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The basic two-nucleon configurations which generate the structure of the nucleon spectral func-

tion at high values of momenta and removal energies are analyzed. A model spectral function ex-

pressed through a convolution integral of the momentum distributions describing the relative and

center-of-mass motion of a correlated pair is suggested and shown to satisfactorily reproduce the

spectral function of the three-body system and nuclear matter calculated in terms of realistic

nucleon-nucleon interactions in a wide range of nucleon momenta and removal energies.

The scattering of various kinds of projectiles off nuclei
at high values of momentum and energy transfer can pro-
vide unique information on both the fundamental hadron-
ic interaction and the structure of nuclei. ' In the former
case, the nucleus is viewed as the hadronic medium which
can induce quantum chromodynamical (QCD) effects
which cannot be investigated on a free nucleon, whereas in
the second case small components of the nuclear wave
function [e.g. , nucleon-nucleon (NN) correlations, exotic
components, etc.], which hardly show up in low-energy
scattering, could be investigated. In both cases, signifi-
cant predictions of various effects and reliable interpreta-
tions of the experimental data do require a model for the
nuclear wave function. It turns out that even at very high
values of the momentum and energy transfer, the nucleus
cannot be simply described as a collection of scattering
centers subject only to Fermi motion, but the full nucleon
dynamics generating the removal energy and momentum

I

distributions of each nucleon has to be considered (see,
e.g. , Refs. 2-6). In processes at very high energies, when
the final-state interaction of the knocked-out nucleon with
the (A —1) nucleon system is supposed to play a minor
role, the cross section for inclusive and exclusive processes
depends upon nuclear structure through the spectral func-
tion P(k, E), which represents the joint probability to find

in the target a nucleon with momentum k and removal en-

ergy E; since the latter is defined as E =~Ez~ —[jE&—j~

+Eg j, where E~ jrepresent—s the (positive) excitation
energy of the system with (A —1) nucleons measured
with respect to its ground state, the spectral function also
represents the probability that, after a nucleon is knocked
out from the target, the final (A —1) system is left with
excitation energy E~ l. Within the nonrelativistic
Schrodinger description of nuclei, the spectral function is
defined as follows (see, e.g. , Ref. 4):

P(k, E) =&+~lalb« —« —E~)]a~I+~& =XI&+~-jlakl+3&l'b« —«~~-j —E~)]f
1 dr e'"'GIp(r) 6' [E —(Eft- j Eg )], —

(2tr)' I "

where ak(ak) is the creation (annihilation) operator of a
nucleon with momentum k, H is the nuclear Hamiltonian
and GIp(r) is the overlap integral between the intrinsic
eigenfunction 4'~ (with eigenvalue E~) of the ground
state of the Hamiltonian H, and the eigenfunction 0 ~
(with eigenvalue E~~—j =E~ —j+E~ j) of the state f of
the Hamiltonian H~ —l.

For a noninteracting Fermi gas, one has

P'""(k,E) = j9(k, —k)8 E+3 k 2

4n'kF 2M

whereas for a system of independent particles filling
shell-model states a with momentum distribution n, and

single-particle energies e, one has

P (k,E) = gA, n (k)8(E+ ~8, ~) . (3)
4@A

In Eq. (3) A is the total number of nucleons and A, the
number of nucleons in the state a (A =g, A, ) and the
sum over a runs only over hole states of the target, which
means that c,=fn,~ 1(k)k dk =1, for a ( aF, and 0 for
a& aF.

The main eff'ect of NN correlations which are generated
by the short range and tensor parts of realistic NN in-

teractions is to deplete states below the Fermi sea and to
make the states above the Fermi level partia1ly occupied;
by such a mechanism, high momentum and high removal
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energy components in P (k, E ) are generated. Disregard-
ing the finite width of the states below the Fermi level, the
spectral function which includes the efI'ects of ground-
state NN correlations can be represented in the following
form:

P(k, E)=P,(k,E)+P, (k, E)
where

(4)

Po(k, E)=,Z «e'"'G. (r) ~(E+ Ie. l )
2z '

ZA.n. (k)a(E+ Ie.l)
4@A

represents the shell-model contribution, where NN corre-
lations mainly manifest themselves in the depletion of the
normally occupied states [c,=fn, (k )k dk ( 1],and

1P)(k,E)=
3 g ~

dre'"'Gfo(r)
27l' fwa

x h[E —(Ef
~ E~)] (6)—

includes more complex configurations of the (A —1) nu-
cleon system, e.g. , one-particle-two-hole states which can
be reached when two-particle-two-hole states in the tar-
get nucleus are considered.

The calculation of the spectral function requires the
solution of the Schrodinger equation for A and (A —1) in-
teracting nucleons, and therefore has been obtained, so
far, only in the case of A =3 (Refs. 4 and 5) and nuclear
matter. It is the purpose of this paper to present a model
spectral function which would hold for any value of A and
could be used to correctly describe the high momentum
and high removal energy components of a nucleon embed-
ded in the nuclear medium. To begin with, let us recall
several important quantities which are related to the spec-
tral function, viz the momentum distribution

(A -2)k'
2(A —1)M (i 2)

Within such a picture, the spectral function P~ (k, E) will
have the following form:

the predictions from mean-field calculations and, more-
over, apart from a scaling factor, they seem to be almost
independent of the atomic weight A; ' ' (ii) the momen-
tum sum rule [Eq. (7)] can be saturated at high momenta
only by extending the upper limit of integration to very
high values of E (E ) 50 MeV), which clearly indicates
the strong link between high momentum and high removal
energy components of the nuclear wave function, both be-
ing determined by NN correlations. '

Both features should refIect some local properties of the
NN wave function in the nuclear medium at short inter-
particle distances. On the basis of such an observation,
and analyzing the perturbative expansion of both the NN
interaction and the momentum distribution for potentials
decreasing at large k as powers of k, it has been argued '

that the spectral function at high values of k and E should
be governed by ground-state configurations in which the
high momentum k~ ——k of a nucleon is balanced mainly by
the momentum k2=- —k of another nucleon, with the
remaining (A —2) nucleons acting as a spectator with
momentum k~ —q =0 (configurations corresponding to
high values of k~ —2 are ascribed, within such a naive pic-
ture, to three-nucleon correlations). Energy conservation
would require that

2

E~-]+E~-]=R k
2M '

where E~ ~
=k /2(A —1)M is the recoil energy of the

(A —1) nucleon system. If the momentum and the intrin-
sic excitation energy of the (A —2) system are totally
disregarded, the intrinsic excitation energy of the (A —1)
system would therefore be

4

and the mean removal energy

(E) = EP(k, E)dkdE.

n(k) =4m P(k, E)dE,
the mean kinetic energy

~ k k(T) = P(k, E)dkdE = n(k)dk,
2M

(7)

with

P (k,E) 8[E E(k)]— (i 3)

A —2 kEi(k) =E(h, +
2(A —

1 )M
(i4)

where Eih, =~Eg~ —~E~-i~ is the two-particle break-up
threshold. The mean removal energy for a given k would
then be

The last two quantities are related to the total energy
per particle e~ by the energy sum rule,

(T& —(E& (io)

if the Hamiltonian contains only two-body forces.
Recent many-body calculations ' ' have computed

e~ and n(k) for a series of nuclei, so that the theoretical
values of (T) and (E) for systems ranging from He to nu-
clear matter are known. In constructing our model spec-
tral function we will make use of the results of the calcula-
tions of n(k) and P(k, E) which show that: (i) because of
NN correlations, the momentum distributions n(k) for
k & 2 fm ' are several orders of magnitude larger than

(E(k)) =Ei(k) . (is)
In what follows, such a model will be called the naive

t~o-nucleon correlation model and will be referred to as
2NC. At high values of k and E, the calculated spectral
functions for He (Refs. 4 and 5) and nuciear matter ex-
hibit, indeed, for fixed values of k, broad peaks in E,
whose width increases with k. [Note that in the rest of the
paper the position of the peaks of a generic spectral func-
tion will be denoted by E~(k).] The purpose of this paper
is twofold: (i) to show to what extent the 2NC model
correctly predicts the position of the peaks of P~(k, E),
and (ii) to understand the basic mechanism, not included
in the 2NC model, which produces broad peaks of
P& (k,E) instead of a 8-type shape. The answer to the first
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question is provided by Fig. 1, which shows an impressive
agreement between the value of (E(k)) calculated with
the spectral function and the prediction of the 2NC mod-
el. However, it can also be seen that the 2NC model can-
not predict the difference between (E(k)) and E~(k) pro-
vided by many-body calculations. Moreover, the 2NC
model, by definition, cannot provide values of the spectral
function for E&Et(k). Let us therefore turn to the
second objective, and try to understand what the NN
correlation mechanism which produces a nonvanishing
spectral function for EWE~(k) is and whether such a
mechanism can also explain the difference between E~ (k)
and (E(k)) shown in Fig. l.

To begin with, we consider the asymptotic behavior of
the ground-state wave function +q appearing in the over-

I

lap integral Gfo, in the case of potentials decreasing at
large k as powers of k. To be more specific, we consider
that the high momentum and the high removal energy
parts of the spectral function are generated by such
configurations in which two particles are very close and
form a correlated pair, which, at the same time, are far
apart from the other (A —2) particles. Our assumption
means that the two nucleons in the pair have large relative
momenta, whereas the center-of-mass (c.m. ) momentum
of the pair is a low one, so that the c.m. wave function of
the pair can be represented by an l =0 wave. If we spe-
cialize, for ease of presentation, to the three-nucleon sys-
tem, one arrives, after some lengthy but straightforward
algebra, to the following expression for the spectral func-
tion P~(k, E):'

Pi(k, E) =J dk2dk38(k+k2+k3)8 E —E(h„—
(k, -k, )'

4m

Ik —k2I I2k3 —(k+k2) I

nrem
2

n c.rn.
3

(i6)

(k+2k3)
4m

Pi(k, E) =~ dk38 E —Eth, —

x n „,) (I k+ —,
'

k3 I )n, ~ (I k3 I ) (i 7)

The calculation of the spectral function within the
above expression requires, therefore, only the knowledge
of the momentum distributions. Let us analyze some par-
ticular cases. The 2NC model [Eqs. (13) and (14)] is
recovered by placing n, (k3) =B(k3), i.e., the spectator
nucleon at rest. When the motion of the latter and the
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FIG. 1. Comparison of the values of the mean removal ener-

gy (E(k)& (crosses) and the peak position E~(k) (solid circles)
for He and nuclear matter, calculated with the spectral func-
tions of Refs. 4 and 6, respectively, with the prediction (double-
dotted fines) of the 2NC model given by Eqs. (14) and (15)
[i.e. , (E(k) & E ~ (k) =Eth, +k 2/4M for 3He and (E(k) &

=Ei(k) =E~h, +k /2M for nuclear matter].

where the momenta k, kq, and k3 are measured from the
c.m. of the system, n, represents the momentum distri-
bution of the c.m. of a proton-proton (p-p) or proton-
neutron (p-n) pair with respect to the third nucleon, and

n„,~
is the momentum distribution of the relative motion of

the two nucleons in the pair. By integrating over k2, one
obtains

2@MP)(k, E) = dk3k3nrel

1/2
3k +k —3k

4

x n, (k3), (i8)

where k3—=Ik+ koI/2 and kc=[4M(E —E,h, )]' . In
Eqs. (17) and (18), n„~ refers to a proper spin and isospin
combination of a p-p and p npairs in the co-ntinuum, and,
correspondingly, n, represents the momentum distribu-
tion of a neutron (proton) with respect to the p-p (p-n)
pair in the continuum. All these quantities have been cal-
culated with realistic interactions either by variational or
Faddeev approaches. As already pointed out, the three-
nucleon configuration underlying Eq. (16) is such that two
correlated particles are very close, whereas the third one is
far from their c.m. Therefore in Eq. (18), which, we

reiterate, is expected to correctly describe the spectral
function only for high values of k and E, the relevant con-
tribution has to be provided by the low-momentum part of
n, and by the high-momentum part of n„~. Such a
configuration is automatically generated by the use of the
c.m. momentum distribution in the l=0 state, which, for
k ) 1.5 fm ', does not include the high-momentum com-
ponents generated by the short-range and tensor correla-
tions. An inspection of Eq. (18) shows qualitatively some
relevant features of the spectral function: (i) if n„~ and

n, are described within an independent particle model
(e.g. , Gaussians with the same length parameter), Eq.
(18) predicts a maximum of the spectral function close to

I

link between k, k3, and E is considered, not only a spectral
function in the whole range of variation of E (Eth, &E
& ~) is generated, but a shift of the peak position from

the values predicted by the 2NC model [Eq. (14)] is also
obtained. Both the E dependence and the peak position of
the spectral function are governed by the features of n,
and n„,I, whose calculation, unlike the case of the spectral
function, requires the knowledge of the ground-state wave
function only. A further integration of Eq. (17) over the
angular variables of k3 yields
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r(k)=-ak(k, )'~ 1 ——
'(k,'

(k,'„) (20)

where a =(81n2/3) '~ /M =0.285 fm.
Let us comment on the above results. Equations (19)

and (20), which are valid provided y=(k, )/(k„,~)&&1,
can be shown to be the erst terms of a series expansion in
terms of the parameter y, independently of the shape of
n„,I and n, . ' These equations show again that in the
limit of a static spectator nucleon (i.e., (k, ~) 0) the
2NC model is recovered [i.e., EI(k) =Eih, +k /4M and
I"(k) =0]. The motion of the spectator nucleon, coupled,
through energy and momentum conservation, to the
motion of the pair [cf. Eq. (18)],produces both a shift (by
a percentage amount of order =2y) of the peak position

E =E,h, with a monotonic decrease with E; (ii) if one
makes the very reasonable assumption that the low-
momentum part of n, could be described by a Gaussian
distribution, Eq. (18) predicts that, because of the k3 and
ko dependence of n„I, the spectral function will exhibit
peak-shaped behavior with the peak position located at a
value lower than the one predicted by the 2NC model
(i.e., E =Eih„+k /4M); (iii) the shift of the peak position
with respect to the 2NC model, as well as the shape of the
spectral function in the vicinity of the peak, are mostly
governed by the high ko dependence of n„i If. also the
latter is chosen in the Gaussian form, the peak position is
located at a value of E given by

EI(k) =E,h„+ 1
—2

2

(k,' )
(19)

4M &k„',i)

where (k„,i) and (k, ) are the mean-square momenta as-
sociated to the high- and the low-momentum parts of n„~
and n, , respectively. The full width at half maximum
(FwHM) r(k) Is

from the value predicted by the 2NC model, as well as the
removal energy dependence of the spectral function for
E&EI (k). It can be seen, in particular, that the link be-
tween k, k3, and ko which is present in n„~, decreases the
width produced by a Gaussian distribution for n, by a
percentage of the order = y. Using the values (k„~)= 5.8
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FIG. 3. The full width at half maximum I (k) of the spectral
function of 'He and nuclear matter corresponding to the spec-
tral functions of Refs. 4 and 6, respectively (solid triangles),
compared with the predictions of Eq. (18) evaluated with
Gaussian distributions (solid lines); for 'He the dotted line rep-
resents the results of the calculations obtained using [in Eq.
(18)] realistic momentum distributions from Refs. 4 and 5. The
double-dotted line represents the prediction by the 2NC model.

300-

250 '

10
E

200-

O~ 150-
Nucie
Matt

LLI

CL

10

10 2

100-

50-
10

0 2 3 4 5

k (fm-1)
FIG. 2. Comparison of the mean removal energy (E(k))

(crosses) and the peak position EI(k) (solid circles) calculated
with the spectral function of Ref. 4 for He and the spectral
function of Ref. 6 for nuclear rnatter, with the predictions of our
model spectral function [Eq. (18)]. The solid lines and dashed
lines represent EI (k) and {E(k)&,respectively, calculated using
Gaussian distributions in Eq. (18); for He, the dotted lines rep-
resent the results obtained when in Eq. (18) the Gaussian distri-
butions are replaced by realistic momentum distributions from
Refs. 4 and 5.
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FIG. 4. The spectral function of He (Ref. 4) and nuclear
matter (Ref. 6) vs the removal energy E for various values of the
nucleon momentum: k =1.5 fm ' (asterisks), k =2.2 fm
(solid squares), k =3 fm ' (crosses), and k =3.5 fm ' (solid
circles). The solid lines represent the predictions of Eq. (18).
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fm ' and (k2 )=-0.5 fm resulting from many-body
calculations, ' one obtains that in He @=10%. After a
proper generalization of Eq. (18) to complex nuclei, the
prediction of our model for He and nuclear matter are
compared in Figs. 2-4 with the results of many-body cal-
culations. For He, both the Gaussian and realistic
momentum distributions have been used; for nuclear
matter, n, has been obtained from a Fermi-gas momen-
tum distribution properly rescaled to account for NN
correlation depletion, whereas for n„,~ a Gaussian form
with (k„,~)—=7.5 fm compatible with many-body calcu-
lations has been adopted (the details of calculations will
be presented elsewhere' ). The results presented in Figs.
2-4 deserve the following comments:

(i) Unlike the 2NC model in which (E(k)) E~(k), in
disagreement with the results of theoretical calculations,
Eq. (18) is able to correctly predict the relation (E(k))
& E, (k) (cf. Fig. 2).

(ii) The values of the FWHM I (k), which is obviously
zero in the 2NC model, is correctly predicted by Eq. (18).
Really, the approximation of ignoring the c.m. motion of
the correlated pair is equivalent to neglecting the term
linear in k in the quantity (E(k)); such a linear term is re-
sponsible for the linear dependence of I on k. It turns out
that from the results presented in Fig. 3, the linear depen-
dence of I upon k [Eq. (20)] provides a satisfactory
reproduction of the average value of I (k) up to large
values of k; at the same time, it also appears that the cal-
culations with the spectral function also give rise to terms
quadratic in k, which seem to be reproduced by Eq. (18)
evaluated with realistic momentum distributions.

(iii) It appears that not only the values of I (k), (E(k)),
and E~ (k) are correctly predicted by Eq. (18), but also as

can be seen from Fig. 4, the whole shape of P~(k, E) is
satisfactorily reproduced in a wide range of values of E
around the peak.

(iv) The values of n(k) [Eq. (7)], (T) [Eq. (8)], and
(E) [Eq. (9)] calculated using Eq. (18), are in very good
agreement with the corresponding quantities ca1culated
with the spectral functions of Refs. 4 and 6.

The results presented in this paper show that the basic
mechanism which qualitatively produces the peaks of the
spectral function is the two-nucleon correlation configur-
ation. ' At the same time, Eq. (18) represents a remark-
able improvement of the original naive 2NC model; as a
matter of fact, by taking into account the motion of the
c.m. of the correlated pair and its coupling to k and E
through energy and momentum conservation, not only the
peak position E~ (k) and the mean removal energy (E(k))
are quantitatively predicted, but, more importantly, the
absolute value of the spectral function and its k and E
dependences for EeE,q„+ (A —2)k /2(A —1)M, are
generated. Equation (18) appears, therefore, to be suit-
able for the description of the nucleon spectral function at
large values of k and E. The next improvement to be con-
sidered concerns the contributions from three-nucleon
correlations, which would affect the predictions of Eq.
(18) for values of E much lower and much higher than the
peak position. In closing this paper, we would like to point
out that in a previous work of ours'' a model spectral
function was proposed in which the energy dependence
was assumed ab initio, rather than obtained, as in the
present paper, from some dynamical underlying NN
correlation mechanism; the results presented here allow
one to understand the microscopic validity of the model of
Ref. 11, at least for values of E not very far from the peak.
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