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Correlation between E2 and M1 transition strength in even-even vibrational,
transitional, and deformed nuclei
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We show that the linear energy weighted M1 sum rule is proportional to the summed E2 strength
in the region of vibrational, transitional, and strongly deformed even-even nuclei using the proton-
neutron interacting boson model. This general relation is compared with extensive data on M1 and

E2 transition strength in rare-earth nuclei truncating the M 1 sum rule to states below an excitation
energy of 4 MeV. The above observation also implies a quadratic dependence on deformation (8) for
the summed orbital M 1 strength.

Since the discovery of a strong isovector M 1 excitation
in inelastic electron-scattering experiments on ' Gd, per-
formed at Darmstadt fl], many attempts have been made,
both experimentally and theoretically, to understand this
low-lying 1+ mode of motion [2,3]. In particular, starting
from microscopic calculations in a deformed shell model,
the quasiparticle random-phase approximation (QRPA)
has been shown to exhibit many properties of the experi-
mentally observed data [3-6] which are now available for
nuclei throughout the whole rare-earth region, as well as
for many light nuclei. Both the excitation energies, the
fragmentation, and strong orbital character of a particu-
lar class of 1+ states could be described in a qualitative
way. More recently, (p,p') experiments at TRIUMF [7]
pointed towards the existence of spin-Aip M1 strength lo-
cated at higher energies (5 ~ E„~9 MeV), results that
can be obtained from the QRPA studies [5,8,9]. In all the
above studies, a picture of rather important fragmentation
of a "scissorlike" 1+ mode results.

The first calculations, relating to the possible observa-
I

tion of a new collective 1+ mode, though, were obtained
from collective model approaches [two-rotor model, in-
teracting boson model (IBM-2), . . .]. These latter studies
[10-13] concentrated in all cases on a single, rather
strong collective orbital excitation mode, corresponding to
rotational oscillations of protons relative to the neutrons.

Very recently, the now extensive set of data on M1
strength in rare-earth nuclei and its mainly orbital nature
pointed towards the existence of a strong correlation be-
tween the functional dependence of the summed M1
strength (summed up to E„~4 MeV) and the
B(E2;0~+ 2~+) value on proton and neutron number
[14]. This general relationship points towards some
deeper connection between these two quantities and, be-
cause of the smooth behavior in both Q~ B(M I;0~+ 1f ).
and B(E2;0~+ 2~+) on Z and N, suggests a collective
model approach.

One can express the linear energy weighted M1 sum
rule in terms of a double commutator of the M1 operator
with the nuclear Hamiltonian as

Q B(M I;Oi+ lf+)E„(lf+ ) = (J3/2)(Oi+
i [[H,T(M 1 )],T(M1)] i0i+) .f

Starting from the IBM-2 Hamiltonian describing proton-
neutron mixed-symmetry modes of motion [11-13]

I

one can evaluate the double commutator, using the IBM-2
M 1 operator,

H I
=

edmund„+ ed,nd„+ tc~„g» Q, , ' (2)

with the following expressions for the boson number and
quadrupole operator,

T(M I ) =43/4tr(g, L +g,L,);
Lp=JIO(d d)p'

(4)

n ,=d(d dt)p

Qp=(std+dts) +gp(dtd)

The one-body term ed, nd, (p=tr, v) results in a vanishing
contribution to the right-hand side of Eq. (1). The quad-
rupole interaction term on the other hand gives rise to the
following expression for the double commutator, i.e.,

[[H,T(M1)],T(M1)]' '=(30/4tr) g'tc „ —(J3/5) (d ts+s td)

—2iX —+ 2 2, ~.(d'd)"' g,+( =.)+2g.g. ..(JY/5)g. g, ,
, 5

= —3(J3/2tr) (g —g, ) 'tc,g Q, .

(5)
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Starting from the more general F-spin invariant IBM-2
Hamiltonian [11—13],

H2=ed, nd. +ed„nd +rc(Q +Q,) (Q +Q„,), (7)

where ed =ay„, the evaluation of the double commutator
is somewhat more involved but results in the particularly

I

simple expression

[[H,T(MI)],T(M1)]' '= —3(J3/ir)x'(g —g, ) Q Q, .

(8)
So, in both cases, we obtain for the energy weighted M1
sum rule

QB(M I;oi+ II+)E„(11+)=(9/2n)
f

—K,/2
(g- —g.) '&oi'Ig. g, lo'), (9)

A

for the Hamiltonian H~ and Hq in the upper line and
lower line, respectively.

From expression (9) one observes a strong correlation
between the M I energy weighted sum rule and the
strength of the deformation driving quadrupole proton-
neutron force. The expectation value in the 0+ ground
state of the latter force is a measure for the quadrupole
deformation energy which can also be related to the corre-
sponding binding energy in a quadrupole deformed mean
field such as the Nilsson model [15].

We now evaluate the ground-state expectation value
appearing on the right-hand side of expression (9). In-
serting a complete set of intermediate 2+ states, called
I2~+), this expectation value also becomes

Z &21'I lg. l loi')&2; I I g, l lo,') . (lo)
f

If we make the tacid assumption that the states describing
the Ot+ and 2g+ have good F-spin quantum number F
=F,„=(N,+N, )/2, the reduced matrix elements can be
related to the one for the full Q +Q„operator [12],since

&FllgpllF)

&Fllg. +Q, I IF»-+N.

I

We finally obtain the result that

QB(M1;0i+ l1+)E„(lg+)=+8(E2;oi+ 2I+),

(12)

where an effective charge (in units e b) is to be used and is

given as

e„ir = (9/2n )
—x,/2

(g —g, ) N N, /(N +N„) 2

(13)

with the gyromagnetic factors expressed in units p~ and
x „ir ( (0) in MeV. This has to be done in order to bring
the different dimensions of the M 1 and E2 part of expres-
sion (12) in accordance with each other.

We remark that the Majorana term in the IBM-2
Hamiltonian is necessary for an adequate description of
mixed-symmetry states [12,13]. This term will also give
rise to an extra contribution to the energy weighted Ml
sum rule. In the case of an F-spin invariant form of the
Majorana term ((~ =gp f3 ()

(std —stdt) (s d —sg ) 2 —2 g (dtdt) 3 (d+, ) "' (14)

one obtains

[[M T(MI)] T(Ml)l =((g g ) (J3/20ir)[(d d )~' (dJd, )t'3+3(dtd )~23 (dtd„)~ 3

+6(dtd ) (dtd, ) +10(dtd ) (dtd, ) +3[(std ) (dts ) +(dts, ) (std, ) ]]

When applying relationship (12) for realistic cases, one
should take this destructive contribution into account.

Here now, we incorporate a number of approximations
to make the exact relation (12) more useful.

(i) In the energy weighted sum rule, since we discuss
the IBM-2 and as such, collective orbital scissorslike
states are considered, most M 1 strength is coming from a
very restricted interval near E„=3MeV [14,16]. So, an
average energy E„(1+,coll) can be taken out of the sum
on the left-hand side of Eq. (12). We note that, when
plotting the energy weighted as well as the nonenergy
weighted Ml sum rule, using the experimental B(M1)
values and the corresponding excitation energies versus
the experimental 8(E2) t values, one obtains approxi-
mately a straight line in both cases. The slopes, however,

I

exhibit a ratio of about 3. These results support the above
approximation.

(ii) In transitional and, in particular, in strongly de-
formed nuclei, by far most of the summed E2 strength re-
sides in the first 2+ state. So, within a good approxima-
tion, the sum on the right-hand side in Eq. (12) can be re-
stricted to the 2[+ level only, and for which state F=F „. „
holds to a very good approximation [12].

(iii) In applications to rare-earth nuclei, the product
x„1V 1V,/(N +1V,) is very smoothly varying and stays
near to a value of —0.02 for the region of nuclei ' ' Nd,'"" "Sm, ' "Gd. Indeed, the value x, increases for
N and/or Z approaching the closed shell [17]
since x =xo[(A —1V )(0,—N„)] '1 and the product
(N /N). (N„/N) decreases for N or Z approaching the



R2264 K. HEYDE AND C. DE COSTER 44

TABLE I. The boson effective charge e,.[]-, derived from Eq.
(13), using the s. , parameters from Scholten [171. The g fac-
tors are chosen as g = 1p~ and g, =Op~ [12,131.

Nd
Sm
Gd

0.148
0.127
0.106

0.130
0.113
0.103

90

0. 1 1 1

0.114
0.115

92

0.126
0.120
0.119

closed shell, compensating quite well to an almost con-
stant value. Using the parameter values obtained from
fitting to the nuclear properties in the Nd, Sm, and Gd
isotopes [17],one can determine the value of e,a.. The re-
sults are presented in Table I. One indeed finds typical
values for the eff'ective charge used in standard IBM-2
calculations for the rare-earth mass region [17,18].
Moreover, performing a numerical calculation with pa-
rameters taken from Ref. [17], also taking into account
the Majorana contribution of Eq. (15) with g =0.17 MeV,
for ' Sm, a deviation on the eAective charge of not more
than 5% is introduced.

Using the above three quite reasonable assumptions, we
finally obtain an approximate relation connecting the
summed M 1 strength and the B(E2;01+ 21+) reduced
transition probability as

QB(M I;Oi+ If+)E„(I+,coll) =8(E2;Oi+ 2i+) .
f

(16)
Since experimental data indicate that most orbital
strength is exhausted below E„~4 MeV, the summed
M1 strength should follow very closely the behavior of the
8(E2;Oi+ 2i+) value. This relation, as described in Eq.
(16), is born out by experimental 8(M1) and 8(E2)
values and is illustrated in Fig. 1, taken from Ref. [14],
and comes about from the precise structure of the Hamil-
tonian (using a quadrupole-quadrupole force) and the
form of the IBM-2 M1 operator. Similar relations could
also be obtained within the nuclear shell model [19] and
point towards the general value of relations like (12) and
the more approximate one in Eq. (16). There remains a
problem, though, with the large 8(M1) value measured
in ' Dy. The smooth variation in the summed M 1

strength cannot accommodate such a large and sudden
change in a single nucleus. Since the sum rule equality,
expressed in Eq. (12), mainly accounts for the orbital part
of the M 1 sum rule at lower energies [the derivation of re-
lation (12) was carried out within the IBM-2], the devia-
tion might hint towards important M 1 spin-Aip contribu-
tions. At the same time, it should be noted that the possi-
ble observation of a doublet in the nucleus ' Dy using
(y, y') experiments [3] might lead to too large a value for
the experimental summed M 1 strength.

We have also carried out more detailed QRPA calcula-
tions in the rare-earth region [3,8] for which most data
are available at present, concentrating on 1+ states and
the corresponding B(M I;01+ lf+) values. In plotting
the summed orbital M 1 strength versus the P factor [20]
[equal to N„N„/(N„+N„)] in Fig. 2, a behavior which is

300

I I

0 4 6 8
P=N N /(N +N )

FIG. 1. A comparison between the functional forms of the
summed 8(M 1 ) strength, up to E,(4 MeV (upper part) and
of' the 8(E2;Oi+ 2i+) values (lower part). The data (taken
from Ref. [14])correspond to the following nuclei: 0, '6"Er; 0,

Dy 4 ' Gd & '"'""Sm andG ' ' "Nd
9

rather similar to the experimental summed strengths re-
sults, indicating saturation for a number of nuclei near the
value of P=7-8 and with a summed QB«b;1.,|(M I)
strength near 2.5p~. %e summed the M1 strength up to 4
MeV (to comply with the data points obtained and also
expressing the fact that most M1 strength in this energy
region is mainly of orbital character). The theoretical
QRPA values, though, exhibit a much slower rise with P
than the data in Fig. 1 indicate. This might be due to the
use of the Nilsson model description as the underlying
basis for a microscopic description of 1+ states and the
corresponding 8(M I ) strength, even in the region of tran-
sitional nuclei in between vibrational and strongly ae-
formed nuclei.

A QRPA study for 2+ collective states and the corre-
sponding E2 decay using a deformed shell model (Nilsson
model) has not been carried out. It was pointed out,
though, by Casten, Heyde, and Wolf [21], that the
8(E2;Oi+ 2i+) values exhibit a saturation when ap-
proaching the region of strongly deformed nuclei. There
the 8(E2) saturation was derived implicitly from an eval-
uation of the quadrupole proton-neutron ground-state ex-
pectation value (using the Nilsson model) and an effective
N, g boson number was deduced. Starting from the right-
hand side of Eq. (9), we have shown that the proton-
neutron quadrupole ground-state expectation value is
indeed proportional to QfB(E2;01+ 2f+) and so, the E2
saturation property can most probably be traced back to a
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FIG. 2. The summed orbital M1 strength, calculated using
the QRPA method for rare-earth nuclei, as outlined in Refs.
[2,3] and [8]. The symbols denote the calculated QRPA values
for the various nuclei obtained for the Er, Dy, Gd, Sm, and Nd
isotopes, and are identical with the ones used in Fig. 1. Here, we
also give results for the ' ' "Yb nuclei (denoted by the symbol
'7). The solid line is drawn just to guide the eye.

saturation in ground-state proton-neutron binding energy
(or in a corresponding saturation for the ground-state
quadrupole deformation value for strongly deformed nu-
clei, as calculated by Moiler and Nix [22]).

Finally, an interesting observation results from
Eq. (16). In the region of deformed nuclei, the
8(E2;01+ 2i+) varies quadratically with the nuclear
quadrupole deformation B. Thus, Eq. (16) implies that
the summed Ml orbital strength [this is realized in the
(y, y') experiment on ' ' Sm by summing M I strength
up to E„=4MeV [16]] will also vary quadratically with
the ground-state equilibrium deformation when extracting
the value of b from the experimental 8(E2;Oi+ 2i+) ex-
pression (see Fig. 3). On the same figure, we indicate the
QRPA summed orbital M 1 strength (summed up to the
excitation energy of E„(4MeV) which corroborates the
data as well as the relation, given in Eq. (16). The
differences in b, h and 6,„~ occur since the theoretical
values are obtained from ground-state equilibrium value
calculations carried out by Moiler and Nix [22], whereas
the experimental values were extracted from correspond-
ing E2 transitions and using the rotational expression.

Concluding, we have derived, starting from the proton-
neutron interacting boson model (IBM-2), a general ex-
pression relating the linear energy weighted M 1 sum rule
to the summed E2 strength in a given nucleus. One can
approximate this relation for orbital M 1 strength, located

1.0

0.0
0.02 0.04 0.06 0.08

FIG. 3. Comparison between the calculated summed Ml
strength (with E, ~ 4 MeV) using the QRPA and the experi-
mentally summed I 1 strength [16] as a function of the square
of the nuclear deformation b . We present the total summed
M 1 strength (solid circles and solid line) and the summed orbit-
al Af 1 strength (open circles and dashed line). The solid and
dashed lines are fits to the theoretical values.
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in the energy region around E„=3MeV, into an expres-
sion showing a proportionality between the summed M 1

strength below 4 MeV and the 8(E2;01+ 2i+) value. In
this particular energy region, spin-Aip excitations that
mainly contribute to the M 1 sum rule at higher excitation
energies (5 MeV (E (9 MeV) are expected to contrib-
ute only in a minor way. Such a relation is born out by
the experimental data on M 1 and E2 strengths in rare-
earth nuclei. Moreover, a quadratic dependence on nu-
clear deformation with the summed orbital Ml strength
below E„~4 MeV is implied. Microscopic quasiparticle
RPA (QRPA) calculations are in line with the data on
summed M 1 strength in most of the rare-earth nuclei.
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