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Radiative corrections to 'OC superallowed Fermi P decay
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In view of new data on the 'OC superallowed Fermi P decay, the radiative corrections have been

reevaluated. In particular we calculate and include the nuclear-structure-dependent part of the axial-

vector-induced contribution to the O(a) radiative correction. The resulting V„d is appreciably larger

than a value recently published, which was based on the same data.

Recently a new value has been published [1] for the
branching ratio for ' C superallowed Fermi P decay
[BR=0.01473(7)). From this value and recent values of
the end-point energy [En =885.72(9) keV [2]] and the to-
tal nuclear half-life [to=19.290(12) s [3]], the ft value
for the superallowed decay can be calculated. At present
the uncertainty in the ft value is dominated by the uncer-
tainty in the branching ratio. As further experimental
work may, however, reduce this uncertainty, one should
calculate the charge and radiative corrections as well as
possible. The ' C ft value could then be used, together
with the ft values of the eight precisely measured superal-
lowed decays [4], to determine the quark-mixing matrix
element V„d and to test the unitarity relation for the first
row of this matrix.

The radiative corrections for the eight precisely mea-
sured superallowed decays were recalculated in [5]; in ad-
dition, the nuclear-structure dependent part (called CNs)
of the axial-vector induced contribution to the O(a) radi-
ative correction was calculated for the first time. It turned
out that its inclusion is essential at the present level of pre-
cision.

In this paper we give the value of C~s for the decay of
' C. We also include the radiative and other corrections
to get a value for V„d. Due mainly to the inclusion of CNs
(which was not available in [1]),our value of V„d is larger
than that of [1] by approximately their uncertainty. This
emphasizes the importance of this correction, which is
especially big in the case of ' C. Our notation and ap-
proach for ' C are consistent with those used in [5] for the
other eight cases.

We first comment on the calculation of the uncorrected
ft value. For the value of Eo given above, we take the in-
tegrated statistical rate function f=2.3000(10) as calcu-
lated by Behrens (private communication) with a uniform
nuclear-charge distribution corresponding to rti =1.47 fm
including atomic screening. The correction for a modified
Gaussian nuclear-charge distribution is completely negli-
gible. From the values of to and BR given above, and ap-
plying the electron-capture correction of 0.31% [I],we get
the partial half-life

t =1.0031 =1313.6(63) s.

Corresponding to the values in Table II, column (1) of [5]
we therefore have

ft =3021.3(145) s.
Comparison of Table V, column (5) of [5] with Table

14.3 of [6] shows that, with sufficient accuracy, we can
take the correction due to the shape factor for ' C from
Table 14.3. This leads to C(E) =0.9998, corresponding
to Table II, column (2) of [5]. Thus

ftC(E) =3020.7(145) s.

The recoil correction [Table III, column (2) of [5]] is
0.7 s, giving

ftC(E) =3020.0(145) s (recoil corrected) .

The uncertainty in (1) is obviously dominated by the un-

certainty in BR. When the ft value given in [I], which
was obtained by a completely different method, is correct-
ed for electron capture,

ft =3011.5(144) sx 1.0031 =3020.8(144) s,
the agreement with (1) is as good as can be expected.

The value (1) is the basis to which we apply the radia-
tive and other corrections. The isospin nonconservation
correction is taken as 8, =0.18% from [7]; rather arbi-
trarily we assign to 6, an uncertainty equal to half its
value. This value corresponds to Table II, column (4) of
[5]; there is no value available corresponding to column
(3). The radiative corrections corresponding to Table I,
columns (1)-(5) of [5] are calculated to be (in percents)
1.48, 3.98(8), 0.18, 0.00, and 4.16(8), respectively.

In the previous calculation of CNs for the eight precise-
ly measured cases [5], the initial and final states in each
case were assumed to have only two valence particles (or
holes) relative to a 0+, T =0 core. In the same approxi-
mation, the ' C states belong to the (lsl/2) (lp3/2)
configuration or (lp3/2) relative to a ' C closed-shell
core. With r~ =1.693 fm, corresponding to the value of ro
given above, one obtains C~s=CO= —1.43. Values of
CNs now have been calculated [8] for mixed-configuration
wave functions based on the best interactions available,
using values of the two-body transition densities obtained
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ft =3125.3(155)s. (2)

from the Oxford-Buenos Aires-MSU shell-model code [9]
and values of the two-body matrix elements calculated
separately. For ' C, the preferred interaction of van Bees
and Glaudemans [10] within the (Is) (Ip) space gives
only 51% of the 0+, T =1 state belonging to the (Ip3/2)
configuration and CNs= —1.73 [the (8-16) POT interac-
tion of Cohen and Kurath [11] gives C~s = —1.94].
Therefore we take CNs = —1.73(20). These correction
terms taken together give the factor

(I+8„+82+bi+a/trCNs)(1 —8, ) =1.0357(13) .

Multiplying the value in (1) by this factor and subtracting
the atomic excitation correction of 2.5 s (taken from
[12]),corresponding to Table III, column (3) of [5], gives
finally [corresponding to Table III, column (5) of [5]]

The uncertainty in (2) is still about three times the typical
uncertainty for the other eight cases and so would not ap-
preciably aA'ect the average. Nevertheless the value (2) is
consistent with the systematic and unexplained linear Z-
dependence of the ft values of the other eight cases, which
has been commented on in [13]. In comparison with the
value IV„dI =0.9752(24) given in [I], we find from Eqs.
(2) and (5.2) of [5] the value

I vud I
=0 9772(24)
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