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'We present an exciton model for preequilibrium emission in nucleon-induced reactions in which
linear-momentum conservation is included. The particle emission contributions from the first two
preequilibrium stages are calculated by determining exact particle-hole state densities with a specific
energy and linear momentum in a Fermi-gas model of the nucleus. Angular distributions arise
naturally from our treatment and do not have to be added in an ad hoc way. The angular distributions
that we obtain from the first two preequilibrium stages are identical to those found using the Kikuchi-
Kawai quasifree scattering kernel.

It has been established that nonequilibrium processes
play an important role in nuclear reactions induced by
light projectiles with incident energies above about 10
MeV. The characteristic feat, ures of particle emission
from the composite nucleus before equilibrium has been
reached (preequilibrium emission) are an excess of high-
energy particles, and a forward peaking in the observed
angular distributions. The overabundance of high-energy
particles is due to the nuclear excitation energy being
shared among only a few degrees of freedom in the early
stages of the reaction when preequilibrium emission oc-
curs, and the forward peaking is indicative of the incident
projectile's direction being partially preserved. Both
quantum mechanical and semiclassical theories have been
developed to account for preequilibrium emission. Quan-
tum mechanical approaches such as that of Feshbach,
Kerman, and 1&oonin (I"III&) [1] and Tamura et al. [2]
have been able to successfully describe the spectral shape
and angular distribution of emitted particles, though
the calculations are rather involved and their predictive
power is limited [3]. The semiclassical exciton [4] and
hybrid [5] preequilibrium models, on the other hand, are
able to describe the angle-integrated spectral shapes suc-
cessfully, though in their usual formulation they cannot
yield angular distributions directly. In this paper we shall
show that by modifying the exciton model to include
linear-momentum eKects it yields angular distributions
in a natural and consistent way. We shall not explic-
itly discuss the hybrid model, though the modifications
needed in it for the inclusion of linear-momentum eKects
should be similar to those that we present for the exciton
model.

In the exciton model the particle emission rates from
the preequilibrium stages of the reaction are calcu-
lated by invoking microscopic reversibility and apply-
ing phase-space arguments. In its usual formulation it
does not conserve linear momentum in the various in-
tranuclear transitions and cannot yield information con-

cerning the angular distribution of emitted particles. In
order to obtain such information, it has become com-
monplace to include in the model, in an ad hoc man-
ner, a nucleon-nucleon scattering kernel obtained either
from free nucleon-nucleon scattering [6, 7] or, more real-
istically, from quasifree scattering in nuclear matter us-
ing the Kikuchi-I&awai (III&) expression [8—12]; for re-
views see Refs. [13,14]. While the inclusion of a nucleon-
nucleon scattering kernel within an exciton model is a
physically plausible way to obtain angular distributions,
no formal theoretical connection has been made between
the exciton model and quasifree scattering descriptions.
We shall show that by conserving linear momentum in
the exciton model and by developing state densities with
linear momentum, the angular distributions obtained are
identical to those found using KK quasifree scattering.
We do not make use of the fast particle approximation,
as in Ref. [6], but treat the excited particles and holes for
a given preequilibrium stage statistically. The forward-
peaked angular distributions tha. t we obtain arise purely
from phase-space factors, and possible dynamical eA'ects

are disregarded.
An exciton model which does co@serve linear momen-

tum and yields angular distributions directly has been
proposed by Madler and Reif [15]. They used a partition
function technique, which is only accurate for large num-
bers of excited particles and holes, to determine state
densities with linear momentum in an equidistant single-
particle level model of the nucleus. But since the pree-
quilibrium spectrum from nucleon-induced reactions is
dominated by emission from simple particle-hole excita-
tions, their approach is of limited value, t, hough it can be
applied in heavy-ion reaction calculations [16]. Below we
present a method for exactly determining state densities
with linear momentum, which follows from our previ-
ous work on photoabsorption [17]. Since our approach
involves convoluting single-particle and -hole states in
a Fermi-gas nucleus, the complexity of the integrals in-
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creases rapidly for more complex preequilibrium stages.
We are able, ho~ever, to determine the state densities
with linear momentum needed for the calculation of first
and second stage preequilibrium emission in nucleon-
induced reactions. We assume, following Chiang and
Hiifner [18], that preequilibrium emission beyond the sec-
ond stage can be ignored before equilibrium emission oc-
culs.

In the exciton model it is assumed that an incident
nucleon interacts with the target nucleus to form a two-
particle-one-hole (2plh) state, and in subsequent two-
body nucleon-nucleon interactions the excited system
may pass through more complex particle-hole configu-
rat, ions towards equilibrium. Part, icle emission can occur
from the early preequilibrium stages and these particles
typically contribute to the high-energy part of the emis-
sion spectrum. The double-diA'erential cross section for
the emission of a particle with energy e and direction 0
can be written as

d~o A„(~, 0)

where the number of excitons is n = p+ h. The reaction
cross section of the incident particle on the target nucleus
is o~, and D„ is the depletion factor, representing the
probability that the system reaches the n-exciton config-
uration without preequilibrium decay. A„and A„are the
total rates for decay to more complex exciton configura-
tions and for particle emission, respectively, and A„(r, 0)
is the double-diA'erential emission rate for a given type of
particle. This is found from microscopic reversibility to
be

me o.;„,(~)R(p) p(p —1, h, E —
equi, K —kri)

2%3h' p(p, h, E, K)
(2)

where the reaction cross section for the inverse process
of nucleon absorption on the residual nucleus is o.;„„(e).
The composite system total energy and momentum be-
fore particle emission are E and K respectively, and the
residual nucleus energy and momentum aft, er emission are
E—e~ and K —k~ respectively, all these quantities being
measured relative to the bottom of the nuclear well. The
energy and momentum of the emitted particle relative to
the bottom of the nuclear well are e~ ——e + B + r„and
kri, where ~kri~ = +2m(e + B+ ).'„), B being the bind-
ing energy and e„ the Fermi energy. R(p) is a correction
factor to account for neutron-proton distinguishability,
and is discussed below. In the above expression state
densities with linear momentum are shown, though the
state densities that are used in the original exciton model
are a function of energy only. Since we also wish to com-
pare angle-integrated emission spectra. predicted by the
exciton. model both with and without linear-momentum
conservation, we indicate below how to calculate Fermi-
gas state densities with and without linear momentum.
Furthermore, our method for determining state densities
with linear momentum will be rendered more transpar-
ent if we first indicate how state densities without linear
momentum can be calculated.

The state density of a yp-p ar ticle 6-hole system
can be obtained by convoluting single-particle and
-hole densities with an energy-conserving delta function.
When linear-momentum effects are not accounted for,
this can be expressed as

p(p, h, E) =
p!h!

p A

b E —) e+)
i=1 j=l

x p(lp, ~;) 0(e; —e ) dc; p(lh) 6j) 0(E~ —
c~ ) dc~ )

where i labels the particles and j the holes. The theta functions are unity if their argument is greater than zero
and zero otherwise, accounting for Pauli blocking. The densities of single particles and holes in energy space are
represented by p(lp, e, ) and p(lh, , ).&. ), with the energies c, ~ measured relative to the bottom of the nuclear well. The
factorials p.' and h.' account for the indistinguishability of the particles and holes. If an equidistant single-particle
model of the nucleus is used, the above expression would yield the Ericson state density expression, corrected to
include finite nuclear well depth restrictions [19]. In a Fermi-gas model of the nucleus the single-particle and -hole
densities in energy space are given by p(lp, e, ) = 3A~e;/2e„~2 and p(lh, e&) = 3A~ez/22~2, where A is the nuclear
mass number.

We now generalize the above expression to allow st, ate densities with a specific linear momentum to be determined.
The convolution of the single-particle and -hole states is now performed in momentum space, and a linear-momentum-
conserving delta function is included in the integration,

p(p, h, E, K) = 1

P 0 p =1

p

b E —) e+)
i=1 j=l

p A

b K —) k+) k~
i=1 j=1

x p(lp, k, ) 0(k, —k ) d k, p(lh, k~) 0(k —k~) d kq,
j=l

(4)
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where k; and k& are the single-particle and -hole linear
momenta, and k„ is the Fermi momentum. In the Fermi-
gas model the single-particle and -hole states are eigen-
states of linear momentum, the density of such states in
momentum-space being a constant which reproduces the
number of nucleons,

A
p(lp, k, ) = p(lh, k, ) =

4 = r. .

Neither Eq. (3) nor Eq. (4) include the possibility that
some of the excited particles/holes can Pauli block other
particles/holes, though for the simple particle-hole con-
figurations that we consider this effect can be safely ig-
nored. As expected from symmetry, the density of states
with linear momentum, p(p, h, E, K), is independent of
the direction of the total momentum K and depends only
upon its magnitude. The dimensions of the state densi-

ties with linear momentum are MeV (MeV/c), and
they obey the relation

p(p, h, E) = p(p, h, E, K) 47r I~ de. .

For nuclear excitations with large numbers of par-
ticles and holes, the dimensionality of the state den-
sity integrals becomes too high for their practical so-
lution. However, we shall consider particle emission
from only the first two preequilibrium stages since these
dominate the preequilibrium spectruin for most nucleon-
induced reactions. Thus we naust evaluate the state
densities for lpln, 2pl6, 2p2h, and 3p2h excitations.
The p(lp, lh, E, K) density requires the solution of a, six-
dimensional integration, which can be solved analytically
using the techniques shown in Ref. [17], giving

p(lp, lh, E, K) = x &K 2mE
0

I~min & I~ & I~1

if K& &I~ &I~&,
otherwise,

or I~& & K & I~

where

A;. = 2n~E+ k~ g k~,

Ki =
2

(k~F —mE) p 2k~ k~~ —2mE

The high dimensionality of the integrations for the evaluation of the more complex state densities can be reduced by
breaking up the integrals, making use of analytic solutions for simpler configurations. For instance, the p(2p, 2h, E, K)
requires a twelve-dimensional integration, though it can be expressed as a convolution of two lplh state densities,
each of which is known analytically, so that

p(2p, 2h, E, K) = 1

~ ~

p(lp, lh, Ei, Ki) p(lp, lh, E —Ei, K —Ki) d Ki dEi,

which, by symmetry, can be reduced to a three-
dimensional integral and can be solved numerically with-
out any difhculties. We checked that when the state den-
sities with linear momentum are integrated over all total
momenta [using Eq. (6)] they yield the Fermi-gas state
densities without linear momentum of Eq. (3).

From Eq. (2) it is clear that the angular distribution of
emitted particles from a preequilibrium stage arises from
phase-space factors. For a given pa.rticle emission energy,
the various emission directions result, in different total
momenta being transfered to the residual nucleus, with
corresponding different accessible state densities. Thus
the angular distribution of emitted particles from the
n = 3 stage (i.e. , single-step scattering) is given by the
variation of p(lp, lh, E —en, K —kri) with the emission
angle. The angular distribution that we obtain using
lplh state densities according to Eq. (7) is identical to
that found by ICI& [8] for single-step quasifree scatter-
ing from a noninteracting Fermi-gas nucleus. An inspec-
tion of the physics involved suggests that this result is to
be expected since our exciton model, and the quasifree

scattering model of KK, both conserve linear momen-
tum and energy in a Fermi-gas nucleus. Furthermore,
the expression used by KK for single-step scattering uses
a basic free-space nucleon-nucleon cross section which is
isotropic, so that all the angular dependence arises im-
plicitly from phase-space factors, as done explicitly in
our approach. The similarity of our exciton model with
KK's approach can be most clearly seen in the work of
Chiang and Hiifner [18], who use the KI& scattering func-
tion to calculate single- and double-step quasifree scat-
tering. Their expressions for the single- and double-step
scattering use nuclear response functions [20] for a, non-
interacting Fermi gas, which are directly proportional to
our lplh and 2p2h state densities with linear momentum.

In Fig. 1 the variation of the residual nucleus lplh and
2p2h state densities [Eqs. (7) and (10)] with emission
angle is shown for the reaction iV(n, n') for an inci-
dent energy of 26 MeV and emission energies of 14.5 and
18.5 MeV. These densities are strongly forward peaked
due to the variation of the state density with the linear
momentum deposited in the residual nucleus. This for-
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FIG. 1. The variation of the 1plh and 2p2k state densities
with emission angle for the residual nucleus in the reaction

W(n, n') The inc.ident energy is 26 MeV, and the emission
energies are e„i=14.5 and 18.5 MeV.

ward peaking decreases with increasing exciton number
as the linear momentum brought in by the projectile is
shared among more particles and holes and the memory
of the incident direction is lost. Since the angular distri-
bution of emitted particles comes from the variation of
the residual-nucleus phase space with emission angle, no
preequilibrium emission from the n = 3 stage can occur
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FIG. 2. Angular distributions for 14.5 and 18.5 MeV neu-
trons emitted in the reaction AV(n, n'), induced by 26 MeV
neutrons. At these emission energies the equilibrium emission
contributions were found to be negligible. Shown for compar-
ison are quantum mechanical FINK calculations and experi-
mental data, taken from Marcinkowski et al [3]. .

FIG. 3. Spectra of protons emitted at a number of an-

gles in the Fe(p, p') reaction induced by 62 MeV protons,
compared with experimental data. [25]. The full line shows
the sum of n = 3 and n = 5 preequilibrium emission in our
model, and the dash-dot line includes the equilibrium emis-
sion contribution.

for angles greater than about 110'. This is a kinemat-
ical eAect resulting from the restrictions of energy and
momentum conservation and is also seen in Refs. [8, 15].

For the calculation of nucleon emission cross sections
we used I&albach's parametrization [21] for the transi-
tion rates to more complex configurations, A+, which
was originally determined without linear-momentum con-
siderations. This is reasonable since we found that A„,
obtained by integrating Eq. (2) over all angles and en-
ergies for neutrons and protons, agreed to within 5'%%uo

with the value obtained when linear-momentum eA'ects
were not included. Also, this integral did not diA'er sig-
nificantly from its value obtained using the traditional
Ericson equidistant single-particle level state densities,
corrected for a finite nuclear well depth. The neutron-
proton distinguishability factor R(p) [22] in Eq. (2) is

consistent with the above parametrization [23]. The re-
action cross sections in Eqs. (1) and (2) were determined
using the Becchetti-Greenlees optical potential [24], and
we took the Fermi energy to be 35 MeV.

We have determined angular distributions for 14.5 and
18.5 MeV emitted neutrons in the reaction ts44V(n, n')
induced by 26 MeV neutrons. Our results are shown in
Fig. 2 and it is evident that the observed forward peak-
ing in the data is accounted for in our model, though
we underpredict the data at backward angles. Neutron
emission from the n = 3 stage dominates scattering in the
forward direction but does not contribute beyond 110',
whereas n = 5 emission covers all directions but, is too
weak to account for the backward-angle data. This un-
derprediction was also seen in Refs. [9—11] where the
KI& quasifree scattering kernel was used in semiclassical
preequilibrium models, and results from the absence in
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our model of effects such as diA'raction of the nucleons
in the mean-field nuclear potential [10, ll]. It is beyond
the scope of the present work to include such eA'ects,
which really require a quantum mechanical treatment, .
The dashed line shows a quantum mechanical calculation
of the neutron scattering cross section using the FKK
theory [3] which uses the distorted-wave Horn approxi-
mation1 and with single- and double-step scattering the
theory describes the angular distributions well. In Fig. 3
we show the proton emission spectra at five diAerent an-
gles for the reaction 4I"e(p, p') induced by 62 MeV pro-
tons. For low emission energies we have included the
equilibrium emission contribution (reduced due to the
reaction flux lost through n, = 3 and n = 5 preequi-
librium emission), determined with the Hauser-Feshbach
code GNASH [26]. The shapes of the spectra. generally
agree fairly well with experiment, but again we under-
predict the backward-angle data. V~e also determined
the angle-integrated spectrum and found that it describes
the data well (since the backward-angle cross section is a
minor fraction of the total preequilibrium cross section),
and have compared it with. an exciton model calculation
using Fermi-gas state densities which do not include lin-
ear momentum, from Eq. (3). We found differences of
less than 5%, indicating that it is not necessary to in-

elude linear-momentum eKects when determining angle-
integrated spectra.

In summary, the inclusion of linear momentum eKects
in an exciton model is able to explain the forward-peaked
angular distributions observed in preequilibrium decay.
The state densities with linear momentum that we de-
velop can be calculated simply for the preequilibrium
emission processes of physical importance, and the angu-
lar distributions which they yield are identical to those
seen in KE4 quasifree scattering. We have, therefore, pro-
vided a link between exciton model and quasifree scatter-
ing descriptions of nuclear reactions, and have provided
further justification for the commonly adopted procedure
of using a KK scattering kernel in an exciton model. Al-
though most groups have used such a kernel with an ex-
citon model based on equidistant rather than Fermi-gas
states, we expect the errors introduced by this procedure
to be small.
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