f N N„
terin). On the other hand, since previous mass calcula-
tions have not taken the monopole-monopole interaction
into account, which is the source of the large repulsive-
ness, it is not surprising that these approaches predict no
1arge positive shell correction in any case. The large
difference in the region far from the p-stability line may
have significant consequences in nuclear astrophysics.
Thus it would be very interesting to check whether this
large positive mass shell correction is realistic. A ra-
dioactive beam facility might provide answers to this im-
portant question.

We wish to emphasize that the appearance of quadratic
number-dependent monopole-monopole terms in the ex-
pression for nuclear masses is a natural consequence of a
general two-body interaction. In fact, it is mell known
that in the multipole expansion of the residual nucleon-

nucleon interaction the monopole-monopole interaction
is the leading term. However, since this interaction de-
pends only on particle numbers, for a given nucleus it will
only contribute a constant energy and essentially will
have no effect on the low-lying nuclear structure, where
the particle number distribution change is not anticipated
to be dramatic. This may explain why the monopole-
monopole interaction terms have previously not received
much attention and have often been neglected. Obvious-
ly, such terms must affect the ground-state energy and
should be present in a realistic mass formula. It should
be mentioned that Pittel et al. have emphasized the im-
portance of monopole-monopole interactions in several
publications [17]. They suggested that it is the n-p
monopole-monopole interactions that cause single-
particle energies to change from the beginning of a shell
to the end of the shell. The present analysis suggests that
in addition to the n-p attractive monopole-monopole in-
teraction there exist n-n and p-p monopole-monopole in-
teractions as well, and that these have an important
repulsive contribution to the masses of very heavy ele-
ments.

We now see that the FDSM mass formula is simple,
analytic for most nuclei in the actinide region, and can be
computed rapidly. Therefore it is convenient for sys-
tematic studies. As an example, we have computed all
the ground-state nuclear masses for 82&Z ~126 and
126 & N ~ 184 with three different sets of s.p. energies (see
Fig. 1). Our aim in this example is to study the depen-
dence of the energy minimum of superheavy elements on
the variation of the s.p. energies. As we have shown in
Fig. 10, a deep minimum is located at Z=114 and
N=164 for the Woods-Saxon case. The corresponding
shell correction is M,h

= —12.6 MeV, which is compara-
ble to the large shell correction of Pb ( —13.75 MeV).
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FIG. 10. Contour plot of the mass shell correction for heavy and superheavy elements using Woods-Saxon single-particle energies.
The predicted minimum for superheavy elements is, &4X,64.

On the other hand, for the equal spacing s.p. case the
minimum is at Z = 116, N = 170, and M,h

= —14.7 MeV.
When we use the experimental s.p. energies, a rather Bat
minimum is at Z = 122—124 and N = 176—180, and
M,h

= —18.0- —18. 1 MeV. For each set of s.p. energies
the superheavy elements are predicted to be spherical
(SU& symmetry). In all three cases the rms error is
0.22 —0.23 MeV.

It is understandable why the overall Gt to the known
masses is not sensitive to the differences of these three
s.p. level schemes. The erst three s.p. levels are nearly
identical in all three schemes for protons and neutrons
(see Fig. 1), and nucleons of known nuclei mainly occupy
these levels. The dramatic differences in the s.p. levels

for these schemes occur mainly in the second half of the
shell, as can be seen in Fig. 1. Unfortunately, the ground
states of existing nuclei do not have large occupancy in
these levels. One anticipates that the masses of su-
perheavy elements will be more sensitive to the s.p. struc-
ture of the second half of the shell, and according to our
calculations, that is indeed the case. In fact, we see in
Fig. 11 that different s.p. schemes do give rise to different
results in the superheavy region. Among the three s.p.
schemes, the experimental one is the most compressed
and has the largest level density at the end of the shell
(see Fig. 1). This makes the experimental s.p. scheme
(among the three considered) to have the largest negative
s.p. shell correction at the end of the shell (see Fig. 11),
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FIG. 11. The Z=114 mass shell corrections for three different s.p. level schemes. WS stands for Woods-Saxon potential, EQ for
equal spacing, and EX for experimental s.p. spectra. In diagram (a), the spherical s.p. shell correction M'h and the monopole-
monopole interaction V,„,and their sum M, h are shown. The kink around 1V= 156 is caused by the SU3~SU2 phase transition. In
diagram (b), M ll Vpq ( Vpq Vpq+ V h ) and their sum are shown. For clarity, only results for even-even nuclei are presented.
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and explains why this scheme prefers to push the su-
perheavy minimum toward the heavy end of the shell and
makes it more bound. Since at the moment there are no
data to ascertain which s.p. scheme is preferred, we feel
that no definite prediction about the superheavy elements
can be made. Nevertheless, the fact that the three
different s.p. schemes all predict a deep minimum for the
mass shell correction in the superheavy region (although
the locations are different) seems to give an encouraging
signal about the existence of the superheavy island. Of
course, a large negative mass shell correction does not au-
tomatically ensure the existence of superheavy elements.
In particular, the stability of such superheavy elements
with respect to fission and a decay needs to be further ex-
plored before more definitive statements can be made.

The situation for the monopole-monopole interactions
is similar: At present, no quantitative statement can be
made about the interaction strengths since different s.p.
schemes lead to different monopole-monopole interac-
tions (the difference can be as large as 20 MeV at the
heavy end of the shell} and yet give essentially the same
quality fit for known masses. Nevertheless, the impor-
tance of the monopole-monopole interactions in the mi-
croscopic mass calculations can already be recognized.
As can be seen from Figs. 9 and 11, the spherical s.p.
shell corrections M,'h and the monopole-monopole in-
teractions V,„,are the two largest components of the
mass shell correction. Both can contribute as much as 50
MeV, which is much larger than the other terms in the
mass shell correction (5.4). However, M,'g is always con-
vex in shape while Vmo p is always concave, and they tend
to cancel each other strongly. It is this cancellation of
M,'h ' and V,„,which makes their sum comparable to
the pairing plus quadrupole interactions contributions,
which then add to give the final mass shell correction.
Without the monopole-monopole interactions, it is
difficult to imagine how (within the framework of a
spherical shell model) the mass shell correction can be
correctly computed. The next step, which is now under-

way, is to apply this approach to the rare earths, since

the s.p. level scheme there is less ambiguous and data are
more complete. We anticipate that one will learn more
about the monopole-monopole interactions there, even
though they will be weaker because X and N„aresmall-
er.

The success of the version II FDSM mass formula dis-
cussed in this paper clearly s&suggests that a correct treat-
ment of the spherical s.p. shell correction is crucial to a
microscopic understanding of the FDSM mass formula,
and of how it can be extended to general mass calcula-
tions. Our method, as presented in this paper, is now
ready to be applied to other regions of the nuclear chart.
This work is now in progress. Finally, in a forthcoming
article, we shall discuss the astrophysical r process using
version II of the mass formula [17]. Preliminary results
suggest that there are substantial improvements in some
crucial aspects of r-process calculations when the FDSM
mass formula is substituted for more traditional mass for-
mulas.
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APPENDIX: THE FDSM HAMILTONIAN
AND WAVE FUNCTIONS

1.The FDSM Hamiltonian

The original FDSM Hamiltonian for the heritage u =0
case (heritage u is the number of particles that do not
form S and D pairs, u =u

&
+u", +vo+vo) is as follows

[6]:

HFosM= g (noeo+nte, )+VFosM
0'=7T, V

VFDSM=V +V'+V

(A la)

(A lb)

V =SoNoNo+BoN, N, +boNoN, +QoS (o }S(o)+Go S (cr)S(o )+G~ Dt(o ).D(o )+ g B„P"(cr).P"(cr)
r=1,2

+go [S (o )S(cr)+4 (o )S(cr)] (o =n, v), .

V "= g 2B P"(m) P"(v)+Bo NfN, +So NoNo+bo"(NoN", +Neo),
r=1,2

(Alc)

(A ld)

where eo and e
&

are the average single-particle energies for the abnormal- and normal-parity levels; no and n, are the
corresponding particle numbers (N; =n, l2); 4 (o )[S(o')],S (cr )[S(o )], and D (cr ) [D(o ) ] are the creation [annihila-
tion) operators for S pairs in the abnormal-parity levels, and S and D pairs in normal-parity levels, respectively. A de-
tailed definition of these terms can be found in Ref. [6]. For odd nuclei we have assumed that the same Hamiltonian
should be used, but with different wave functions; namely, the heritage must be changed from u =0 to u =u"=1
(u = u"= 1) for odd Z (odd N}, or u "=u "=1 (u =2) for odd-odd nuclei.

The FDSM effective interaction V„zsM can be grouped into three terms: monopole-monopole interactions V
pairing plus quadrupole-quadrupole interactions V, and an angular momentum coupling term VJ:
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VFDsM Vmono V&q+ VJ

V,„,= g XoNoNo +BoN, N, +boNoN, +Bo'N[N;+2P() NoNo+bo"(NoN;+N, No },
o —a, v

Vzq= g [Sot (a)4(o')+Go S (a' )S(a')+G2D (a}'D(cr)+BOP (a) P'(a)]

(A2a}

(A2b)

+ g go [S (a )S(o )+4 (a )S(a )]+2Bf P'(~}.p'(v),
a=a, V

BtrJ2 +Bm'v(J2 J2 J2)
'

o.=m, v

(A2c}

(A2d)

The angular momentum coupling term originates from P'(a ) P'(a ) terms in (Al), since P'(cr ) =—', J (see Ref. [6]).
Equation (A2) can be rewritten in terms of Casimir operators of the Sp6, SU&, and SU3 groups [using Table VI and

Eq. (4.7a) in Ref. [6(b)]]:

VFosM= Vo(No, N], No, N~)+ g [Gp bCs&6+QohCg~2+(Go —G2 )bCsUp+(Bp —G2 )CsU3+ ~(B~ B2 )J—~]
o n, v

+B2 (CsU, —
CsU3

—CsU3)+ —', (B, B2 }(J——J —J„)+g go [S (a)S(a )+4 (cr)S(a )] . (A3)

S (cr )S(a ) =bCsU2+Ni (0, —N, +1),
4 (a )S(a ) =6Cg~2+No (Qo —No +1),
S (a }S(a)+D (cr)D(o )+P'(cr) P, (a }+P (a ) P (cr)

(A4a)

(A4b)

=b,Cs~6+N, (Q, —N, +6), (A4c)

In Eq. (A3), Vo is a quadratic function of the number
operators Np, N"„Np, and N, . It originates from the
monopole-monopole interactions and the transformation
from the pairing operators (S S, 4 4, and D D) to the
SU2(1%2) and Sp6 Casimir operators. The quantities J,
J, and J are the angular momenta for protons and neu-
trons, and the total spin of the ground state, respectively.
To derive Eq. (A3) from Eq. (A2) the following relations
have been used:

N
&
=0.75+0.5N Np = 0.75+0.5N

(N =No +N, ) . (A5a)

The average number distribution among normal- and
abnormal-parity levels determined by this semiempirical
formula is in good agreement with the Nilsson scheme at
the appropriate deformation, and has been applied suc-
cessfully to other calculations [8]. Having Eq. (A5a), for
a given nucleus the occupation numbers Np and N, are
completely determined. However, some caution should
be exercised here. First of all, this N, value should be in-

terpreted as an average value that need not have integer
or half-integer values. Second, when N ~ 1, or
N )2Qo+1.5, Eq. (A5a) violates number conservation
and should not be used. In this case, N, is determined as
follows:

P2(a ) P2(a ) C& 3 J2

P2 P2 Cvrv 3 J2 [P2 P2(~)+ P2( &) ]

(A4d)

(A4e)
N 1

N for N ~1,
N Qp for N )2Qp+ 1.5

(Asb)

To obtain ( V„zsM) [Eq. (4.4)] from Eq. (A3), we have
neglected the spin-dependent terms. These terms may be
important for the spectra, in particular for high-spin
states, but are negligible for ground-state masses at the
present accuracy. The pairing interaction between
normal- and abnormal-parity states, go [S (a )S(o )

+S (a. )S(a )], is also neglected since its diagonal matrix
element vanishes. The quadratic polynomial of N in
( V„osM) is obtained from (Vo) by transforming No and

N, into% .

2. The determination of N&

The relation between Np, N &, and N can be obtained
from the FDSM: N

&

=a +bN, where a and b are specific
combinations of the parameters of the FDSM effective in-
teraction [6]. Empirically, they are found to be -0.75
and -0.5, respectively, for the known heavy nuclei
[10(a)]:

SU3..
l
v oNou ", N f (A,„p„),v oNou &N &

(A p } (kp )~J )

(A6a)

which is simply the requirement of number conservation.
Third, although Eq. (A5) describes the average behavior
quite well, there are local fluctuations about the average.
There are various reasons for such fluctuations: devia-
tions from the symmetry limit not accounted for in the
present calculations, symmetry changes from SU& to SU3
or from the symmetric SU3 representation to nonsym-
metric representations, etc. A more precise treatment
would account for such local modifications of Eq. (A5).

3. The SU2 and SU3 wave functions

The ground-state wave functions are assumed to have
either SU3+'X S%z X S'llew symmetry (denoted as SU3
wave functions for short) or SU2 X SU2 X S'llew X O'Vlz

symmetry (denoted as SU2), depending on whether the
nucleus is deformed or spherical:
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SU&. IvoNou, N, (v, ),viiNou", N", (v, );rJ) . (A6b)

where

2Ni coi+c02+t03 y [tv] —[isg&~3]

A, =~,-~,, I
=~,-~3,.

2Ni =coi +c02+c03, [co )=[coi,c02, c03 ],

(A7a)

(A7b)

As noted above, the choice between these possibilities is
dictated by minimizing the energy of the ground state at
fixed particle number.

In Eqs. (A6a) and (A6b), J is the ground-state spin and
~ is the additional quantum number necessary to specify
the state. The indices 0 and 1 denote the abnormal- or
normal-parity levels, respectively.

The SU3+" wave function in Eq. (A6a) can also be la-

beled by the U3 quantum numbers

The ground-state heritage and seniority numbers are
simply determined by whether the neutron and proton
numbers are odd or even

0 n =even, v& =u
&

u =u +v
1 n =odd, v& =u, (A8)

The SU3 quantum numbers (A, , JM ) and (A, ,p) are
determined by n, , the particle number in the normal-
parity levels. For an attractive quadrupole-quadrupole
interaction the symmetric representation
(A, ,p ) =(n i,0) and (A, ,p) =(n i +n i,0) for particles, or
(O, n i) and (O, ni+n i) for n i holes (where
n i =20i —n i ), is usually the SU3 ground state. Howev-
er, when the particle number Qi & n i & 20, /3 or
Qi & n i & 20, /3 (i.e., 20i l3 & n i &40i l3) the sym-
metric representations (A, ,p, )=(n, ,O) or (O, n, ) are
Pauli forbidden. This is the dynamical Pauli egect,
which requires the allowed SU3 representations for the
ground state to be

(n i,O), n i &20i /3,
(g,p )= ~ (40i /3 —n i,ni —

20i /3), 2 Qf /3 &ni &40i/3,
(0,20i n i ),—n i & 40i l3,

(A9a)

and

(A, ,p)=(A, +A.„p+p„). (A9b)

Thus, for a given nucleus the quantum numbers of the ground state are determined from (A5), (A8), and (A9), and the
FDSM shell correction can be computed in accordance with the formulas given in Table III.

4. The formula for (S (o)S(a))sv3

Using I [u i ][co ],[u ', ][co'];[c0]) to specify an SU3 wave function for 2N, particles, and I [u i ][to ],[u i ][ai ];[t0'] )
for 2Ni —2 particles, where the symbols [oi ] and [to] are the U3 quantum numbers for the 2N, and 2N, system
defined in Eq. (A7), and [co ] and [co'] are the U3 quantum numbers for the 2Ni —2 and 2Ni —2 systems, the matrix
element can be computed in the following way:

&s'(~)s(~))s„,= y l&[u, ][~ ],[u', ][~'];[~]lls'(~)ll[u;][~ ],[u', ][~'];[~]&I', (A10a)
t@ l f~'l

where

&[ )[ )[ l][ '][ ]lls'( )ll[ ][ )[ l)[ '][ ']&

=U([2), [m ), [~1,[~');[~ ), [~'))&[~'),[2)ll[~) &([ui )[~ )Illa lll[ui ll~ ]& (Alob)

and

&[u ]l~ ]Ill~ lll[u )[~ ]&= [A,„-„-,—
A,„-„--,)'"&[n ]llzll[n ]&

v'3

XU([u, ],[n ], [ai ],[2];[co ],[n ]) . (A10c)

In Eq. (A10c) [if ] and [n ] are the U3 quantum numbers for the 2Ni —u, —2 and 2N, —u, systems, respectively.
The U coefficients in Eq. (A10c) are the U3, or equivalently SU3, Racah coefficients; ([co ],[2]ll[co]& is an SU3

Clebsch-Gordan coefficient; the factor [A —A„]has been computed previously by Hecht [see Eq. (34) and
Table III in Ref. [13(a)]];the reduced matrix element ( [n ]IIZII[n ]) can be computed using Eq. (2.25) of Ref. [13(b)].
Explicit expressions for the pairing matrix elements can be found in Ref. [13(c)] for most of the important physical
cases.
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