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Orbital 1+ strengths from self-consistent deformed mean field calculations

E. Garrido, E. Moya de Guerra, P. Sarriguren, and 3.M. Udias
Instituto de Estructura de la Materia, Consejo Superior de Inuestigaciones Cientigcas,

Serrano 119, 98006 Madrid, Spain
(Received 16 July 1991)

We present results for summed orbital 1+ strengths in Sm and Nd isotopes obtained from deformed
Hartree-Fock +BCS calculations, using a microscopic formulation of the scissors mode (the PHFB
model) that excludes spurious contributions. It is found that the calculated 1+ strengths for the
two chains of isotopes are proportional to b and that the summed strengths up to 4 Mev are
in fair agreement with experimental data. It is also found that when pairing is neglected the total
scissors mode strength is proportional to b rather than to b . Analytical expressions are given for the
explicit dependence on the deformation parameter with and without pairing, valid for the anisotropic
harmonic oscillator model.

In 1984, the first observations of low-lying 1+ exci-
tations in even-even deformed nuclei were reported [1].
Since then, much work has been devoted to understand-
ing their nature, not only in rare-earth nuclei [1, 2] but
also in the s, d and p, f shells [3], and the uranium re-
gion [4]. A variety of experimental probes have been
used (electrons, protons, 7's) and many theoretical mod-
els have been applied, as reviewed in Ref. [5]. The dis-
tinctive feature of these excitations is that they are seen
in electron but not in proton scattering, so they are pri-
marily of orbital rather than spin-Rip type. Since both
the rigid rotor model [6] and interacting boson model
(IBA) [7] had predicted the existence of a scissors mode,
these 1+ excitations were interpreted as examples of such
a mode.

In Ref. [8] a doorway state

l@i &= —& J,' & J+—& J.' & J+ ICu &

&(MI) t-.=, "
S iv (2)

with & J' ) (=& J~ & + & J„))the mean value of the
total angular momentum operator squared in the intrin-
sic ground state CQ,

was proposed as the microscopic formulation of the scis-
sors mode predicted by the two-rotor model [6]. In Eq.
(1) ICQ & represents the deformed ground-state Hartree-
Fock-Bogolyubov (HFB) wave function, and I@i & is
constructed to be normalized to one and orthogonal to
the spurious state !4i )=& J ) ~ 1+!@0). As-
suming a pure orbital mode the M1 strength is given by
[8]

where v~ is the occupation of the single particle state 0,

in the deformed HFB mean field, ( u~ = 1 —v2), and the
sum over nP extends over all two-quasiparticle states for
neutrons (p = v) or for protons (p = n).

As in Ref. [8] we refer to this model as the PHFB
model because it is inspired by —and makes use of —the
angular momentum projected HF (or HFB) formalism
I:91.

In Ref. [8], it was found that this model predicts a
much larger 1+ strength for i5sGd than had been exper-
imentally observed. The B(M1)t'„value obtained for

Gd was 7+, similar to the values obtained by Hilton
[10] from QRPA calculations, while the reported experi-
mental Ml strength 1.3 + [1] was closer to the IBA
prediction (2.8 piv) [7]. It was therefore suggested that
the scissors mode may be fragmented over a rather ex-
tensive energy region.

A very interesting observation is that in the Sm iso-
topes, the total M1 strength up to 4 MeV is measured to
be proportional to the square of the deformation param-
eter [11]. In this paper we will demonstrate that such a
dependence can be explained by the PHFB model. We
will first show this by detailed calculations, and then in-
terpret these results in the framework of the anisotropic
oscillator model.

(1) Table I contains our results for Sm and Nd isotopes,
from HF+BCS calculations using the Skyrme III inter-
action and constant gap parameters. We show the total
scissors mode strength [as given by Eq. (2)] as well as the
strengths obtained when the sum over two-quasiparticle
excitations in Eq. (3) is restricted to energies up to 4
MeV (E* & 4) and up to 6 MeV (E* & 6). Also shown in
the table are the observed strengths from Ref. [11]. Our
calculated quadrupole moments and mass quadrupole de-
formation parameters P are shown in columns 4 and 5.
The experimental quadrupole moments from Ref. [12]
are shown in column 6. As can be seen in the table,
the results for quadrupole moments are in good agree-
ment with experiment except for the spherical isotopes
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TABLE I. Pairing gap parameters and results for Sm and Nd isotopes for mass quadrupole deformation parameters P, charge quadrupole
moments, mean values of the angular momentum squared for protons and neutrons and Ml strengths (see text). Experimental quadrupole
moments are from Ref. f12] and experimental summed M1 strengths are from Ref. [11].

MeV MeV

qth.
0

fm

exP.
0

fm
a(M1)y, ,

Total R & 6 E (4
ZB(M1) i'exp B(M1)1 c ~—o

'44Sm
'4'Sm
'50Sm
152s
154s
142 Nd
146Nd
148 Nd
150Nd

1.23
1.33
1.44
1.22

1.39
1.05
1.12
1.05

1.19 1.38
1.35 1.06
1.44 1.19
1.12 1.20
0.88 0.98

0.005
0.138
0.202
0.269
0.304

0.015
0.145
0.192
0.249

9.9
290
428
578
654

32.2
293
388
511

163.6 (2.4)
269(6)

368.4(4.1)
588.1(3.4)
662.0(3.8)
164.8(2,4)

276(5)
372.5(4.0)
525.8(3.8)

0.064
12.08
23.65
43.47
56.22

0.365
12.66
20.22
35.56

0.051
18.12
32.91
57.73
79.87

0.228
18.80
30.59
53.17

0.03
1.81
2.91
5.09

0.00
1.21
1.84
3.21

0.00
0.94
1.06
2.33

0.01 0.00 0.00
1.73 1.17 0.86
3.29 2.03 1.25
5.92 3.63 2.53
7.88 5.07 3.41

0.28 + 0.10
0.51 + 0.08
0.97 + 0.06
2.35 + 0.11
2.65 + 0.15

0.02 + 0.01
0.72 + 0.06
1.12+ 0.09
2.12 + 0.11

0.01
5.39
6.59
9.72
10.44

0.05
5.68
6.45
9.73

144Sm and 2Nd for which the procedure used in Ref. [12]
for extracting intrinsic quadrupole moments from B(E2)
strengths is questionable. In addition we also show in
the last column of the table the results obtained for the
total scissors mode strength when pairing is neglected
[B(MI)t'- ~=o].

Several interesting features are seen in this Table: (i)
B(M1))so is considerably reduced when one takes into
account only low energy two-quasiparticle excitations,
getting very close to the experimental M1 strengths for
E' & 4 MeV. (ii) The total scissors mode strengths as
well as B(MI)t', o for E' ( 6 MeV or E* ( 4 MeV are
proportional to P . (iii) When pairing is neglected, the
total B(Ml)t'„strengths are considerably larger and are
no longer proportional to P2 but tend to be proportional
to P. These results are further illustrated in Fig. 1 where
we also plot the available experimental data, and in Fig.
2 where we compare the total scissors mode strengths
with and without pairing.

The large difference (roughly a factor 2) between the
calculated total scissors mode strength and B(M1) 'tso

for E' & 4 MeV, is due to the fact that there are many
small contributions to Eq. (3) from two-quasiparticle nP

~ I I I 1 I ~ ~ ~ $ I I ~ I ~ I I I I / ~ ~ ~ ~ f ~ I I ~ / I 1 ~ I8 Q

B(M1)-
6.0—

4.0

~ 0 ~ l ~
Nd
Srn

states at higher excitation energies (up to E' 25 MeV).
For the deformed isotopes the stronger contributions to

& occur always in the range 2 MeV ( E' ( 4 MeV.
Results for orbital and spin strengths of each individual
nP contribution as well as their spectral distributions
and form factors will be presented and discussed else-
where [13]. However it is also interesting to see that the
main features mentioned above, that result from involved
calculations, can be understood in the light of a simpler
model. To this end we discuss in what follows the results
for the anisotropic harmonic oscillator (Ho) model.

(2) In the anisofropic IIO the single-particle states
o. are characterized by the cartesian quantum numbers
(n, n&, n, ), with X = n + n„+ n, the major shell
quantum number of the state n. We assume axial symme-
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FIG. 1. Experimental and theoretical summed 1+
strengths up to 4 MeV for Sm and Nd isotopes plotted versus

P . The straight lines are least-square fits.

FIG. 2. Theoretical total scissors mode strengths with

(a) and without (b) pairing versus deformation (see text).
Strengths for Sm isotopes are divided by two.
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try (id = wz g td, ) and pair filling, i.e. , each (n, n„, n, )
level is equally occupied by two (spin up and down) nu-
cleons.

To simplify the discussion we assume equal prolate
deformations for neutrons and protons and define the
deformation parameter b = 3QO/ (4 & R )). Using

R~ )= ha;/Mid; together with the self-consistency
condition [14] o~cu = o&uz —o, id, = oooo, where
or; = Q ns (n; + z) (i = z, y, z), gives at the equilibrium
deformation b for the ground state !40 &

m,
' = 0,' (I + -', b), o„' = ~,' (1 ——,'b),

(4)

= (do (1 + sb), id& —ido (1 —sb)

For N=Z wehave &J2) =2& jz&=2& J2)
and the scissors mode strength in Eq. (2) is simply given
by B(M I) 1'« —(3/16m) & J2 ). Then to analyze the
properties of the scissors mode we have only to study the
behavior of & J ). In this simplified model the nonzero
matrix elements contributing to Eq. (3) are

n, —1 n„+ I'! I~ !n~ n, n„)= . [n, (n„+ 1)]' ',
2i

& n~ n~+ 1 ns+ I! l~ ~n~ n, ns )
=

2,. [(n. +1)(n~+1)]"' (6)

and their Herrnitian conjugates, with P+ = +id&/id, +
z Vy-

Hence we see that there are two types of contributions
to & J ): (i) Contributions from single-particle states
nP with equal major shell quantum numbers (1V = Np).
These contributions are proportional to (P+)2 and in-
volve single-particle excitations !e —cp! = h(u„—u, ).
(ii) Contributions from single-particle states nP with
major shell quantum numbers differing by two units
(Kp = N~ + 2). These contributions are proportional to
(P ) and involve single-particle excitations !e —hp! =
h(tdz + u, ). We therefore write & J ) = & j &i +
& J &~ with

(J &2—2

) c., ! & p! ~. !~&!',
np

)
(N =K)) )

ap

b= )P+)'(e* —e.) = 4ee~ (~ ——i, (~)

& J' &&t&,~=(P )') i)' (n, +n„+1)
= (P ) (o, + o„) = 2oob2 .

In this limit the total M1 strength is proportional to b, to
lowest order in the deformation parameter. In addition
one can see in this simplified model that the total PHF
strength will be fragmented in two peaks: (i) A low en-
ergy peak at Ei hidob ( 3 MeV, for typical values of
Leo and b) with strength proportional to b, B(M1)t„=
(3/16m) & j )i (3/4+)aob, which is analogous to that
considered in Ref. [15], and is built from degenerate 1p-
1h states with (e —ep! = Ei. (ii) A high energy peak
at E2 2huo ( 20 MeV) with strength proportional to
b, B(M1)f„=(3/16m) & J2 )p (3/8)r)oob, which is
built up from degenerate 1p-1h witll )E —tp! = E~.

Hence this model is useful to understand the fragmen-
tation of the scissors mode into low energy and high
energy modes [16]. It is also useful to understand the
dependence on b observed in Fig. 2(b) when pairing is
neglected.

To understand the dependence on 6 observed in Figs.
1 and 2(a) we have to take pairing into account. To see
that, we write the occupation coeKcients 4 p as

(~- —~~)'
(1 —P ~)4E Ep

where E = )/(e —A) +4' end

I et us first consider the case of no pairing (b, = 0).
In this case C p is zero when a and P are both above
(below) the Fermi level (A), and 4 p = 1 for n below
and P above the Fermi level (or vice versa). This gives
for ( J' » and & J' &2

& j ),(~,)=(p+) ) i (n, —n )

(E E )2 p2

P~p —
~ 2 ~

1 + +'''
(e —ee) e e+h +& (e ~~e~~e)

with e„p =
2 (~ + ep) —A and E =

2 (e —cp). We
notice that 0 & P~p ( 1 and that for fixed E and L the
dominant contributions to ( J~ & come from terms for
which e p

——0 [P p ——0, 4 p
—E /(E + A )], i.e. , from

single-particle levels n and P that are equidistant from

the Fermi level.
Let us first consider & J &2. In this case 2E

!ep —e ! = Es 2huo and neglecting terms of the or-
der (b,b/hcdo) we find that C p 1 for e & A, e'p & A

(or vice versa) and I' p 0 otherwise. Therefore for
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& j )2 we recover the result in Eq. (9) up to terms of
the order (Ab/hioo), and & j2 )2 is again proportional
to b~.

We now consider & j )i, for which 2F = ~ea —ep~ =
Ei hioo6, and substitution of Eqs. (10) and (5) into
Eq. (7) gives

(12)

Here the sum is restricted to nP states with Np
N, nt = n, —1, n~ = n„+1. In Eq. (12) we

clearly see that & J )~ is now proportional to 6 too.
Indeed the term under the sum decreases as e~p increases
and has only a weak dependence on b. This can be easily
seen from the fact that as e p increases, P p goes to 1
and E~Ep increases as ~ p.

Hence when pairing is taken into account each two-
quasiparticle nP contribution is proportional to b2, and
so are the total or partial summed strengths obtained
from Eq. (2). In addition the two peaks at Fi and Ez,
found for the case of no pairing, are further fragmented
because now each nP pair contributing to & j2 )i or
& J )~ occurs at a diA'erent energy E'& ——E + Ep,
and one can expect to see fragmentation in the low energy
region too.

In conclusion we have found that the PHFB model
with effective Skyrme interactions gives for Sm and Nd
isotopes B(MI)]'„strengths that are proportional to the
square of the deformation parameter, and that are in fair
agreement with the observed summed strengths for two-

quasiparticle excitations up to 4 MeV. Fair agreement
with experiment is also found for quadrupole moments.
Though spin-orbit eKects are important in these realistic
calculations, the main features of the. results can be qual-
itatively understood with a simple anisotropic harmonic
oscillator model without spin-orbit. With this simpli-
fied HO model one can see analytically how B(MI)$„
depends on deformation. One can also see analytically
the important role that pairing plays, particularly in the
fragmentation and b2 dependence of the strength at low

energy. The detailed energy distribution of the total Ml
strength is modified when spin-orbit and residual inter-
actions are taken into account [13, 16, 17]; however, the
trend found for the HO of dependence on b~ when pair-
ing is taken into account (or on b when there is no pair-
ing) persists in realistic calculations of total or partial
summed orbital strengths, as seen from the results shown
in Figs. 1 and 2. Since in our description this feature
appears to be a general property of deformed nuclei, it
would be interesting to test experimentally whether this
behavior is also observed in other isotopic chains.
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