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Unified pair-coupling theory of fermion systems
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A coherent-state theory of many-fermion systems is presented and shown to have some novel and

useful properties. It leads naturally to variational equations for wave functions of the number-pro-

jected Hartree-Bogolyubov type. It is designed with the objective of describing finite nuclei in which

both short-range pairing and long-range collective correlations are important.

We present a coherent-state representation of many-
fermion quantum mechanics, suitable for describing finite
nuclei in which both short-range pairing and long-range
collective correlations are important.

The problem for a long-range quadrupole-quadrupole
Hamiltonian in a spherical harmonic-oscillator shell with
degenerate single-particle energies is solved with Elliott s

SU(3) algebra [1]. Similarly, the pairing problem for a
valence space with degenerate single-particle energies is
resolved with Kerman's quasispin algebra [2]. However,
except for simple cases where numerical diagonalizations
are possible, no exact solutions are known for a Hamil-
tonian with nondegenerate single-particle energies and
both pairing and long-range interactions. Approximate
solutions are given by variational and mean-field theories
and by their extensions to admit quasiparticles and de-
formed and/or tiine-dependent fields. The progression of
variational solutions from one symmetry type to another
with change of parameters in the Hamiltonian yields in-
sight into the competition between independent-particle
degrees of freedom, long-range shape-deformation corre-
lations, and short-range pairing correlations. Unfor-
tunately, spurious phase transitions can result from un-
realistic variational constraints [3]. Furthermore, number
nonconserving quasiparticle constraints are known to be
unsatisfactory in finite nuclei.

Our formalism has much in common with the so-called
"coherent correlated pair" method of Vary and co-
workers [4] and the "collective pair" approximation of
Maglione and co-workers [5]. Unlike independent-par-
ticle and quasiparticle based formalisms, the pair-coupled
approaches utilize the fermion pair algebra; i.e., an
SO(2d) Lie algebra spanned by operators

a;a~, —,'(a;a —aa;), a'a, i,j =I, . . . , d, (I)

where a; and a' are fermion operators satisfying anticom-
mutation relations

resentation of an even fermion state
~ y) is then defined

y(P) =(P[y) =&0(e '~'[y&,

where

(3)

It follows that

+. . . ] x(p)i (s)

r(a'a') =rl/Bp;, ,

I (a; a ) =P; +gP tP ka/aP«,
kl

I (a; a~) =gP;t8/8P~t,
I

as given in Refs. [7] and [8]. Thus, the Hamiltonian

(6)

i ijkl

has coherent-state representation

r(H) =pe, p, t
tt pa

The advantages of this apparently more complicated ex-
pression of the Hamiltonian (7) are realized when one
works with pair coupled as opposed to independent-
particle states.

We consider pair-coupled states of the form

X(p) =
2 gp;iaja'. (4)

iJ

A linear operator 8'on the fermion states has representa-
tion I (W) defined by

r(W) y (P) =&P~ W~ y& =(0~ [W+ [X,N]+ —,
' [X,[X,W]]

ja', a, j=h;~, ja', a~]. = [a;,a~] =0. ~n(a)) = [Xt(a)]"~0) (9)

In addition, the formalism we propose exploits some
elegant and useful properties of a coherent-state represen-
tation of the fermion pair algebra [6,7].

The set of all even fermion states span an irreducible
representation of the SO(2d) algebra and the set of all
states of odd fermion number span another irreducible
representation. We consider here the former. Let ~0&

denote the fermion vacuum state. The coherent-state rep-

with X(a) given by Eq. (4). Such states are known to
provide remarkably accurate approximations to pairing
force problems [3,9,10]. With suitably chosen [a;~] co-
eflicients, both (1=0) pair-coupled states and indepen-
dent-particle Slater determinants are of this form as are
the components of a BCS or Hartree-Bogolyubov wave
function of fermion number equal to 2n. They play a cen-
tral role in the so-called "broken pair approximation" (cf.
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Ref. [11] and references quoted therein). With the addi-
tional step of angular momentum projection, they can also
generate exact SU(3) states for leading representations
(i.e., ones having determinantal intrinsic wave functions).
Finally, any 2n-fermion state can be expressed as a linear
combination of states of the type (9).

The coherent-state wave functions

1 0
2

yn = !t3 02

0 0 0 0 0
0 o ~ o 0

~ ~ 0 0

implying that y„ is a determinant of the form

(2i)

~.(p, a) =&PIn(a)&, .=0, i, 2, . . . (io) itin Pn —
1 Pn —2 Pn —3

' ' ' Pl

for n =0 and n =1 are given by yo(P, a) =1 and yr(P,
a) = —,

' g;z, where

z, = (Pa), =g P;k a"
k

and a'i=a;~. For n~ 1, they satisfy the recursion rela-
tion

y„(a,P) =(OIe P A' (a) In —1&

=
z Za" P;, +QP((P&k yn-r(a, P). (12)

u Bpkl

Now, one easily shows that the polynomials

Functions of this type are known in character theory as
antisymmetric Schur functions.

The states In(a)& span the space of 2n-particle states
and have overlaps

(n(p) In(a)& =n!(P[In(a)& =n!y„(pa) . (22)

Thus, by diagonalizing the overlap matrix (22) for a
linearly independent set of tIn(a)&I, one can construct an
orthonormal basis of states that are not substantially more
difficult to use than the Slater determinants of an in-
dependent-particle approximation. Matrix elements of
the Hamiltonian, for example, are obtained from the iden-
tity

p„(z) =
z Tr(z") =

2 gz;,'z;,'. . . z;', (i3) (n(P) IHIn(a)& =n!I (H)y„(Pa), (23)

satisfy the equation

~ +ij il jk n n n+1 ~

ij kl kl

It follows that

(i4)

with I (H) given by Eq. (8) and derivatives of y„evalu-
ated as follows.

From theorein 1, partial derivatives of y„are given by

B ~ Bfq

+ij il jk
ij kl kl

= —+my „v, v =B/B!t (is) =g(- I)"' (n —i)!
(n —q)!

(24)

and that the solutions of Eq. (12) are given by

y. (p, a) =y. (pa) =y. (z),
where p„satisfies the recursion relation

yn 4 1 m'rt'm + I Vm yn —
1 ~ (i7)

m t,n —m)!

This recursion relation is easily solved by use of the fol-
lowing theorem.

Theorem I:
B

yn =

0 0 0
~ ~ 0 0
~ ~ ~ p

@n g n —
1 ~n —2 @n—3

kl kl kl kl
'

kl

where

n Bdq~ kl
q Bpkl

Thus, the function By„/Bpkl is the determinant

(2s)

(2Sa)

Vly +i —Vi Pry gmp +iV y =(n+1)y, . (i9)

Proof: Suppose Vly„=ny„l, for some n. It-then fol-
lows that

Second derivatives of p„are obtained by means of the
following theorem.

Theorem 2: If g(p, a) is any determinantal function of
the form

Therefore, since Vlyl =yo, the theorem holds for m =1
and all n. Next, suppose the theorem holds for all m and
some p„. We similarly show that it then holds for all m
and p„+~ and, since it does hold for all m and n = I, it is
proved generally.

Using the theorem, we can express the recursion rela-
tion (17)

n

g(P, a) =g ( —1)q+' 'y, — (Pa)F (P, a),
n q!—

then Bg/Bx is the determinantal function

Bg ~ ( ),+1 (n 1)! —DFq

Bx, 1 (n —q)! " 'Dx
where

(26)

(27)

n

(20) DFq BFq q~' 1 Bpp

Dx Bx p-1 p Bx
(28)
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and x is any of a(J P(J OI z(J.
Proof: We have

and

8g - ~ +( (n —1)! &Fq &Pn —
qli& p — + F

ax q-& (n —q)! " ' ax ex

r)v n —
q g rlpp g ( )p+ ( 1 (n q)!— &!((p

ax p
'" qe(x p pp(n —

q
—p)! " ' pax

(29)

(3O)

Therefore

( 1)q~((n 1)! &n —qF g ( 1)m (n 1)! g 1 PpF
q=] (n —q)! 8x ~=( (n —m)! "

p=l p Bx

which leads to the desired result.
Application of theorem 2 gives

(31)

(32)

Thus, we obtain

n

(P~H~n(a)) = g ( —1)q+' '
(p„q(Pa)Hq(P, a),

q=( n q !

where

(33)

r

Hq(P a) =—'Z& P(@jq(+ 4 X &Jk( P;j@k((P,a)+gP;, P&
——'pep, (p, a)

n
(34)

8[(a~Hen(a)) —kp„(aa)] =O. (3S)

Besides solving the eigenvalue equations exactly, one
can seek the value of a for which the energy expectation
(n(a) ~H ~n(a)) is a minimum subject to the normalization
constraint (n(a)~n(a)) =1. Thus, one solves the varia-
tional equation

I

Once it has been solved, one can also seek excited states
of the form

O~ ~(n —1)(a))=g y ja; a~ ~(n —1)(a)) . (36)
V

One easily shows that the excitation operators for these
states are given by solution of the eigenvalue equation

Solutions of this variational equation for the ground state
can be found iteratively as we shall demonstrate in a
forthcoming paper.

Z (+ij,k( ~~ij,kl ) ykl
kl

where

(37)

ij,kl
8'(PiHin(a)&

BP; Bak( , P=a

1)q+( nI D Hq

(n —q)! DPijDaki
(38)

Ig, kl
8'q „(pa) ~ ( ),+,
()P(j ()akl p= q

n! D'0q
(n —q)! "

DP(jDakl

This equation has the desirable property that one of its
solutions, with y =a, is precisely the pair-creation opera-
tor for the variational ground state ~n(a)).

Although we shall not pursue it here, one can also pro-
ject states of good angular momentum from a variational
state of the form (9). Moreover, the projection can be
performed before or after energy minimization.

In a forthcoming paper, we shall illustrate the utility of
the formalism by calculation of the eigenstates of a pair-
ing Hamiltonian with nondegenerate single-particle ener-
gies. We shall show that one can calculate exact solutions

of the multilevel pairing problem and that the approxi-
mate variational equations provide solutions of the broken
pair model equations [81. We shall further discuss the
more general circumstances for which our variational
equations can be solved, e.g., for pairing plus quadrupole
Hamiltonians.
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