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In view of new data on the '°C superallowed Fermi B decay, the radiative corrections have been
reevaluated. In particular we calculate and include the nuclear-structure-dependent part of the axial-
vector-induced contribution to the O(a) radiative correction. The resulting V.4 is appreciably larger
than a value recently published, which was based on the same data.

Recently a new value has been published [1] for the
branching ratio for '°C superallowed Fermi B decay
[BR =0.01473(7)]. From this value and recent values of
the end-point energy [Eo=885.72(9) keV [21] and the to-
tal nuclear half-life [19=19.290(12) s [3]], the ft value
for the superallowed decay can be calculated. At present
the uncertainty in the ft value is dominated by the uncer-
tainty in the branching ratio. As further experimental
work may, however, reduce this uncertainty, one should
calculate the charge and radiative corrections as well as
possible. The '°C ft value could then be used, together
with the ft values of the eight precisely measured superal-
lowed decays [4], to determine the quark-mixing matrix
element V,4 and to test the unitarity relation for the first
row of this matrix.

The radiative corrections for the eight precisely mea-
sured superallowed decays were recalculated in [5]; in ad-
dition, the nuclear-structure dependent part (called Cns)
of the axial-vector induced contribution to the O(a) radi-
ative correction was calculated for the first time. It turned
out that its inclusion is essential at the present level of pre-
cision.

In this paper we give the value of Cns for the decay of
10C, We also include the radiative and other corrections
to get a value for V4. Due mainly to the inclusion of Cns
(which was not available in [1]), our value of V,, is larger
than that of [1] by approximately their uncertainty. This
emphasizes the importance of this correction, which is
especially big in the case of '°C. Our notation and ap-
proach for '°C are consistent with those used in [5] for the
other eight cases.

We first comment on the calculation of the uncorrected
ft value. For the value of E¢ given above, we take the in-
tegrated statistical rate function f=2.3000(10) as calcu-
lated by Behrens (private communication) with a uniform
nuclear-charge distribution corresponding to ro=1.47 fm
including atomic screening. The correction for a modified
Gaussian nuclear-charge distribution is completely negli-
gible. From the values of ¢o and BR given above, and ap-
plying the electron-capture correction of 0.31% [11, we get
the partial half-life

= to _
t 1.0031BR 1313.6(63) s.

Corresponding to the values in Table I, column (1) of [5]
we therefore have

f1=3021.3(145) s.

Comparison of Table V, column (5) of [5] with Table
14.3 of [6] shows that, with sufficient accuracy, we can
take the correction due to the shape factor for '°C from
Table 14.3. This leads to C(E) =0.9998, corresponding
to Table II, column (2) of [5]. Thus

ftC(E)=3020.7(145) 5.

The recoil correction [Table III, column (2) of [5]] is
—0.7 s, giving

f1C(E) =3020.0(145) s (recoil corrected) . ¢))

The uncertainty in (1) is obviously dominated by the un-
certainty in BR. When the ft value given in [1], which
was obtained by a completely different method, is correct-
ed for electron capture,

ft=3011.5(144) sx 1.0031 =3020.8(144) s,

the agreement with (1) is as good as can be expected.

The value (1) is the basis to which we apply the radia-
tive and other corrections. The isospin nonconservation
correction is taken as 8.=0.18% from [7]; rather arbi-
trarily we assign to 8. an uncertainty equal to half its
value. This value corresponds to Table II, column (4) of
[5]; there is no value available corresponding to column
(3). The radiative corrections corresponding to Table I,
columns (1)-(5) of [5] are calculated to be (in percents)
1.48, 3.98(8), 0.18, 0.00, and 4.16(8), respectively.

In the previous calculation of Cns for the eight precise-
ly measured cases [5], the initial and final states in each
case were assumed to have only two valence particles (or
holes) relative to a 0+, T=0 core. In the same approxi-
mation, the '°C states belong to the (1s1/2)*(1p3/2)¢
configuration or (1p3/2) ~? relative to a '’C closed-shell
core. With r, =1.693 fm, corresponding to the value of ro
given above, one obtains Cns=Co= —1.43. Values of
Cns now have been calculated [8] for mixed-configuration
wave functions based on the best interactions available,
using values of the two-body transition densities obtained
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from the Oxford-Buenos Aires-MSU shell-model code [9]
and values of the two-body matrix elements calculated
separately. For '°C, the preferred interaction of van Hees
and Glaudemans [10] within the (15)*(1p)% space gives
only 51% of the 0%, T =1 state belonging to the (1p3/2)°
configuration and Cns = —1.73 [the (8-16) POT interac-
tion of Cohen and Kurath [11] gives Cns= —1.94].
Therefore we take Cns= —1.73(20). These correction
terms taken together give the factor

(+A;+6,+83+a/aCns) (1 —6.)=1.0357(13) .

Multiplying the value in (1) by this factor and subtracting
the atomic excitation correction of 2.5 s (taken from
[12]), corresponding to Table III, column (3) of [5], gives
finally [corresponding to Table III, column (5) of [5]]

St=3125.3(155) s. 2)

The uncertainty in (2) is still about three times the typical
uncertainty for the other eight cases and so would not ap-
preciably affect the average. Nevertheless the value (2) is
consistent with the systematic and unexplained linear Z-
dependence of the ft values of the other eight cases, which
has been commented on in [13]. In comparison with the
value |V,4| =0.9752(24) given in [1], we find from Egs.
(2) and (5.2) of [5] the value

[Vl =0.9772(24) .
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