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Starting from a relativistic Lagrangian we derive a “conserving” approximation for the description
of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner
scheme. The saturation point of the equation of state calculated agrees very well with the empirical
saturation point. The conserving character of the approach is tested by means of the Hugenholtz—
van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for
compression modulus is derived, K = 310 MeV. Also we calculate the occupation probabilities at
normal nuclear matter densities by means of the spectral function. The average depletion « of the

Fermi sea is found to be k ~ 0.11.

I. INTRODUCTION

The theoretical microscopic description of nuclear mat-
ter is a long-standing problem. The relative simple struc-
ture of the system, as compared to finite nuclei, allows
one to focus especially on the differences between the
various schemes proposed to calculate the properties of
the system. Quantities like binding energy, saturation
density, compression modulus, momentum distribution,
and single-particle potential are typical examples of such
observables. The complexity and strength of the nuclear
interaction render a simple perturbation expansion use-
less and ask for a more sophisticated approach.

One can distinguish between phenomenological ap-
proaches and microscopical models. In a phenomeno-
logical approach, like, e.g., the o-w model of Serot and
Walecka [1], one constructs an effective theoretical frame-
work for the description of the many-body system. The
free parameters are fixed by reproducing some of the
known empirical properties, in the case of the o-w model
the empirical saturation point. One is then able to pre-
dict the binding energy for all densities and, e.g., also the
compression modulus. The latter quantity is not in very
good agreement with known values and demonstrates the
weakness of this approach.

Microscopic models are more ambitious in their aims.
One starts with a “realistic” interaction, i.e., an inter-
action that reproduces the known nucleon-nucleon inter-
action data like phase shifts and the deuteron proper-
ties. By the use of a well-defined many-body scheme,
the properties of the nuclear matter system are calcu-
lated. Then the comparison with the empirical data will
decide whether the model is succesfull or not. However,
the interaction, although fairly well known, cannot be
determined uniquely, neither is the many-body scheme
unique. Since the results are an interplay of the scheme
and interaction employed, it is impossible to discriminate
between the interaction or the scheme being wrong in the
case the model fails to describe the empirical data. The
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most sensible approach is to calculate many physical ob-
servables within the same model. Also one should try and
place the model on a firm theoretical basis: It should be
clear what the physical implications of the approxima-
tions involved are. Then the model can be judged by
evaluating the severeness of the approximations involved
and by comparing the whole set of calculated observables
with the data. A succesfull description of the saturation
properties can only provide a motivation for a calculation
of other observables.

At present two main approaches are used. On one
hand, the variational approach pioneered and pursued
by Fantoni and Pandharipande [2]. On the other hand,
the Brueckner/Green’s-function approaches, e.g., used by
the Liége group [3] and the Bonn group [4]. The Brueck-
ner scheme can be related to the Green’s-functions ap-
proach by the hole-line expansion [3, 5] and turns out to
be the first order in the hole-line expansion. The hole-
line expansion provides a tool for a systematic study of
the validity of the Brueckner scheme.

The failure of the (nonrelativistic) Brueckner-type cal-
culations to reproduce the empirical saturation point has
focused nuclear matter calculations on this very point.
The saturation points obtained using various potentials
form a “Coester band” [6], the position on the band de-
pends on the strenght of the tensor force of the interac-
tion used. Inclusion of higher-order diagrams showed no
significant improvement [7]. This led to the conclusion
that it was impossible to reproduce the empirical sat-
uration point in nonrelativistic Brueckner theory with-
out the inclusion of genuine three-body forces. Incorpo-
ration of relativistic effects into the Brueckner scheme,
first pursued by Celenza et al. [8] later followed by other
groups [4, 9, 10], did give an improvement. The rela-
tivistic Brueckner Hartree-Fock model gave a saturation
point and compressibility compatible with the data. The
relativistic aspects included were (a) the proper kinemat-
ical factors, (b) the explicit Lorentz structure of the self-
energy, and (c) the use of “effective” spinors. This ap-
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parent success is the motivation for the calculation of
other nuclear matter observables. It also prompted us
to investigate further the theoretical basis of the model.
As we demonstrate later on, the latter will lead to the
conclusion that one has to go to all orders in the hole-
line expansion to preserve important and very general
properties of the system.

Only in more recent years results of other nuclear
matter properties calculated within the nonrelativistic
Brueckner scheme, like the nucleon momentum distribu-
tion [11-13], have become available. Recently first inves-
tigations within the Green’s-function approach into the
nuclear spectral function were carried out [14]. Also the
variational results on this subject are of a recent date [2,
15]. Within the relativistic Brueckner scheme no results
are available yet, apart from the estimate by Jaminon
and Mahaux [16] of the occupation probabilities. The
present work includes a full calculation of the momen-
tum distribution by means of the spectral function.

In this paper we will subject our relativistic many-
body model to an additional constraint, namely, that
the model should be conserving [17]; i.e., the extension
of the many-body scheme to a nonequilibrium situation
should conserve, e.g., total energy, momentum, and par-
ticle number. The next section is devoted to a derivation
of the model from first principles. We will propose a pre-
scription that is conserving and contains the Brueckner
scheme. It will turn out, however, that the approach is
equivalent to going to all orders in the hole-line expan-
sion. The first part of the third section contains results on
the equation of state and related quantities. In the sec-
ond part of the third section we will calculate a relativis-
tic spectral function and obtain with this the momentum
distribution in nuclear matter at saturation. The last
section is a summary of the results.

II. FORMALISM

The following subsections are a brief overview of the
underlying formalism of our calculations. For a thorough
account of the material presented in sections A and B we
refer to Ref. [18].

A. Preliminaries

Our starting point is a relativistic Lagrangian contain-
ing nucleons and mesons. The nucleons are treated as
pointlike particles so form factors need to be introduced
to cut off the short distance behavior of the interaction.
The free parameters of the Lagrangian are fitted to N-
N scattering data [9]. This was achieved by solving the
three-dimensional (Thompson) reduction of the Bethe-
Salpeter equation using a one-boson-exchange interac-
tion corresponding to our initial Lagrangian. The Euler-
Lagrange equations of this system are a coupled set of
equations for both the nucleon and meson fields. By in-
verting the meson fields one can eliminate these, thereby
introducing an interaction Vj2 of the one-boson-exchange
type.

In this paper we will discuss results for nuclear mat-
ter in equilibrium based on an approximation which re-

spects causality, analyticity, conservation laws, and gen-
eral thermodynamic relations. It will be constructed
as the (static) equilibrium limit of a more general (ki-
netic) nonequilibrium theory. The latter will be obtained
through the so-called T-matrix approximation. This ap-
proximation is very reminiscent of the three-dimensional
Bethe-Salpeter treatment mentioned above, and it coin-
cides with it at zero baryon density. The general (time-
dependent) nonequilibrium framework (which is reviewed
in Ref. [18]) will allow us to specifically check whether the
approximation used does not violate any of the afore-
mentioned principles. The approximation discussed here
(the T-matrix approximation) is but one example of a
particular truncation in the hierarchy of Green’s func-
tions which describe the N-body dynamics. Therefore it
falls into the category of kinetic theories. Such a kinetic
theory will obey the second law of thermodynamics; i.e.,
the change in entropy is always positive. This implies
that the time development of the many-body system as
described by the kinetic theory has a specific direction
in time. This in contrast to the Lagrangian which is in-
variant under time reversal. So somewhere in the deriva-
tion of the kinetic theory the time-reversal invariance is
removed. Consequently, we have to treat carefully the
dependence of the nucleon field operators on the tempo-
ral development of the system to incorporate this in a
proper way.

An elegant and transparent way of dealing with this
problem is defining a Keldysh contour [19]: a time path
running from —oo to co and then backwards from oo to
—oo (Fig. 1). The algebra on the contour has a simple
matrix structure and keeps track of the time dependences
in a transparant way. When a field develops chronologi-
cally in time it is on the upper branch, when it develops
achronologically in time it is on the lower branch of the
contour. On the contour we define an ordering P such
that a field operator which is “later” on the contour is
put to the left of earlier ones, including the appropiate
sign changes associated with the (anti)commutation re-
lations of the fields. This order operator enables us to
define the path-ordered n-body Green’s function [a 1 de-
notes the coordinates in space time (t1,&1), convention-
ally § = $1]

G(1..n,1"..0') = (=)™(P [¢(1) - - - p(n)¥(n') - - - H(1)]).

(n

Complex t plane

L

FIG. 1. The Keldysh time contour.
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Due to the nucleon field equations these n-body
Green’s functions form a Martin-Schwinger hierarchy
of equations, linking lower-order Green’s functions to
higher-order ones. The purpose now is to truncate this
hierarchy at a certain level in such a way that the result-
ing transport equation still obeys the conservation laws
appropiate to the many-body system; i.e., the approxi-
mative equations governing the system should conserve
quantities like total number, energy, and total momen-
tum. The criteria for such a “conserving” approximation
were first developed by Baym and Kadanoff [17].

To connect the path-ordered Green’s functions to the
conventional ones let us consider the one-body Green’s
function. The two fields have four distinct relative posi-
tions on the time contour and can be ordered in a 2 x 2
matrix (such a matrix is indicated by a bold capital; a
“4+” denotes a time on the upper branch, a “~” a time
on the lower branch):

’ G 1’1' G- 1’1I
G(1,1) = (afif1 1’;GJ:_EL 1’3)

G(1,1') G<(1,
= (G>((1,1’)) G“((l,l')))’ )

with
G*(1,1) = —i(T [%(1)$(1)]),
G*(1,1) = —i(T [%(1)$(1)]),

G<(1,1') = @1 YD),
G~ (1,1") = —i(y(1)%(1")).

®3)

T and T are the chronological and antichronological
time-ordering operators, respectively. The Green’s func-
tions we defined are the causal, acausal, and the two
correlation Green’s functions, as can be found in, e.g.,
Ref. [20]. With these we can define the retarded and ad-
vanced Green’s functions, which will turn out to be the
most convenient ones to use later:

G (1,1)=G°(1,1) — G<(1,1')
=0(t, — t1)[G”(1,1") — G<(1,1')],

(4)

G)(1,1) =6°(1,1) - G>(1,1')
=—0(ty — t1)[G” (1,1") — G<(1, 1")].
Only two of the total set of different Green’s functions
are independent, so we only need two Green’s functions
(or combinations) to describe the system completely. A

particular important combination of two Green’s func-
tions is the spectral function

A(L 1) = i(GH —=G)) = i(G> - G<) = {(1'), p(1)},
(5)

where {, } is the anticommutator. Letting ¢; approach
t1+ we obtain the equal-time anticommutator of the fields,
and we have the property

lim A(1,1') = v°83(z; — zy). (6)

Ty —tys

In momentum space this relation takes the form of a
sum rule, which we will encounter later on.

Let us now examine the Martin-Schwinger hierarchy
as defined on the contour. Its first equation, linking G,
to Gigz, is given by

D(]., ].I”)Gl(].”,, 1/)

=6(1—1") —i(12[V12]172")G12(172",1'2%F). (7)

The indices 1”,1,2, and 2" are summed and inte-
grated over. For the 2 variable this amounts to a trace.
D(1,1') is the differential operator associated with the
Dirac equation, § is the é§ function generalized on the con-
tour [18]. Vi, is the one-boson-exchange interaction on
the contour [18], 2% indicates a time infinitesimally later
on the contour than 2. The self-energy (mass operator)
3 has the same time structure as G, its components are
put in a 2 X 2 matrix in the same way as G;. Equation
(7) suggests the definition

2(1,1")G1", ') = —i(12|V12|172")G(172",1'2+).
(8)

Again the indices 1”,1”,2, and 2" are integrated and
summed over. Inserting this definition into Eq. (7) leads
to the Dyson equation for the one-body Green’s function
(again in matrix form, suppressing the indices)

G = Go + GoXG, (9)

where Gy is the noninteracting one-body Green’s func-
tion, the solution of Eq. (7) with V5 set to zero.

B. Truncation of the hierarchy

From the above it follows that an ansatz for Gy, de-
termines ¥ and consequently G;. When expressing G2
in the one-body Green’s functions, the Martin-Schwinger
hierarchy is truncated. To be consistent it has also to ful-
fill the requirements for a conserving approximation as
given by Baym and Kadanoff [17]. These imply keeping
the proper symmetries for G and using the approximated
“dressed” Green’s function in all expressions; i.e., one has
to solve the emerging equations self-consistently. Besides,
the specific ansatz should respect the particular time be-
havior of the equations and the quantities which obey
these equations. For instance from Eq. (9) one can de-
duce Dyson equations for the retarded, advanced, causal,
and acausal Green’s functions. However, the proposed
ansatz for ¥ might violate these time-ordering proper-
ties which in general are guaranteed in the theory. As
a consequence, if one affects these properties one will
destroy important relations such as dispersion relations
that follow directly from the retarded or advanced time
behavior in the Fourier-transformed space.

In the particular ansatz the physical properties of the
system under consideration have to be reflected. When
three-body forces are present one certainly has to incor-
porate Gja3 in the ansatz for G13. In our model we have
a two-body interaction and we will restrict ourselves to
expressing Gz in Vi3 and G;. The simplest choice is
taking for G5 the antisymmetrized direct product of two
one-body Green’s functions, then we obtain the Hartree-
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Fock expressions for the self-energy. However, the result-
ing transport equation does not contain a collision term
and thus will not be able to describe nuclear matter in
nonequilibrium.

Also the range of the interaction has to be consid-
ered in the particular ansatz. A long-range interaction,
like the one in the electron gas, has to be treated with
a truncation scheme that has the characteristics of the

random-phase-approximation approach. In the case of
J

(12|T12|12") = (12| V12]12) + i(12|V12[172")G1 (17, 1")G4(2", 2" ) (12" | T12|1'2"),

where the indices 1”,1’7,2”  and 2"’ are integrated and
summed over. From this definition we find a relation
between G, and G, upon inserting this in Eq. (8) we
find for the self-energy
2:(1,1) = —i(12|T12|1'2') G, (2, 27). (11)
Again the indices 2 and 2’ are integrated and summed
over. So by making the T-matrix approximation we have
defined all the necessary quantities in terms of the one-
body Green’s function. The theory consists of a set of
coupled equations, Egs. (9), (10), and (11), in 2 x 2
“Keldysh space,” that has to be solved self-consistently.
When we write out the matrix content of the equations
explicitly in terms of causal, acausal, and correlation
components we end up with a set of complicated equa-
tions. Only when we take the retarded and advanced
components we have formally a simple set of equations:

o) = g 4 g B ®),
@ = —i(Tg5 + T5957),
TS = vip + iV12(g1y2)(i)T1(zi)>
TS = T gt 95T

(12)

The specific form of the propagators g®), ¢g<, ¢>, and
(9192)@) will be given below. The full set Eq. (12) cor-
responds to a conserving approximation. Any additional
simplification may affect the proper time structure and
will destroy this important property. As we will discuss
later on, the conventional Brueckner scheme, which is
such a simplification, is not conserving.

In this set of equations contributions of negative-
energy states are still present. A proper treatment of
these would mean a renormalization scheme within the
T-matrix approximation. To our knowledge such a renor-
malization scheme within the 7T-matrix approximation
has, up to now, not been proposed. While there are
physical arguments why to use the 7T-matrix approxi-
mation when including only positive-energy states, it is
questionable whether the T-matrix approximation pro-
vides the most important diagrams when one does in-
clude negative-energy states. So we will take a pragmatic
viewpoint and omit the negative-energy states, taking
X)) = 0 in the vacuum. By fitting the scattering ma-
trix T(+) to N-N scattering data we can assign to the
coupling constants and meson masses their physical val-
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the nucleon-nucleon interaction short-range correlations
induced by the hard core are most important. This con-
sideration led to the classical Brueckner scheme of sum-
ming all ladder diagrams to “soften” the hard core of
the interaction. A conserving ladder-type approximation
is the T-matrix approximation. As we will see later on
this approximation is an extension over the conventional
Brueckner scheme; see Ref. [18] for an extensive discus-
sion. The T matrix is defined by

(10)

ues; this fixes all free parameters in the Lagrangian. The
results of this fit are given in Ref. [9]. The fit pro-
vides us with the one-boson-exchange interaction used
in the calculations presented in the next sections. So
by giving the parameters in the Lagrangian their physi-
cal values we have renormalized our theory “effectively.”
In other words, one eliminates (through a projection)
the contribution of negative-energy states in the vac-
uum (no medium, only the bare nucleon-nucleon system)
and treats the resulting equations of motion as an effec-
tive theory. This approximation induces problems when
“switching on” the medium. It seems natural in this case
to restrict ourselves still to a projection on bare postive-
energy states. However, in order to obtain a conserving
approach this procedure is deficient, as can be seen by
inspecting the requirements for a conserving approach,
which rely strongly on self-consistency. Our prescription
therefore is to project on positive-energy effective spinors.
While these are a mixture of bare positive- and negative-
energy spinors they guarantee the conserving character
of the model. In the no-medium limit this leads to the
proper starting point, i.e., bare positive-energy spinors.

Our philosophy is the following: We first define our ap-
proximation in the most general scheme (nonequilibrium,
relativistic) and constrain it such that important physi-
cal laws are not violated. Using this as our basic ansatz
we then simply construct the appropiate limits (equilib-
rium, nonrelativistic). Going the other way has the dan-
ger that one sums in equilibrium certain diagrams which
correspond to a nonconserving counterpart in nonequi-
librium.

C. Relativistic aspects

To examine the content of the set of equations (12)
further we now specify the propagators. In the case of
nuclear matter it is convenient to Fourier transform to
four-momentum space. For the noninteracting propaga-
tors we find the following expressions:

95 (0) = 2mig=[8(po — Bp)O(p; = |PDA* (p)
~8(po + E,)A™(p)],
(13)
93 (p) = —2miz=6(po — E,)0(I5| — p)A* (p),
P

+m
95 (p) = s ?

.m _
2 —m?2 =+ ie + 2”’5‘_?6(1’0 + Ep)A™(p).
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With p the four-vector (po,p), the single-particle en-
ergy Ep, = \/p?+ m2, p;s is the Fermi momentum, and
A*(p) are the usual positive- and negative-energy pro-
jection operators.

The self-energy =(+) can be decomposed in Lorentz
components, in nuclear matter only the scalar and vector
components are nonzero [21]:

W (p) = =P (p) — 1°=H (p) + 7 - T ().

Inserting this in the Dyson equation for g(*) suggests
the following definitions for “effective” quantities:

(14)

m*=m+ Re[2§+)(p)],
5 = po + Re[Z$P ()],
P =p{1 + Re[={P(p)]}.

(15)

Re denotes the real part; note that the effective quantities
are energy and momentum dependent. These definitions
allow us to solve the Dyson equation formally as

+) = 1
= P —m* —ilm(Z(H) + de” (16)
The full propagator is associated with an effective
(“dressed”) spinor, denoted by u*(p). The asterisk indi-
cates the effective character and should not be confused
with complex conjugation. The effective spinor, which
we will use extensively, is defined as the on-shell positive-
energy solution of the “dressed” Dirac equation with the
imaginary part of (1) set to zero.

@*(p)gH(p)u* (p) = I

m* -1
* * . (+) _ +
[po _E +ilm (20 = LR s Lt >)] .
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1
. E*+m*\ 2 -
up(p) = (—p—""> 2P Ixr

Xr is the state vector in spin space. The effective spinors
are normalized according to @} (p) uk(p) = 6.

By using the definitions for g3 and g we find that
in the noninteracting system the spectral function a(p)
is a 6 function of the energy. We project on positive-
(negative-) energy states by taking the spectral func-
tion between positive- (negative-) energy spinors, respec-
tively. A more general treatment of the spectral function
including negative-energy states can be found in Ref. [22].
In the noninteracting case we have

17

a(p) ao(p) u(p) = 27 2-8(p0 — Ey),
P (18)

#(5) ao(p) v(p) = 2wEﬂpa<po + Ep).

In the case of an interacting system we have to isolate
the positive-energy part of the spectral function. To do
so we start with the defining equation of g(+)

$-m-TH)gPp) =1 &
(F—m—SHAY + A~ )gH(p) = (AT +A77).

Now, in our case, A= Z(+) = 0 and AT* =(+) = £(H);
i.e., we project on effective positive-energy states. Using
the definition At" = u*(p) ® 4*(p), we obtain for the
positive-energy part of g(+)

(19)

(20)

The positive-energy-projected spectral function is now found to be

2m[=(H) — (m*/ENET) — (p*/ E3)pEiH
# (P)alp)u* () = 2[ 0 ((+) / p)* : ((f)/ p)f’ : ] Ty (21)
(Po E;) + Im[Zy" — (m /EP)E.: —(p /Ep)PEv ]
[
This form has a straightforward nonrelativistic limit SroN E;_ g . 23
and can be compared to the nonrelativistic spectral func- a(p) = m (Pa(p)u” (). (23)

tion [14, 18].

In momentum space the property Eq. (6) has the form
of a sum rule. Taking the Fourier transform of Eq. (6)
between positive and negative effective spinors we ob-
tain the sum rule for the positive- and negative-energy-
projected spectral functions separately

i’: s a"(p)a(p)u*(p)

= [ 2 rageyt () = 1.

(22)

Note that the normalization factor E /m* cancels the
factor m*/E; encountered in the spectral function Eq.
(21). In the following we incorporate this normalization
factor into a(p) by defining

When the imaginary part is small compared with the
real part we are allowed to take the “quasiparticle” ap-
proximation, i.e., neglect the imaginary part as compared
to the real part. The spectral function then becomes a §
function but now of the “effective” mass and momenta

a(p) = 2mé(p; — Ep).

The sum rule Eq. (22) is fulfilled since setting the
imaginary part of the retarded and advanced Green’s
functions equal to zero implies that the real part does not
depend on pg. This is because the real part and imagi-
nary part are related by a dispersion relation. Equation
(24) defines the single-particle energy of the “quasiparti-

cle”
€ =/ IP*]2 + m*? — = = E; — n6H.

(24)

(25)
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Note that the common practice in conventional
Brueckner calculations of fixing the values of the self-
energies to the value at the Fermi surface [9, 10] is con-
sistent with taking the quasiparticle approximation, since
the imaginary part of the self-energy is rigorously zero at
the Fermi surface [23].

As can be seen from Eq. (12) all the appearing T
matrices can be expressed in terms of 7(t) (T(-) is the
conjugate of T(+)). In the definition of T(*) we encounter
the term (g192)(*) which can be worked out to give [18]

dpodps g7 (P93 (P") — 97 (P)95 (P")

+) =
(9192)() (2r)? Po — po — pg + e

(26)

Since g< scales with n(p), the particle momentum dis-
tribution, and g> scales with 1 — n(p) we see that T7(+)
contains both propagation of particle-particle and hole-
hole states. Another feature is that 7(*) is analytic in
the upper half of the complex po plane. In order to
reduce the set of equations (12), corresponding to the
T-matrix approximation, to the conventional Brueckner
model (termed Dirac-Brueckner in case of the relativistic
version), we have to make three additional approxima-
tions that lead to a nonconserving truncation of hierar-
chy. First, we have to neglect the hole-hole propagating
term in 7(+). Second (and a consequence of the first
approximation), we have to neglect the second term in
the definition of £(+) in Eq. (12). The third approxima-
tion is to use the quasiparticle approximation. Results
for nuclear matter using these approximations have been
presented in Ref. [9]. In the following these will be re-
ferred to as Dirac-Brueckner. The conserving approach
corresponding to Eq. (12) will be called the T-matrix
approximation. In the next section we will present new
results based on the T-matrix approximation. We do in-
corporate the hole-hole propagation, i.e., do not make
the first two approximations mentioned above.

However, we still invoke the quasiparticle approxima-
tion. By doing so we neglect the imaginary part of the
self-energy. This also implies that the real part of the self-
energy is constant as a function of the energy po because
the real and imaginary parts of the self-energy are re-
lated by a dispersion relation. Since the self-energy does
acquire an imaginary part in the quasiparticle approx-
imation, this approximation reduces the degree of self-
consistency with which we solve Eq. (12). As long as the
imaginary part of the self-energy is small compared to the
real part, the deviations of the solution of Eq. (12) found
when invoking the quasiparticle approximation from the
fully self-consistent solution will be small.

Also, the method of projecting on effective positive-
energy states relies on the imaginary part of the self-
energy being small. In addition, the use of the quasi-
particle approximation can be justified by the argument
that the physical behavior of the system will mainly be
determined by the particles close to the Fermi surface. At
the Fermi surface the imaginary part of the self-energy is
zero and the Fermi surface consists of quasiparticles with
an infinite lifetime. So the quasiparticle approximation

seems to be a reasonable starting point for a description
of the system.

III. RESULTS

In this section we present results based on the T-matrix
approximation. The first subsection deals with the prop-
erties of the equation of state calculated in the T-matrix
approximation. In the second subsection we will deal
with the energy (po) dependence of the self-energy and
calculate the spectral function and occupation probabil-
ities at normal nuclear matter density.

A. Equation-of-state of nuclear matter

In the practical solution of the set Eq. (12) we approxi-
mate the self-energies by their value on the Fermi surface.
This is justified by the weak momentum dependence of
the self-energies [9, 24]. Also the self-energy at the Fermi
surface has a zero imaginary part, consequently the spec-
tral function is a 6 function so this choice is consistent
with the quasiparticle approximation. An additional ap-
proximation is to set p* = p, now Eg(f") has to be included
in the effective mass [9, 10]

m* = m+ E£+)(pf)

= . 27
*1+5M)) 0
This redefinition of m* is needed in order that the effec-
tive spinor, Eq. (17), remains a solution of the “dressed”
Dirac equation. Where there might be confusion about
which effective mass is used we will refer to the defini-
tion Eq. (27) as the “self-consistent” effective mass. The
virtue of this approach is that the self-consistent effective
mass is the only independent self-consistent iteration pa-
rameter in the set Eq. (12). The eigenvalue of the Dirac
equation is now

B, = VP mi. (28)

We now discuss the calculation of the 7+) matrix. The
T(+) matrix is most easily evaluated in the two-particle
center-of-mass frame (for a more detailed account we re-
fer to Ref. [9]). In this frame the total effective four-
momentum has the form (v/s*,0). The transformation to
this frame is uniquely defined by the set (s*, P), where
P is the total three-momentum in the nuclear matter
rest frame. The dependence on the direction of P is re-
moved by making the angle average approximation to the
Pauli-blocking operator. The results are not sensitive to
this averaging procedure [25]. Also a three-dimensional
(Thompson) reduction of the Bethe-Salpeter T-matrix
equation is performed, thereby removing retardation ef-
fects in V3. In the two-particle c.m. frame we then have
to solve the following equation (suppressing spin indices):
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("7 (s*, P)|F').

_ _ _ N dp" ~ _ ;2 A Il’ *,P N //’ *,P
(BITH(s*, P)IF') = (BIV|F) + / oo IV IF") s Q(p", 5", P) — Qu(p", 5", P)
pll

Qp(p",s*, P) is the relativistic angle-averaged Pauli-
blocking operator [9], which is simply the angle average
of [1 — n(p")][1 — n(—p")]. The momentum distribution
n(p) equals, at zero temperature, (py — [p|). The de-
pendence on (s*, P) is due to the operator being eval-
uated in the two-particle c.m. frame, where the Fermi
sea is deformed because of the Lorentz transformation
defined by (s*,P). Qn(p”,s*,P) is the angle average
of n(p"”)n(—p"); it has a similar structure as @, and is

|

T(+) 4< ] p? $mas 1 1
—_ — d *
‘ g (es) /o ¢ /,;m ° 32pym? By + Ey

The symbol A denotes antisymmetrization, Tr taking
the trace over the spin-isospin space; s* = 2E7, ¢ is the
momentum of the integrated particle in the nuclear mat-
ter rest frame, found by applying the inverse transfor-
mation to (s*,P). Also sy, = (B, + Ej_..)* — P2,
with gmin = |P — py| and sk, = 4E;f2 — P2, Apart
from the hole-hole propagation in 7(*) this contribution
is the same as the Dirac-Brueckner self-energy [9]. In or-
der to split the self-energy into its Lorentz components
we project T(t) matrix on a basis of 5 Lorentz-invariant
amplitudes, where we use the pseudovector instead of
the pseudoscalar as proposed by Horowitz and Serot [10].
This choice is not unambiguous and can only be removed
when one fully incorporates the negative-energy states
[26]. The pseudovector and pseudoscalar amplitudes are
equivalent on-shell, but they contribute differently to the
Lorentz component of the self-energy. We prefer the use
of the pseudovector for two reasons. First, the pion in our
model has a pseudovector coupling. Second, the pseu-

J

2
\/ST - 2E;u + if ( 9)

[
responsible for the hole-hole propagation. For on-shell

scattering we have p’ = p and N 2E;. We solve Eq.
(29) in full momentum-spin space, and thus we do not use
a partial-wave representation. For more details we refer
to Ref. [9]. After obtaining a solution for 7(+) we are in
the position to calculate the first term in the expression
for ©(+), Eq. (12), formally written as —iT(+)g<. We
transform the integration to the c.m. coordinates s* and
P. This gives

Te [(4 + mi)(PITH (", Plp)a) - (30)

dovector coupling suppresses the coupling to negative-
energy states as compared to the pseudoscalar choice. In
both cases the Lorentz-invariant amplitudes are degen-
erate at zero angle. This we solve by projecting at two
small finite angles 6{ , and extrapolating to zero angle.
As has been shown by Horowitz and Serot this limit exists
[10]. The contribution of the amplitudes to the different
Lorentz components of £(*) are then readily evaluated.

The second term in the definition of Z(+) in Eq. (12),
in formal notation —i7<g(~), can be worked out in a sim-
ilar fashion. We use the last equation of Eq. (12) to ex-
press T< in T(*). Again we need T'< at finite scattering
angles to project on Lorentz-invariant amplitudes, this is
achieved by using the rotational properties of T(¥). After
evaluating all the é functions and exploiting the kinemat-
ical restrictions of the T(*) matrices and intermediate
states, we arrive at the following expression (again we
transform to the appropiate c.m. coordinates s*, P, and

p):

4p2 4E* —P? max(s*,P *
__iT<g(-—)(pf) __ / Py sz/ Py ds* /p (s )dp 1 p'ps .
0 am? 2 Pmin(s*,P) (27(')3 16pr;(S* + P2)9

(" +ms)

1
xTr
{2E; (s* + P2)% — Ey, — E; —ic

where T'< is defined as

dQ2

(p,0,0[T<(s", P)Ip, f,z»O)A:l, (31)

(p,0,0|T<(s", P)|p, 05 5,0) = / —5(p, 0,017 (5%, P)|p',0,6)Qn (¥, s*, P)(p', 0, 6|77 (5", P)Ip, 05 ,,0). (32)

(2m)?

T< is related to T'< by

4E: —P?

FIT< (PR = [ ds* (BIT<(s", P)Ip),  (33)

4m*2

where we used a notation in polar coordinates, dS? is the
integration over the polar angles. 01 , are the small angles
needed for the projection, @Qx(p’, s*, P) is the same as Eq.

[
(29). The intermediate state with momentum p’ in T'< is

on shell, this is expressed by p’ = {/3s* — m#.2. Again ¢

is the momentum of the integrated particle in the nuclear
matter rest frame, this is found by applying the inverse
transform to p. The introduction of T'< allowed us to
interchange the integration ds* and dp. It is then easy
to incorporate the kinematical restrictions: P restricts
s* and the set (s*, P) restricts p as is reflected in the
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TABLE I. The self-consistent values at the Fermi surface, binding energy, and single-particle

energy at the Fermi surface in the relativistic Dirac-Brueckner approach.
Ps m* = ¢+ =eh) Ey €sp(py)

(GeV/c) (GeV) (GeV) (GeV) (=) (MeV) (MeV)
0.21 0.719 —0.230 —0.177 —0.012 -11.3 —23.5
0.22 0.693 —0.258 —0.200 —0.016 -12.0 —24.2
0.23 0.667 —0.286 —0.224 —0.019 -12.6 —24.5
0.24 0.641 —0.314 —0.247 —0.024 -13.6 —~25.0
0.25 0.614 —0.344 —0.272 —0.029 —~14.2 —24.4
0.26 0.586 —0.375 —0.299 —0.035 —14.4 —-22.5
0.27 0.555 —0.410 —0.330 —0.044 —14.7 —19.7
0.28 0.529 —0.435 —0.352 —0.045 —14.8 -15.5
0.29 0.510 —0.455 —0.372 —0.050 ~14.0 -10.9
0.30 0.483 ~0.490 —0.407 —0.068 —12.7 -3.0
0.32 0.424 —0.553 —0.477 —0.086 —-8.6 22.2
0.34 0.371 —0.610 —0.554 —0.108 0.0 62.6
0.36 0.325 —0.659 —0.640 —0.134 14.3 119.8

integration limits. The integration limits pmin(s*, P) and
Pmax(s*, P) are given by the relations

1

By = 7 |7+ POE;, — 0P, (34)

* 1 * 1 s
Epm“ = 7;_—; [(8 + P2)2Ep! +pr] .
The contribution Eq. (31) to the self-energy has al-
most the same structure as the so-called “rearrangement”
contribution [3], the difference being an additional factor
[1 — n(q)] that has to be put in the integrand of our ex-
pression, Eq. (31), to obtain the same functional form
as the rearrangement contribution. And the contribu-
tions of the hole-hole propagation in T(*). From the
presence of @, we infer that omitting hole-hole propa-
gation in T(+) should be accompanied by omitting the
T<¢(=) contribution to (). In principle, the denom-
inator in Eq. (31) has a zero in the integration region.
This we treated with a suitable subtraction method. The

set of Eq. (12) can now be solved by iterating around the
self-consistent effective mass. After evaluating the self-
consistent effective mass we calculate the binding energy
by its definition

1 [Pr o _ *
Ey = "/ 22 pX(a @)y -7+ mn + 31 |u*(p))
plo 2w
mg.
X E; my. (35)

Results for a range of densities are given in Table II
and presented in Fig. 2. For comparison we give in Ta-
ble I the Dirac-Brueckner values. These are calculated
using an improved computer code as compared to the
one used for calculating our previous results [9]. The im-
provement included a more careful treatment [27] of the
singularity in the 7" matrix encountered at certain den-
sities [9]. Comparing with the Dirac-Brueckner results
we see that around saturation the binding energy is low-
ered by ~ 1 MeV. The saturation density is somewhat

TABLE II. The self-consistent values at the Fermi surface, binding energy, and single-particle
energy at the Fermi surface calculated with a relativistic conserving approximation.
Py m* =t =it =t Ey esp(py)
(GeV/e) (GeV) (GeV) (GeV) (=) (MeV) (MeV)
0.21 0.682 —0.246 —0.194 0.016 —10.7 —20.8
0.22 0.658 —0.273 —0.215 0.013 -11.7 —21.7
0.23 0.634 —0.301 —0.238 0.008 —12.6 —22.4
0.24 0.609 —0.329 —0.260 0.003 —13.6 —22.5
0.25 0.584 —0.358 —0.285 —0.003 —14.4 —22.0
0.26 0.558 —0.388 —0.310 —0.009 —15.0 —20.4
0.27 0.531 —-0.418 —0.337 —0.017 —15.5 -17.7
0.28 0.506 —0.444 —0.360 —0.018 —15.6 —13.4
0.29 0.479 —0.472 —0.386 —0.024 —15.2 —-7.0
0.30 0.453 —0.502 —0.416 —0.032 —14.2 2.9
0.32 0.397 —0.562 —0.485 —0.048 —9.7 30.7
0.34 0.345 —0.615 —0.562 —0.061 —0.5 77.0
0.36 0.299 —0.662 —0.647 —0.068 14.7 143.4
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FIG. 2. The binding energy (full line), single-particle en-

ergy calculated by the definition Eq. (25) (dashed line),
and the single-particle energy calculated by use of the
Hugenholtz—van Hove theorem Eq. (36) (dash-dotted line).
The cross indicates the empirical saturation point.

increased to about 0.275 GeV/c. This gives a saturation
point that is well in agreement with the empirical values
(Esat = —16 £ 1 MeV, py,., = 0.27 £ 0.01GeV/c). At
Fermi momenta around 0.20 GeV/c the binding energy
is increased by ~ 1 MeV, at high densities the shift is
small. The values of the self-consistent mass are shifted
some 10 MeV downwards.

As stated before, the T-matrix approximation is a con-
serving approximation. An important property in many-
body theory is the relation between single-particle en-
ergy [as defined in Eq. (25)] at the Fermi surface and
the binding energy as expressed by the Hugenholtz—van
Hove theorem [28], which is fulfilled by a conserving ap-
proximation:

P
esp(ps) = Ep + s (36)

where P is the pressure of the system, by definition
P = p? OE,/8p. The theorem is one specific example of
general thermodynamic relations, here relating the chem-
ical potential to the derivative of the free energy with
respect to particle number. A special case is that, at sat-
uration, the single-particle energy evaluated at the Fermi
surface should equal the binding energy in a conserving
approach. The Dirac-Brueckner model (and any other
conventional Brueckner Hartree-Fock calculation), being
the first order in the hole-line expansion [3] of the T-
matrix approximation, is not conserving since conserv-
ing approximations treat particles and holes symmet-
rically. The nonconserving character of the relativistic

Dirac-Brueckner model is expressed by the Hugenholtz—
van Hove theorem being violated at saturation. For the
Dirac-Brueckner approach is amounts to some 4 MeV.
Nonrelativistic Brueckner calculations, however, give a
typical violation of 15 MeV [3], so the Dirac-Brueckner
model seems to be more conserving than its nonrelativis-
tic counterpart. This is in agreement with calculations
of Landau parameters: Relativistic approaches [29] do
not violate the stability condition for F whereas nonrel-
ativistic calculations do violate this criterium.

Calculating the full 7-matrix approximation, i.e., go-
ing to all orders in the hole-line expansion, the result-
ing equation-of-state and single-particle spectrum should
fulfill the Hugenholtz—van Hove theorem since the ap-
proximation is conserving. Because the violation of the
Hugenholtz—van Hove theorem was relatively small for
the Dirac-Brueckner model, one expects beforehand that
the shifts in the self-energies and binding energy will be
small. Indeed this is the case, as we mentioned before.
Also the Hugenholtz—van Hove theorem provides us with
a check on the validity of the additional approximations
we made when calculating the properties of the system.
In the present calculation we find a violation of less than
0.5 MeV in the density region around saturation; see Fig.
2. This is within the numerical accuracy of our calcula-
tion. The violation increases with increasing pressure;
this can only partly be ascribed to the problems associ-
ated with taking a numerical derivative. The pressure
we calculate is systematically too low (in absolute sense)
compared to the value needed to fulfill the Hugenholtz—
van Hove theorem. This could be the consequence of the
quasiparticle approximation and the neglect of the mo-
mentum dependence of the self-energy. Our results con-
cerning the Hugenholtz—van Hove theorem are compara-
ble with the results of Baldo et al. [13], although these
authors only give a value at saturation density and only
go to second order in the hole-line expansion. Other cal-
culations including hole-hole propagation [14, 30] do not
give explicit results on the fulfillment of the Hugenholtz—
van Hove theorem. We think these are very desirable
since the theorem is an easy though powerful check on
the consistency of a particular approach.

The compression modulus of nuclear matter is defined
by

o[, o o2
{ =9— —F = —_— 2 __
K Qap (p o b> 4p; apf Ey + Py ap'zf Ey. (37)

The empirical value at saturation is commonly as-
sumed to be 210 £ 30 MeV [31]; the most recent value
based on the giant monopole resonance is 300 & 25 MeV
[32]. A compilation of different methods of extracting
the compressibility from available data favors a value of
around 300 MeV [33]. However, there are some doubts
about how to extrapolate the experimental values for fi-
nite nuclei to infinite nuclear matter [34]. The Dirac-
Brueckner model gives a compression modulus of 250
MeV [9], the same as quoted by Machleidt [35]. Non-
relativistic models tend to give lower values, e.g., Mach-
leidt gives 180 MeV for the nonrelativistic equivalent of
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his model. In the present calculation we find 310 MeV,
i.e., an increase of 60 MeV as compared to the Dirac-
Brueckner results. The value is compatible with the value
given by Glendenning [33]. A closer examination shows
that the compression modulus rapidly increases around
the saturation point. This is the case both for our cal-
culation and the Dirac-Brueckner model. Also the rel-
ativistic calculation of Machleidt shows this behavior,
whereas his nonrelativistic calculation appears to have
a much less rapid increase. The effect illustrated in Fig.
3. The comparison is somewhat obscured by the totally
different saturation points but the different behavior is
obvious. This effect strongly reduces the validity of the
compression modulus as an expansion parameter of the
equation of state around saturation. Also we observe a
more rapid increase of the compressibility than found by
using the estimate of the relativistic effect on the binding
energy [35, 36], AE.a ~ (2 MeV)(p/po)®/3.

The inclusion of hole-hole propagation also allows us
to perform a sensible calculation of the relativistic mean
field for momenta below the Fermi momentum. As before
[9] we define the relativistic mean-field by

Re[U(p)] = E; — Re[=(H (p)] - Ep,

tmft/ () = tm (o240 — 560 + Lop (P
E; E;

(38)

where we now explicitly include the momentum depen-
dence of the self-energies. The incoming momentum p
appearing in ©t is taken on-shell according to the con-
dition
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FIG. 3. The compressibility around saturation. Values
are given for the relative Fermi momentum around satura-
tion ps/ps.... The full line is our result, the dashed line is
calculated from the nonrelativistic values of Machleidt [35].
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FIG. 4. The relativistic mean field Eq. (38) at Fermi mo-
mentum 0.27 GeV/c as a function of the relative momentum
p/ps. The full line is the real part, the dashed line the imag-
inary part.

po = (B° + mi)? — =01 (39)

The subscript sc refers to the fact that we have to
use here the self-consistent values at the Fermi surface.
Results of this calculation are given in Table IIT and
presented in Tig. 4, taking for the Fermi momentum
ps = 0.27 GeV/c. As in the nonrelativistic calculation of
Baldo et al. [13] we observe a “flattening” of the mean-
field in the Fermi sea. The value of the mean field at the
Fermi surface is —57 MeV. At higher energies the behav-
ior is very much the same as in the Dirac-Brueckner case,
it crosses zero at around 300 MeV, and it shows a char-
acteristic flattening behavior at higher momenta. These
characteristics are also present in the empirical Woods-
Saxon depths [37], the variational calculations of U(p, k)
of Wiringa [38], and the realistic parametrizations of the
single-particle potential used by Gale et al. [39].

TABLE III. The relativistic mean field at py = 0.27
GeV/c. Re(U) and Im(U) are calculated as prescribed by
Eq. (38).

»/vs Re(U) (MeV) Im(U) (MeV)
0.25 —65 —24.0
0.5 —63 —-13.5
0.75 —60 -3.0
1.0 —-57 0.0
1.25 —52 -3.5
1.5 —44 -7.5
2.0 —28 —12.0
3.0 —4 —17.0
4.0 16 —22.5
5.0 32 —26.0
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B. Spectral function and occupation probabilities

By making the quasiparticle approximation one ignores
the energy dependence (po) of the self-energy and sets the
imaginary part to zero for all incoming energies. This ap-
proximation greatly simplifies the calculations, since the
po integrations can be carried out explicitly. Going be-
yond this and taking the full energy dependence of the
self-energy into account in the self-consistent solution of
Eq. (12) is beyond our present computational capabili-
ties. The formalism itself, however, is clear about how
to deal with this. As a first step towards a fully self-
consistent solution we calculate the energy depence of
the self-energy in the quasiparticle approximation, and
with this we calculate the spectral function. We still ig-
nore the imaginary part of the self-energy in the solution
of Eq. (12). With the spectral function we can calculate
the momentum distribution (occupation probabilities) of
the particles.

In the Brueckner models the imaginary part of the self-
energy is zero below the Fermi energy, and the spectral
is a 6 function of the energy po. Consequently, the Fermi
sea consists of quasiparticles in these models. Upon in-
clusion of hole-hole intermediate states, the self-energy
obtains an imaginary part below the Fermi energy. So in
our model the spectral function of particles in the Fermi
sea is not a 6 function but has a width induced by the
imaginary part of the self-energy.

From now on we will again use the definitions of
Eq. (15) for the effective quantities. The particular ex-
pressions of the contributions to X(+) are easily extended
to the case of arbitrary incoming (po, p). The T matrices
needed in the evaluation of £(+) are still calculated using
the self-consistent mass determined at the Fermi surface.
We calculate the self-energies as a function of p} rather
than of pg, so we have to transform the integration in Eq.
(22) to become

* dp} AN
100 o (1— o a(pg,p) = 1.

For a given momentum p we calculate for a grid of ener-
gies the Lorentz components of the self-energies. We then
form the parts Im(E(()+) - E§+)m*/E; —pEg+)p*/E;) and
Py — £, . These are interpolated with splines. By putting
this spline interpolation into Eq.(21) we can calculate the
spectral function a(p, p) for any required py. As can be
seen from Fig. 5 the spectral function looks very much
like its nonrelativistic counterpart [14]. With this inter-
polation we can locate the zero of p§—E; as a function of
po. This defines the position of the quasiparticle peak of
the spectral function, pg qp. We regularize the integration
over the spectral function by subtracting a suitable func-
tion so that the behavior around the quasiparticle peak is
smoothed. The integration over the subtracted function
can be carried out analytically. We have performed a
calculation for a range of momenta p at a Fermi momen-
tum p; = 0.27 GeV/c. The sum rule Eq. (40) is satisfied
within a margin of 3%. Only in the neighborhood of the
Fermi momentum [(0.95-1.05)p;] are the discrepancies
higher. This is caused by the fact that the imaginary

(40)

FRED de JONG AND RUDI MALFLIET

I®

75 T T I I I
50 ]
>
]
<
*a‘o i ]
0
25 1
L e |
] ~
] \\\
! ~o
’ ~—_
0 L L’ | L L i
0.50 0.60 % 0.70 0.80 0.90
P, (GeV)
FIG. 5. The spectral function @(p), Eq. (23), for p =

0.75ps (ps = 0.27 GeV/c), as a function of the effective in-
coming energy ps. The values above the Fermi energy (dashed
line) were multiplied by 10.

part vanishes at pop = €*(ps). When the quasiparticle
peak is close to €; the error in the imaginary part be-
comes dominant. This all is mainly the consequence of
decomposing the self-energy in Lorentz components, an
additional step not present in nonrelativistic calculations
(see, e.g., Ramos et al. [14]).

With the spectral function we can find the occupation
probability

} < dp? oxit\ _ L
n(p):/ po (1_ 61())* ) a(p(),p),

—o0 2 0

(41)

where the upper limit of the integration €}, = €, (ps) +

)3(()-"). Because of the number conservation the occupation
probabilities should obey the sum rule

1 _

~ [donp) =1. (42)

p

The results for the occupation probabilities are pre-

sented in Fig. 6 and Table IV. Compared with the results
of Jaminon and Mahaux [16] we find a significantly lower
n(p) for momenta below the Fermi momentum. These
authors used a parametrization of the Dirac-Brueckner
results for the mean field above the Fermi sea. By tak-
ing phase-space arguments and the sum rule in Eq. (42)
into account they were able to estimate the occupation
probabilities in the Dirac-Brueckner model up to second
order in the hole-line expansion. The average depletion
of the Fermi sea is defined by
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FIG. 6. The occupation probabilities at the Fermi mo-

mentum 0.27 GeV/c (full line); for reference the variational
results of Fantoni and Pandharipande [2] (dashed line) also
are given. Both curves were multiplied by a factor of 3 for
values p > py .

K= 1—%/0“ dpn(p). (43)

Jaminon and Mahaux find a value about 5%. We ob-
tain a much higher value of 11%. From this one might
conclude that the higher-order terms in the hole-line ex-
pansion give an essential contribution to the depletion of
the Fermi sea. Also, we note that the particle number
sum rule Eq. (42) is fulfilled very well within the numer-
ical accuracy.

TABLE IV. The occupation probabilities for py = 0.27
GeV/e.

p/ps n(p)
0.25 0.91
0.50 0.905
0.75 0.895
0.875 0.88
0.95 0.87
1.0~ 0.86
1.0t 0.16
1.05 0.10
1.125 0.05
1.25 0.027
1.50 0.01
2.0 0.003
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The discontinuity of n(p) at the Fermi momentum is
equal to the quasiparticle strength at the Fermi surface.
In our case we obtain for this quantity

-1
Z(ps) = [5%@3 - E;:)] , (44)

where the derivatives are taken at the Fermi energy
pp = €5, We calculate a value of around 0.7. Extrapolat-
ing n(p) from below towards p; gives n(p;) ~ 0.86. The
limit p | py is more ambiguous, n(p) is very steep slightly
above the Fermi momentum. Taking n(p}L) ~ 0.16 is
compatible with the previous values and the values of
n(p) we calculated above the Fermi surface. These un-
certainties do not affect the average depletion «, since
only a small region is affected.

Also we calculated the moments of the kinetic energy
and pg of the spectral function

1 [, [ dpy axih e
(V) = ;/dp/ 21;(_) (1_ 61;)3 poa(po,p)—TRN,

(45)
(K) = % / dp (B, — my) n(p),

with n(p) defined in Eq. (41) and €, defined above. The
sum 1((V)+(K)) is, by definition [18], the energy of the
system. For (V) we find a value around —53 MeV; for
the kinetic energy we find 27.5 MeV. So the binding en-
ergy calculated with the spectral function is ~—13 MeV.
This is in quite good agreement with the binding energy
calculated in the quasiparticle approximation. There we
obtained —15.5 MeV.

The empirical values of k and Z(ps) are not very
well established yet. Much effort is put into this at
the present moment by means of (e,e’,p) experiments
[40]. The values are difficult to evaluate due to finite-
ness and surface effects. Mahaux [41] cites a value of
&k = 0.1540.05, from (e, €/, p) experiments one could de-
duce Z(ps) = 0.50 £ 0.05 [40]. This is to be compared
with our calculated values, Z(p;) = 0.7 and & = 0.11.
These two quantities are somewhat related: A high &
will be accompanied by a low Z(p;) and vice versa. Also,
note that the coupling-to-surface vibrations in finite nu-
clei can decrease Z with ~ 0.2 as compared to the value
in nuclear matter [2].

Within a nonrelativistic framework many results on
the occupation probabilities are available, e.g., the varia-
tional results of Fantoni and Pandharipande [2], Benhar
et al. [15], the Brueckner results of Sartor et al [12],
Jeukenne et al. [3], Grange et al [11], Baldo et al. [13],
and the Green’s-function approach of Ramos et al. [14]
(which is, apart from the nonrelativistic character, the
most akin to our approach). All these calculations come
up with a depletion in the range 15-25% and a Z(p;) of
0.5-0.7. This is compatible with the available data.

The nonrelativistic Brueckner results mentioned above
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all are calculations up to second order in the hole-line
expansion. So one might expect an increase in the deple-
tion when going to all orders in the hole-line expansion in
these calculations. The calculation of Ramos et al. [14]
does go to all orders in the hole-line expansion. However,
they use a truncated version of the Reid potential, so it
is difficult to compare their results with previous men-
tioned Brueckner calculations in the same fashion as we
could do with the calculations of Jaminon and Mahaux
[16]. Since the details of the nucleon-nucleon interaction
used do play a significant role in the magnitude of the
depletion, especially the strength of the tensor force [2],
the results of Ref. [14] have only a restricted applicability.
At present we do not have a physical explanation as to
why we find a small depletion in our relativistic model.
Again we want to stress that a small  is consistent with
the small violation of the Hugenholtz—van Hove theorem
in the Dirac-Brueckner model. As we already pointed
out, this implies a quick convergence of the hole-line ex-
pansion. The convergence is believed to be governed by
Kk, so the small k we calculated is consistent with our
previous results. Finally we want to note that Mach-
leidt [35] gives for his relativistic calculation a value of
the “wound integral” of 13% at saturation and a viola-
tion of the Hugenholtz—van Hove theorem of 5.5 MeV.
In nonrelativistic Brueckner theory the “wound integral”
should be of the same order as «, this argument points
to a k compatible with our result. The small violation
of the Hugenholtz—van Hove theorem also points to a &
of about the same size as we calculated. So it might be
interesting to see whether the small depletion also per-
sists when using other interactions which might have a
different short-range behavior but also describe nuclear
scattering data like, e.g., the Bonn interaction.

IV. SUMMARY

We presented a calculation of the equilibrium proper-
ties of nuclear matter based on a “conserving” relativis-
tic many-body theory. This meant that we incorporated
all orders of the hole-line expansion into our calculation.
For the equation of state we found a small shift towards
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the empirical saturation point. In fact, the saturation
point we find is within the error bars of the empirical
saturation point. Also, we found a higher value of the
compressibility, 310 MeV, which is still compatible with
the empirical values [33]. We checked on the conserving
character of our approach by testing the fullfillment of
the Hugenholtz—van Hove theorem. The violation was
found to be practically zero around saturation. Farther
away from saturation the discrepancy was calculated to
be a few MeV.

We calculated the relativistic mean field and found
this to have the same characteristics as in the Dirac-
Brueckner model. Also we found a “flattening” of the
mean field within the Fermi sea. This is also present in
nonrelativistic calculations which include higher orders
of the hole-line expansion [13].

We argued that the small violation of the Hugenholtz—
van Hove theorem already observed in the Dirac-
Brueckner model pointed towards a small value of the
depletion of the Fermi sea &, since this parameter gov-
erns the convergence of the hole-line expansion. A small
K is also consistent with the small shift in the saturation
properties. In an actual calculation of the occupation
probabilities by means of a spectral function we found
K ~ 0.11. This is small when compared with nonrela-
tivistic Brueckner calculations although it is higher than
the estimate of Jaminon and Mahaux based on our pre-
vious Dirac-Brueckner results. The discontinuity at the
Fermi momentum of the occupation probabilities, equal
to the quasiparticle strength at the Fermi surface, was
found to be 0.7.

As a check we calculated the binding energy by one of
its (formally) equivalent definitions and found this to be
compatible with the value calculated within the quasipar-
ticle approximation. This, together with the reproduc-
tion of the empirical saturation point and the fulfillment
of the Hugenholtz—van Hove theorem around saturation,
leads to the conclusion that the equation of state as we
calculated in the quasiparticle approximation provides a
good description of nuclear matter around saturation.
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Dr. L. Dieperink and Dr. B. Friman.
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