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Nuclear structure properties of the double-charge-exchange transition amplitudes
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Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using
a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations
among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other
nonanalog J =0+ states. In particular, the question of the spin dependence and of the range of the
DCX transition operators is explored and the behavior of the transition amplitudes as a function of the
valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auer-
bach, Gibbs, and Piasetzky for a single j configuration holds also in some cases when configuration
mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from
'6Fe to Ni are the subject of this study.

PACS number(s): 25.80.Gn

I. INTRODUCTION

Several years ago, theoretical progress was made in the
understanding of the pion double charge exchange (DCX)
on nuclei [1—3]. In particular, for transitions to the dou-
ble isobaric analog state (DIAS), it was shown that the
DCX transition amplitude separates basically into two
parts, one representing the contributions of the nuclear
mean field and the other incorporating the effects of two-
body correlations [1,3]. The first part is large when the
two-body DCX transition operator is of long range, while
the correlation term is important when the DCX transi-
tion operator has a short range. In the case of a pure j"
(n even) configuration in the seniority scheme, a formula
was derived in Ref. [1] (we will refer to it as the AGP) for
the DCX amplitude to the DIAS:

1/2
n(n —1)

(1)
2

2j+3—2n

(n —1)(2j—1)

(2)

where again a and P are two complex amplitudes in-
dependent of n The connec. tion between A, B and a, P is

where 3 and 8 are complex amplitudes dependent on the
pion energy and angle, but independent of the number of
valence nucleons n. This formula explicitly exhibits the
division of the DCX amplitude into a mean-field term
( A ) and a correlation term (B). The expression in Eq. (1)
can also be written in the form [1]
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In terms of the matrix elements of a two-body DCX tran-
sition operator O, z one can write [4]

A = (2jO+Oo),1

2j+1

2j+1
where the following definitions were used:

Oo=&j J=O0,~~j J=O&,

y„„,„(2J+1)&j'J~O„~jJ &0=
gJ,„,„(2J+ 1)

(4)

where n/2 is the number of neutron pairs. Operators
such as 5(r, —rz) and tr, tr2 fall into this category For.
such an oPerator, 0 =Oo/(2j), a=0, P=Oo, and

One sees from these expressions that the relative size of
A and B depends on the range of O,z. Consider a real
DCX transition operator which possesses the "pairing"
property [4], i.e., an operator that for even n satisfies

& j"J=oIO~~I j "J=o&=—"Oo,
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The DCX amplitude M then takes the following simple
form:

' 1/2
n

2(n —1)
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Thus the n dependence is distinctly different for the
mean-field part and the correlation part of the nuclear
wave function. The n behavior of the cross section pro-
vides therefore a clear indication as for the range of the
pion-nucleus interaction. For a long-range interaction,
the DCX cross section is sensitive to the mean-field part
of the wave function, and thus one should expect that the
cross section in this case will have an n(n —I)/2 depen-
dence, but when the pion-nucleus interaction is of short
range, the correlative part of the wave function will con-
tribute substantially, and the DCX cross section will have
an n l(n —1) dependence [1,3].

This characteristic behavior of the DCX cross sections
to the DIAS as a function of the number of valence nu-
cleons is exact in the case of a pure j"configuration. It
was shown [5] that in the case of weak configuration mix-
ing of a special type, Eqs. (1) and (2) still hold, but the
amplitudes A and 8 (or a and P}are replaced by effective
amplitudes A and 8 (or a and P). Consider a mixed-

configuration state of the type

11t &=lj"0&+ g «,',, IU" 'J',j'J']0&,

with I«J' z I ((—,'. In first-order perturbation theory,

&j "ply;, k I;k I
[1" 'J', j'J']0&

Xj hE
(10)

where hE is the energy difference between the unper-
turbed configuration Ij"0) and I[j" J';j' J']0). When
the single-j-shell model provides a good description for
the ground state, as is the case for the Ca isotopes, hE
only depends on n and J' weakly and it can be approxi-
mated by bE=2e —2E'j where E'j and ej are the single-
particle energies for the orbitals (n, 1,j) and (n', l', j'), re-
spectively. One can express xj. J. in terms of the two-
nucleon coefficient of fractional parentage (2CFP} and the
interaction two-body matrix element as

&
'J'I v»lj'J')

& [
.n —2Ji. .2Jt]pl ]jnp)

The expectation value of the DCX operator 0 =g; & k 0,
„

in f can be written to first order in «' ~ as

&glolg& =&j"plolj"0)+2 y «, , & [j" J',j' J']plolj"0&

' 1/2
n (n —1)
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(12)

Using Eq. (11) in Eq. (12), one finds [5]

& it lo lp& = " " g & [j" 'J', j'J']pl] j"0&' &j'J'Io»
I
J'J'&+ g 2& j'J'I "

I

j'J'& &j'J'lo»
I
j'J'&

J' J

This equation can be expressed in the form

(13)

(14)

where O, z is an effective operator given by

o12 1+ ~i& & hE
(15}

We see that the expectation value of the operator O, z in a
weakly mixed configuration can be written as the expec-
tation value of an effective operator 0,2 in the pure
single-j configuration, provided that the energy denomi-
nator hE is not dependent strongly on n.

The DCX transition amplitude to the DIAS is given in
the case of a pure j"configuratio by the ground-state ex-
pectation value of O, z divided by the factor
&n(n —1)/2. This leads to the expressions in Eqs. (1)
and (2) [1]. We see that also in the case of weak
configuration mixing, Eqs. (1) and (2) will hold for the

effective two-body operator O&2. In this work we will
demonstrate through numerical calculations that the
forin of Eq. (1) or (2) is approximately preserved also in
some cases when configuration mixing is strong. The
effective DCX operator 0,2 that will emerge in such
cases will have shorter ranges than the operators em-
ployed in the pure j"case.

Our purpose in this work is to study the influence of
purely nuclear structure effects on the DCX transition
amplitudes. In particular, we wish to learn about the
influence that configuration mixing has on the DCX cross
sections and on the ranges of the effective transition
operators.

To keep things simple and in order to concentrate on
the nuclear structure effects, we will use real two-body
transition operators of isotensor type. Only transitions
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II. TRANSITION OPERATORS

In this work we calculate the amplitude

M = ( 0f i Tf y Tzf g 0;), l 0,+, T;, T„&,
ik

(16)

using the following two-body double-charge-exchange
operators:

0",,' =JV ,5(r)t+'(1 )t+(2) =5tt,
0', 2' =JVz5(r)(o ).cr&)t+ (1)t+ (2) =5o o tt—,

between 0+ T; ~0+TI will be considered, and therefore
only scalar operators will enter the calculations. Of
course, the actual DCX transition operator is complex,
and therefore our calculations should not be compared
directly with the experimental results. Nevertheless,
many of the results we obtain can be related to certain
characteristic trends in the existing experimental data
and can be used to predict such trends in the data to
emerge from future experiments.

O'„'=JV,(e ' Ir)t+(1)t+(2)=—F «,
OI2 =JV4(e ' /r)( cr, . cr, )t +(l)t+(2):—F crcrtt,

OI2'=JV&(e Ir)t+(1)t+(2)=F tt,
(17}

0')z' =JV6(e Ir)(cr) o2.)t+(1)t+(2):—Y oo tt,
0Iz' =JV,(1/r )t+ (1)t+ (2)—=Ctt,
0', 2' =JVs(1/r )(o, o 2)t+ (1)t+(2)= Cero tt,
0'„'= t+ (1)t+ (2) = tt,

(10)0)2 =(cr) cr2)t+(1 }t+(2)—:oott . '

In the above, t+ ln &
= lp &, r=r, —r2, me and m„refer to

the masses of the rho and pion mesons, and JV„.. . , JVs
are certain normalization constants. We have also given
an abbreviated notation for each operator. F denotes a
Yukawa-type potential, and C stands for a Coulomb-type
potential.

The transition amplitude M in (16) for an isotensor
operator 0 in Eq. (17) can be written

Tf Tzflo'+210,', T;, T„&
T 2 T

—T I +2 T (Of Tf I I
Io"'I

I Io,' T; &

where the triply reduced matrix element (in the convention of Edmonds) can be expressed as a product of normalized
antisymmetric two-body matrix elements of the operator under consideration and the isotensor two-body transition
density matrix [6]:

X )o"'(J) J»J3 z4»)(J)zzlllO"'IIIJ3j4&~, r=) .
J 1

—J2zJ3 —J4~J

The isotensor two-body transition density matrix p' ' is defined as

(Of+, Tf ill[(a+I)a.+) ' '(a, a ) ' '] = ' lll0, .+, T; &

+5(1+5, , )(1+5, , )

(19)

(20}

where a is a tensor operator which creates a hole state
lj, &. The matrix p' ' can be obtained by running a
shell-model program (oxBAsH) [6].

III. TRANSITIONS
TO THE DOUBLE ISOBARIC ANALOG STATE

We first present the various ca1culations of transitions
from initial 0+ states to the corresponding DIAS being
the final states.

our results with the (f7/2)" configuration and apply it to
the Ca isotopes.

In Table I we show the transition amplitudes from the
even-mass Ca isotopes to the corresponding DIAS in the
Ti isotopes for the various two-body operators listed in
Sec. II. The column labeled "SJ"denotes the single-j"-
configuration description of the even-mass Ca isotope
ground states. The results have been normalized so that,
for each spin-independent transition operator Xtt,

(DIASlX«l f», 0+ &—:(DIASl«l f„,O

A. Ca isotopes

We start with the Ca isotopes. Many of the properties
of the 1ow-lying states are described in terms of the pure
(f7/p

)" configuration. The description of the low-energy
DCX experiments [7] performed on Ca, Ca, and Ca
was therefore less complicated as far as nuclear structure
goes, and Eq. (1) was applied successfully to the above
nuclei [1,3]. We will therefore start the presentation of

=&2n (n —1)=2,
and for each spin-dependent operator Xo.o-tt,

(DIASlXoo tt
lf7/~0+ &

=—(DIASlcrcrtt lf7/20+ &

1/2
2)i

n —1

for j=—,', n =2 .

(21)

18
7

(22)
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In Eqs. (21) and (22), X represents the spatial part of the
two-body operator, i.e., X=5,Y,Y,C. Of course, the
numbers shown in the SJ column obey exactly the formu-
la in Eq. (1) for each of the transition operators. We
should note, however, the following: All the numbers ob-
tained with the transition operator containing a o o. term
are the same for the same number of particles. This is be-
cause in the case of equivalent particles occupying a sin-
gle orbit, any operator of the crier type has the "pairing"
property and thus it has the same diagonal matrix ele-
ments as a 5(r) function. Indeed, as can be seen from
Table I, the matrix elements evaluated for the Stt opera-
tor are proportional to the matrix elements for all the
Xcrott-type operators. It is very useful to evaluate the
ratios of B/A and P/a for each of the operators:

B 2j(0o —0) p (2j+1)(B/A )

A 2jo+Oc
' a (2j —1)—2(B/A)

For a transition operator which possesses the pairing
ProPerty (6), 0 =Oo/(2j), and so B/A =j—

—,
' and P/a

is infinite. For an operator Xtt with X=const 0=Op,'
therefore B/A =0 and also P/a=0. For operators
which have intermediate ranges, we therefore expect

0&B/A &j—
—,
' . (24}

The shorter the range of the interaction, the larger is the
ratio of B /A. In Table I we show the B /A ratios for the
various operators.

Obviously, for all the operators having the pairing
property (6}, this ratio is given by Eq. (7}; thus, forj=f7/2 B/A =3. However, for operators with a finite
range, as shown in Table I, this ratio decreases from 3 to
2.75 for a Yukawa-type operator with the range of 1 lrn,
to 1.18 for a Yukawa-type operator with the range of
1/m, and to 0.22 for a Coulomb-type operator 1/r

B. Configuration mixing in the Ca isotopes

In Table I are also shown the results of calculations for
the Ca~ Ti transitions performed in a larger shell-model
space. For A =42 and 44, the full fp configuration space
(Of7/p lp3/2 Of5/p lp, zz} is used, while for A =46 and
48, because of limited computer memory, only up to two
f7/2 nucleons are allowed to leave the f7/p orbit and oc-
cupy other orbits in the fp shell. A recent fp-shell
effective interaction of Richter et al. , "FPD6" [8], is em-
ployed in the calculation. The ground-state wave func-

TABLE I. +"Ca(OI+, )~ +"Ti(DIAS) transition amplitudes M for various types of operators in the
single-f7/2 shell-model (SJ) and in the extended fp space shell-model (CM) calculations using the
"FPD6" interaction. In the column labeled "AGP" is shown the St obtained using Eq. (1) with A, B
parameters (denoted by A, B ) determined by the n =2 and 8 CM values. The ratios B/A and B/A are
also shown for each operator.

O)2 SJ CM AGP O)2 SJ CM AGP

2
4
6
8

B/A(B/A )

5tt 2.000
1.633
1.549
1.512
3.00

3.090
2.340
1.974
1.800

3.090
2.33
2.03
1.800
3.52

50 crtt —2.571
—2.099
—1.992
—1.944

3.00

—3.973
—3.008
—2.538
—2.314

—3.973
—3.00
—2.61
—2.314

3.52

2
4
6
8

B/A(B/A )

Yptt 2.000
1.707
1.690
1.718
2.75

3.008
2.382
2.099
1.990

3.008
2.35
2.14
1.990
3.27

Y~crcrtt —2.571
—2.099
—1.992
—1.944

3.00

—3.992
—3.023
—2.549
—2.324

—3.992
—3.01
—2.62
—2.324

3.52

2
4
6
8

B!A(B/A )

2
4
6
8

B/A(B/A )

Y tt

Ctt

2.000
2.539
3.268
4.028
1.18
2.000
4.101
6.232
8.367
0.22

2.581
3.026
3.577
4.206

2.185
4.276
6.345
8.428

2.581
2.92
3.54
4.206
1.54
2.185
4.22
6.32
8.428
0.31

Y ocrtt

Co.o.tt

—2.571
—2.099
—1.992
—1.944

3.00
—2.571
—2.099
—1.992
—1.944

3.00

—4.183
—3.166
—2.648
—2.413

—4.147
—3.172
—2.680
—2.471

—4.183
—3.15
—2.73
—2.413

3.54
—4.147
—3.15
—2.76
—2.471

3.47

2
4
6
8

B/A(B/A )

2.000
4.899
4.746

10.583
0.00

2.000
4.899
7.746

10.583

2.000
4.90
7.75

10.583
0.00

a catt —2.571
—2.099
—1.992
—1.944

3.00

—4.021
—3.109
—2.662
—2.481

—4.021
—3.08
—2.73
—2.481

3.41
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tions for the even isotopes that result from these compu-
tations have about 10—20%%uo of admixture of the
configurations different from (f7/2 )". Using the resulting
wave functions, the transition amplitudes to the DIAS
for the various operators are calculated and shown in
Table I in the column labeled "CM." Note that because
of configuration mixing, the various amplitudes have in-
creased in magnitude by about 50% for the Xtt-type
operators of the short range and the Xo.o.tt-type opera-
tors. However, the resulting amplitudes, also in this case
when configuration mixing is presented, obey approxi-
mately Eq. (1) or (2). In the column labeled "AGP" are
shown the results predicted by Eq. (1) when A and 8 pa-
rameters are determined by fitting the CM amplitudes for
n =2 and 8. We see that the agreement for n =4 and 6
between the results obtained in the CM calculation and
obtained in the fit using the AGP formula (I) is excellent
for all the transitions considered. The largest deviation
of the AGP predictions from the CM amplitudes, given
by the Y tt, n =4 case is only 3.5%.

The interesting feature that emerged from the fit is the
ratio of 8/A, where A and 8 are the A, B parameters
obtained in the fit of the CM results to Eq. (1). Also, in
Table I we compare the 8/A for the pure (f7/2)"
configuration to 8/A We see that in all cases the
effective 8/A increases with respect to the 8/A ob-
tained when configuration mixing is not present. Thus
the effective transition operators 0,2 have shorter ranges
than the corresponding 0,2 operators. The additional
correlations among nucleons resulting from configuration
mixing lead to the shortening of the range of the effective
two-body transition operators. We learn that for the pion
DCX, the effective range of the transition operator is
determined not only by the range of the basic pion-
nucleon interaction, but also by the two-body nucleon-
nucleon correlations.

C. Ni isotopes

In the case of the Ni isotopes, configuration mixing is
very strong [9]. Assuming Ni to be an inert core, one is
successful in describing the low-energy properties of the
spectrum by placing the valence neutrons in the 1@3/2,
Of 5/2, and lp &/2 orbits [9]. In the past it was noticed that
the Ni-isotope spectra are well described by using a gen-
eralized seniority scheme [9,10]. It is of interest therefore
to probe the Ni-isotope wave functions with DCX opera-
tors.

The calculation of the wave function for the even-mass
+"Ni isotopes ( Ni — Ni) are performed in the full

( lp3/p Of 5/p Ip, /z ) space using the "ASDI" interaction
[11].

The results for the transition matrix elements to the
DIAS for the various operators are shown in Table II.
The results have been normalized in such a way that

for operators of the Xtt type, and

(DIAS~Xaarr ~p'3/, O+) =—(DIASlaa«lp23/2O+ )
1/2j+1

J n —1

10
3

for j=—,', n=2, (26)

for operators of the Xo.o.tt type. In the above equations,
X represents 5, Y, Y, and C. The same features are ap-
parent in the Ni isotopes as in the Ca isotopes. For the
interactions having the pairing property (6), the ampli-
tudes behave approximately as &n/(n —1), but for the
longer-range operators, the amplitudes increase rapidly
with n. Taking the approach of the generalized seniority
scheme, we try to fit the results with the AGP-type for-
mulas [1]:

1/2
n(n —1)

2

or, equivalently,

1/2
n(n —1)

2

2J +3—2n

(n —1)(2j—1)

13

n —1

(27)

and where 0 is the size of the chosen shell-model space:

0= g(j;+—,') . (30)

In our case, j;= lp3/2 Of ~/2, lp, /2, and so j= —", . The
quantities A, B and a,p are defined as effective A, B and
a,P amplitudes in the generalized seniority scheme. They
are determined by fitting the results for ' Ni and Ni
(n =2 and 8) of the full calculation with formula (27) or
(28). With those parameters determined, we calculate us-

ing Eq. (27) or (28) the transition amplitudes for the rest
of the isotopes (n=4, 6, 10, 12). The results are also
shown in Table II in the column labeled "AGP." The
agreement between the "exact" calculations and those re-
sulting from Eq. (27), for all six isotopes and for all types
of operators, is remarkably good (within 2.6%). The ra-
tios 8/A and P/a are also shown in Table II. We see
that for those operators that possess the pairing property
in the single-j configuration, the ratio 8/A is close to 5,
which would be the case for a generalized seniority
scheme with j=—", used in Eq. (27). We note that for
spin-independent operators, as the range of the operator
becomes longer, the ratio 8 /A or P/a decreases.

IV. NQNANALOG TRANSITIONS

where j is an effective j quantum number in the general-
ized seniority scheme given by

(29)

(DIASiXtt ip3/20+ ):—(DIAS' tt ip3/~0+ )

=&2n (n —1)=2, (25)

In this section we will discuss transitions induced by
the same types of operators as before to 0+ states which
are not the DIAS. These will include also the ground
states in nuclei with T & 1 (n & 2) where the ground state
is not the DIAS.



NUCLEAR STRUCTURE PROPERTIES OF THE DOUBLE-. . . 1113

A. Ca~ Ti transitions

In Table III we present the DCX-type transitions from

the 0+ ground state in +"Ca (n ~2, even) to the 0+

nonanalog states in +"Ti for the pure j"configurations.

The calculation includes transitions to all the 0+ states

that have isospin Tf =
~ T; —2~, where T, =n /2 is the iso-

spin of each +"Ca parent state. From Table III we see

that the transition amplitudes for the long-range Xtt-type

operators to the nonanalog 0+ states are small. This is

because in the extreme case of X=const, the operator tt

can only induce the transition between double isobaric
analog states. However, we observe that for the short-
range Xtt-type operators and for the Jo.o.tt-type opera-
tors, the nonanalog transitions are comparable to the
analog ones. We also note that while in the transitions to
the DIAS, it was impossible to distinguish between a 5-
type operator and any double spin-(lip operator (i.e., the
operator containing a o o term); now the relative transi-
tion strength to various excited 0+ states depends on
more detailed properties of a given operator. We men-
tion this to emphasize the fact that as opposed to the

AGP

TABLE II. ' +"Ni(0~, }~'+"Zn(DIAS) transition amplitudes M for various types of operators in

the full (1@3~2,0f,&2, lp, ~z) space shell-model (SM) calculation using the "ASDI" interaction. In the
column labeled "AGP" is shown the fn obtained using Eq. (27) or (28) with A, B and tt, p amplitudes

determined by the n =2 and 8 SM values. The ratios B /A and P/5 are also shown for each operator.

Ore SM SM AGP

2
4
6
8
10
12

B/A
p/a

2
4
6
8
10
12

B/A
/a

Yptt

3.611
2.969
2.835
2.776
2.734
2.698

3.597
3.099
3.075
3.118
3.173
3.226

3.611
2.97
2.83
2.776
2.75
2.74
4.92

352

3.597
3.08
3.06
3.118
3.21
3.31
4.35

39.9

5o crtt

Y~o o tt

—6.018
—4.948
—4.724
—4.626
—4.557
—4.497

—6.050
—4.973
—4.747
—4.648
—4.578
—4.517

—6.018
—4.94
—4.71
—4.626
—4.59
—4.57

4.92
354

—6.050
—4.97
—4.74
—4.648
—4.61
—4.59

4.92
367

2
4
6
8
10
12

B/A
/a

Y„tt 3.077
3.847
4.858
5.894
6.923
7.932

3.077
3.80
4.82
5.894
6.98
8.08
1.63
2.91

Y oatt —5.536
—4.488
—4.251
—4.140
—4.054
—3.968

—5.536
—4.50
—4.26
—4.140
—4.07
—4.02

5.05
—561

2
4
6
8
10
12

8/A
p/a

Ctt 2.290
4.589
6.912
9.234

11.550
13.858

2.290
4.57
6.90
9.234

11.57
13.91
0.30
0.38

Coott —4.650
—3.688
—3.455
—3.338
—3.236
—3.122

—4.650
—3.73
—3.48
—3.338
—3.23
—3.15

5.26
—120

2
4
6
8
10
12

8/A
p/a

2.000
4.899
7.746

10.583
13.416
16.248

2.000
4.90
7.75

10.583
13.42
16.25
0.00
0.00

oott —4.239
—3.322
—3.094
—2.978
—2.869
—2.743

—4.239
—3.38
—3.13
—2.978
—2.86
—2.76

5.38
—85.9
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DIAS transitions, the DCX transitions to other states
may distinguish between very-short-range operators, but
spin-independent and spin-dependent ones. It is also
interesting to note that among the various J=0+
states, there are usually a few that have strong transi-
tions induced by the double Gamow-Teller
[o (1) rr(2)t+ (1)t+(2) ] operator [12,13]. For

Ca~ Ti, for example, the highest J=O+, T=2 state
(in the f7i2 model) in Ti carries a double Gamow-Teller
(DGT) transition strength that is much larger than the
strength found in any other final 0+ state, including the
DIAS.

In Table IV we present the results of the extended
shell-model space calculations for the Ca~ Ti transitions.

TABLE III. ~+"Ca(0s+, )~~ +Ti(0 f, T i=i T; —2i) transition amplitudes M for various types of
operators in the single-f 7/2 shell-model calculation using the "FPD6" interaction. The calculated exci-
tation energies for the final 0+ states are also given (in MeV).

Final state

E
5tt
Yptt
Y tt
Ctt

5oott
Ypo cr tt
Y oott
Ccro tt
o o.tt

p+

0.000
2.000
2.000
2.000
2.000
2.000

—2.571
—2.571
—2.571
—2.571
—2.571

p+ 03+ p+ p+

5tt
Yptt
Y tt
Ctt
tt

5o crtt

Y~o att
Y oott
Ccrcrtt
oott

0.000
1.677
1.628
1.153
0.382
0.000

2.156
2.160
2.093
1.784
1.558

4.758
0.821
0.827
0.748
0.277
0.000

1.056
1.045
1.191
1.743
2.121

8.628
0.386
0.390
0.319
0.108
0.000

0.496
0.490
0.619
1.527
2.261

5tt
Yptt
Y tt
Ctt

5o crtt

Y~o o tt
Y ocrtt
Co.crtt
oott

0.000
1.771
1.713
1.178
0.384
0.000

2.277
2.285
2.171
1.658
1.283

3.798
0.754
0.764
0.728
0.277
0.000

0.969
0.957
1.100
1.492
1.723

4.982
0.610
0.621
0.585
0.219
0.000

0.785
0.774
0.929
1.596
2.077

6.930
0.060
0.058
0.003
0.014
0.000

0.077
0.078
0.116
0.648
1.115

8.976
0.648
0.666
0.608
0.219
0.000

0.833
0.819
1.081
2.670
3.918

E„
5tt
Yptt
Y tt
Ctt
tt

5cro tt
Y~oott
Y oo.tt
Co.o.tt
oott

0.000
1.509
1.456
0.979
0.315
0.000

1.941
1.949
1.827
1.294
0.908

3.795
0.712
0.740
0.828
0.335
0.000

0.916
0.898
1.106
1.483
1.634

8.063
0.855
0.892
0.868
0.319
0.000

1.099
1.075
1.518
4.147
6.204
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The transition amplitudes to the lowest six nonanalog
J=0+ states with isospin Tf =

~ T; —2~ are shown. In the
case of Ca, the DIAS is the ground state and is included
for comparison in the table. For Ca~ Ti, we see that
the fourth and fifth 0+ states in Ti carry substantial
DGT strength. For Ca~ Ti and Ca~ Ti, the

main part of the DGT 0+~0+ strength is found in
higher 0+ states not shown in the table.

It is interesting to compare the ground state to ground
state (g.s. to g.s.) transition amplitudes in the single-f7&2
shell-model calculation (Table III) and in the extended
fp-shell-model calculation (Table IV). For all the opera-

TABLE IV. Same as Table III, but for the extended fp space shell-model calculation. The results in

this table should be compared to those in Table III for the pure (f7/J )" configuration. Only the lowest

six final 0+ states are included.

Final state

E„
5tt
Yptt
Y tt
Ctt
tt

5o crtt
Y~ao.it
Y„ocrtt
Cero tt
crcrtt

0+

0.000
3.090
3.008
2.581
2.185
2.000

—3.973
—3.992
—4.183
—4.147
—4.021

p+

5.961
0.899
0.834
0.559
0.205
0.000

1.156
1.149
1.267
1.007
0.664

03+

10.931
0.680
0.618
0.333
0.098
0.000

0.875
0.887
1.041
1.012
0.884

p+

14.906
1.503
1.375
0.660
0.178
0.000

1.932
1.992
2.434
2.962
3.270

0+

E„
5tt

Yptt
Y tt
Ctt
tt

5crcrtt
Y~aatt
Y crcrtt
Ccrcrtt
crcrtt

0.000
2.070
1.961
1.237
0.393
0.000

2.662
2.638
2.354
1.469
0.808

5.273
1.028
0.996
0.697
0.231
0.000

1.322
1.348
1.425
1.212
1.011

8.460
0.575
0.579
0.530
0.199
0.000

0.739
0.721
0.745
0.897
0.975

9.749
0.747
0.718
0.538
0.194
0.000

0.960
0.966
0.861
0.026
0.755

10.596
0.898
0.859
0.592
0.198
0.000

1.155
1.204
1.726
2.352
2.661

10.891
1.175
1.149
0.863
0.298
0.000

1.510
1.527
1.909
3.192
4.145

E„
5tt

Yptt
Y tt
Ctt

5cratt
Y~aatt
Y crcrtt
Cero tt
crcrtt

0.000
2.074
1.971
1.250
0.396
0.000

2.666
2.648
2.342
1.363
0.642

4.891
1.371
1.334
0.990
0.340
0.000

1.763
1.753
1.688
1.478
1.309

5.712
0.478
0.472
0.408
0.154
0.000

0.614
0.590
0.582
0.740
0.828

6.967
0.150
0.136
0.036
0.004
0.000

0.192
0.210
0.222
0.270
0.340

7.340
0.361
0.372
0.368
0.141
0.000

0.464
0.494
0.587
0.116
0.323

7.992
0.535
0.500
0.291
0.090
0.000

0.688
0.686
0.618
0.305
0.058

E„
5tt
Yptt
Y„tt
Ctt
tt

5cratt
Y~aatt
Y crcrtt
Cero tt
crcr tt

0.000
1.801
1.709
1.064
0.333
0.000

2.315
2.298
1.987
1.082
0.430

4.575
1.019
1.018
0.906
0.334
0.000

1.310
1.297
1.313
1.025
0.721

6.818
0.156
0.128
0.008
0.006
0.000

0.201
0.193
0.117
0.009
0.057

7.464
0.241
0.219
0.044
0.010
0.000

0.310
0.339
0.344
0.182
0.104

7.620
1.083
1.067
0.839
0.294
0.000

1.393
1.388
1.377
1.406
1.427

7.979
0.209
0.197
0.147
0.056
0.000

0.269
0.230
0.152
0.587
0.947
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tors of the Xtt type, configuration mixing more or less in-
creases the transition strength. This is especially the case
for the short-range operators and for nuclei with a small
number of valence nucleons (e.g., A =42, 44). For in-
stance, for the operator 5tt, the g.s.-to-g.s. transition
strength (M ) is increased by a factor of 2.39 for

Ca —+ Ti, but pnly by a factpr pf 1.42 for 48Ca~4sTi.
For the operator Ctt, the g.s.-to-g.s. transition strength is
increased only by a factor of 1.19 for Ca~ Ti and by a
factpr pf 1.12 for Ca~ Ti.

The results of the g.s.-to-g.s. transition amplitudes for
the Xa0.tt-ty pe operators are more complex. For

Ca~ Ti, where the g.s. is also the DIAS, the transi-
tion strength is increased by about a factor of 2.4 when
we go from Table III (SJ) to Table IV (CM), nearly in-
dependent of the range of X. But for other nuclei,
configuration mixing increases the g.s.-to-g. s. transition
strength for the short-range Xcrott operators, but it de-
creases the strength for the long-range Xcxo tt operators.

Of particular interest is the DGT transition amplitude
from the ground state in Ca to the ground state in Ti
since it is the nuclear transition amplitude of the double
beta decay in the closure approximation. As we see from
Tables III and IV, this transition carries very small DGT
strength and this strength decreases by about a factor of
4.46 when we go from the single-f7/z calculation (0.908
in Table III) to the extended fp space shell-model calcu-
lation (0.430 in Table IV). It should be pointed out,

however, that our result depends on the effective interac-
tion that is used. In previous work [13], we used a
modified renormalized Kuo-Brown (MKB) interaction
[16] to study the nuclear double-beta-decay amplitude in

Ca. We found that configuration mixing slightly in-
creases the g.s.-to-g. s. DGT amplitude from the single-j
value of 0.361 to 0.393 in contrast to the case when the
FPD6 interaction of Richter et al. [8] is used.

B. Fe~ Ni transition

This transition is of special interest because of the re-
cent low-energy pion DCX measurements [14,15]. Using
pion energies of 50 MeV, forward-angle Fe(m+, n ) Ni
measurements were performed. In addition to the DIAS
transition, the three lowest J=0+, T=0 states including
the ground state were observed in a very recent experi-
ment [15]. The cross sections for the above nonanalog
transitions were each about 0.7 pb/sr, while to the DIAS
about 2 pb/sr. We explore the Fe~ Ni transition us-

ing, again, the class of operators discussed previously.
Two different types of interactions are used in computing
the nuclear wave functions [8,16]. The configuration
space includes the Of 7/g and Ip3/g orbits, and up to four
nucleons are allowed to leave the f7/2 orbit and occupy
the p3/2 orbit.

In Table V are shown the results of the calculation for

TABLE V. ' Fe(0g+, )~' Ni(0f, Tf =0,2) transition amplitudes M for various types of two-body
operators using the "FPD6" interaction and the modified Kuo-Brown (MKB) interaction [16]. Only up
to four nucleons are allowed to leave the f7/p orbit and occupy the p3/2 orbit. The notation J„+(T)is
used for the nth J+, isospin T state [so 0,+(2) is the DIAS]. The excitation energies of the final 0+
states are also shown (in MeV).

Interaction

FPD6

Operator

E„
5tt
Y tt
Y„tt
Ctt

5oo tt
Y o.o.tt
Y„o.o tt
Co o.tt
o.o tt

0,+(0)

0.000
3.012
2.777
1.177
0.233
0.000
1.396
1.389
1.225
0.743
0.405

02+(0)

8.229
2.789
2.553
1.004
0.188
0.000
1.293
1.270
1.109
1.008
0.968

Final states
03+(0)

9.604
4.402
4.127
1.855
0.363
0.000
2.040
2.033
2.050
2.349
2.595

04+(0)

12.896
1.192
1.107
0.500
0.103
0.000
0.552
0.581
0.582
0.212
0.879

01+(2)

13.333
5.013
4.998
4.938
4.910
4.899

—2.323
—2.317
—2.256
—2.206
—2.189

MKB E
5tt
Y tt
Y tt
Ctt
tt

6o.fJtt
Y oott
Y o.o.tt
Co.crtt
o.o tt

0.000
2.619
2 401
0.980
0.189
0.000

1.214
1.210
1.076
0.665
0.374

6.579
3.417
3.139
1.271
0.243
0.000

1.584
1.564
1.433
1.387
1.386

7.441
3.959
3.724
1.693
0.331
0.000

1.835
1.830
1.870
2.195
2.456

11.279
0.184
0.141
0.018
0.011
0.000

0.085
0.070
0.019
0.281
0.525

11.633
4.595
4.603
4.741
4.869
4.899

—2.130
—2.121
—2.050
—2.016
—2.011
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four lowest 0+, T=O states and for the DIAS (T=2).
The normalization constants JV„.. . , JVs are fixed by re-
quiring that the transition amplitudes in the case of
the simplest configuration be the same for different oper-
ators, i.e., (DIAS~Xtt ~(f7/2p3/2)0+, T=2) and
(DIAS~Xd ott~(f7/~3/2)0+, T=2) be independent of
X. The excitation energies of the calculated 0+ states and
of the measured ones are not in good agreement, prob-
ably because of the smallness of the model space that is
used. It is not our intention here to try to fit the energy
spectrum. Of course, also the transition operators we use
are not the actual ones appearing in the pion DCX reac-
tion. Our calculation, however, demonstrates that for a
certain class of transition operators, namely, those having

a short range and/or spin dependence, one indeed can ob-
tain substantial transition strength to the lowest three 0+
( T=O) states in addition to the DIAS. In fact, operators
of the type 6tt or Y tt give about the correct cross-section
ratios for the lowest 0+ states and the DIAS.

C. Ni~Zn transitions

As already mentioned, in the Ni isotopes configuration
mixing is very strong. It is of interest to explore DCX-
type transitions to nonanalog states. In Table VI we
show transitions to the lowest five 0+ states with isospin
T=~T; —2~ (where T, refers to the parent state). For
comparison we include also the transitions to the analog

TABLE VI. ~6+"Ni(0s+, )~~ 6+Z n(0 +f, T f=~T; —2~) transition amplitudes for various types of
operators in the full (f5/gp3/2p$/2) space shell-model calculations using the "ASDI" interaction. The
excitation energies of the final 0+ states are also shown. The transition amplitudes to the DIAS are also
shown for comparison.

Final state

E„
5tt
Yptt
Y tt
Ctt
tt

0+

0.000
3.611
3.597
3.077
2.290
2.000

p+

2.974
0.348
0.403
0.386
0.102
0.000

0+

4.463
0.624
0.577
0.362
0.123
0.000

p+ p+ DIAS

0.000
3.611
3.597
3.077
2.290
2.000

5ao.tt
Y~aatt
Y aatt
Caott
aott

—6.018
—6.050
—5.536
—4.650
—4.239

0.580
0.578
0.024
0.707
1.021

1.041
1.053
1.389
1.929
2.220

—6.018
—6.050
—5.536
—4.650
—4.239

E„
5tt
Yptt
Y tt
Ctt

5oott
Y~aatt
Y o.o.tt
Cao tt
o.o tt

0.000
2.709
2.629
1.632
0.438
0.000

4.515
4.481
3.603
2.457
1.923

3.238
0.998
0.963
0.672
0.201
0.000

1.663
1.725
2.043
2.046
1.988

4.057
1.706
1.703
1.221
0.343
0.000

2.844
2.915
3.005
3.153
3.320

4.765
1.248
1.238
0.892
0.258
0.000

2.080
2.135
2.240
2.070
1.959

6.426
p AAA

0.381
0.124
0.032
0.000

0.741
0.801
1.519
3.019
3.925

7.623
2.969
3.099
3.847
4.589
4.899

—4.948
—4.973
—4.488
—3.688
—3.322

E„
5tt
Y tt
Y tt
Ctt
tt

5aatt
Y aatt
Y aatt
Co.o.tt
oatt

0.000
3.079
2.981
1.808
0.477
0.000

5.132
5.074
3.929
2.531
1.889

1.999
0.597
0.588
0.379
0.100
0.000

0.996
1.014
0.943
0.784
0.719

3.102
0.385
0.361
0.273
0.088
0.000

0.641
0.687
1.036
1.111
1.081

3.407
1.188
1.232
0.973
0.273
0.000

1.980
1.997
1.629
1.181
1.026

3.674
0.972
0.949
0.646
0.184
0.000

1.620
1.630
1.532
1.321
1.221

11.976
2.835
3.075
4.858
6.912
7.746

—4.724
—4.747
—4.251
—3.455
—3.094
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TABLE VI. (Continued).

Final state p+ p+ Q+ p+ Q+ DIAS

E
5tt
Y tt
Y tt
Ctt

5crcr tt
Y oott
Y„crcrtt
Ccrcrtt
crcrtt

0.000
3.110
3.005
1.784
0.464
0.000

5.183
5.112
3.851
2.383
1.718

1.741
0.600
0.600
0.456
0.134
0.000

0.999
1.007
0.918
0.648
0.498

2.392
0.021
0.032
0.029
0.003
0.000

0.035
0.064
0.178
0.318
0.414

3.162
0.216
0.245
0.180
0.041
0.000

0.360
0.319
0.160
0.411
0.455

3.389
1.548
1.540
1.065
0.293
0.000

2.581
2.601
2.269
1.765
1.557

16.039
2.776
3.118
5.894
9.234

10.583

—4.626
—4.648
—4.140
—3.338
—2.978

10 E„
5tt
Y tt
Y tt
Ctt

5crcr tt
Y~cr cr tt
Y crcrtt
Ccrcrtt
crcrtt

0.000
2.868
2.769
1.620
0.415
0.000

4.780
4.707
3.467
2.062
1.432

2.885
0.754
0.764
0.612
0.179
0.000

1.257
1.311
1.436
1.265
1.163

3.032
0.687
0.677
0.510
0.156
0.000

1.145
1.121
0.863
0.354
0.054

3.181
1.177
1.187
0.803
0.211
0.000

1.961
1.940
1.370
0.884
0.727

3.473
0.216
0.262
0.307
0.090
0.000

0.360
0.385
0.371
0.220
0.145

19.898
2.734
3.173
6.923

11.550
13.416

—4.557
—4.578
—4.054
—3.236
—2.869

12 E
5tt
Y tt
Y„tt
Ctt

5crcr tt
Y~o.crtt
Y crcrtt

Ccrcrtt
crcr tt

0.000
2.246
2.169
1.261
0.320
0.000

3.743
3.683
2.671
1.541
1.039

3.033
1.063
1.024
0.593
0.155
0.000

1.772
1.713
1.104
0.519
0.250

3.234
0.713
0.763
0.661
0.183
0.000

1.189
1.237
1.198
0.951
0.849

3.687
0.319
0.287
0.187
0.059
0.000

0.532
0.574
0.902
0.820
0.684

3.964
0.845
0.827
0.620
0.189
0.000

1.409
1.396
1.249
0.801
0.522

23.611
2.698
3.226
7.932

13.858
16.248

—4.497
—4.517
—3.968
—3.122
—2.743

ones. For A =58 (n=2) the DIAS is also the ground
state.

For short-range operators and for A =56+n with
n ~4, some of the nonanalog 0+ transitions are quite
strong and the transition amplitudes to the ground states
in the final nuclei (Zn) are actually larger than those to
the DIAS. It is quite conceivable that such nonanalog
transitions, in particular to the ground state, should be
observed in low-energy pion DCX reactions.

V. DISCUSSION AND SUMMARY

The calculations we have presented here and the DCX
transition operators we used are quite schematic com-
pared to the complicated nature of the realistic effective
DCX operators. Our results therefore should not be
compared directly to detailed experimental results.
Nonetheless, the variety of types of transition operators

we used in this work to mimic the DCX operators pro-
vides us with some significant clues as to the nature of the
effective DCX transitions, such as the range, the depen-
dence on the explicit two-body correlations, and the
dependence on two-body correlations hidden in the
egectiue DCX operators. We have seen that the range of
the interaction and the spin dependence determine to a
large extent the X—Z dependence of the cross section.
For long-range transition operators, the DIAS cross sec-
tion rises as (N Z)(N Z —1), an—d t—here is no specia1
role for the T= 1 (N —Z =2) nuclei. On the other hand,
very-short-range DCX operators and/or the ones that
contain spin degrees of freedom will produce approxi-
mately an (N —Z)l(N Z —1) dependence —which gives
for the T=1 nuclei the largest DIAS cross section. For
nonanalog transitions the distinction between long- and
short-range (or having spin dependence) transition opera-
tors is straightforward, simply based on the size of the
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cross section. The nonanalog transitions are strongly
suppressed with respect to the analog transitions for
operators that are spin i~dependent and of long range.
The separation between spin-dependent transitions and
very-short-range operators (i.e., operators possessing the
pairing property) is not straightforward. It is possible
that in the study of nonanalog transitions, one will be
able to distinguish between the very-short-range and
spin-dependent transitions.

There are theoretical indications [17] that cancellations
that occur between the spin-dependent part of the DCX
transitions and the spin-independent short-range part
lead to small 8 amplitudes for certain pion energies. It is
a general feature of the pion DCX transitions that the
range of the efFective operators is a rather strong function
of the pion energy [1,2].

One of the important conclusions of this work is that
the formulas in Eqs. (1} and (2}, initially derived for a

pure j"configuration, have actually a much wider range
of applicability. The above two amplitude equations can
be applied also to some cases where there is strong
configuration mixing. The efFective transition operators
deduced from such an analysis reflect the contribution of
two-body correlation by having shorter ranges than the
corresponding ones obtained in a pure configuration
analysis.
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