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Shape coexistence in ' Sm and the onset of deformation below N = 82 from lifetime measurements
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Different deformations for the two bands built above the (m.h»/2) 10+ and the (vh»/2) 10+ states
in ' Sm have been determined from lifetime measurements using the reaction ' Pd( Cl,p2n)' Sm at
143 MeV. The P values derived for the N =78 and N =80 core nuclei, coexisting in ' Sm, complete the
systematics of nuclear deformation from'N =72 to 80.

The nuclei of Sm and Gd with neutron number N =78
have ground-state bands with a collective behavior which
are interrupted at I=10+ by two isomeric states of
single-particle character [1]. These two states have been
interpreted as an h»&z two-proton particle excitation and
as an h»&2 two-neutron hole excitation, respectively.
The g factors of the 10+ states have been measured
confirming these assignments [2,3].

Two independent level sequences of stretched E2 tran-
sitions have been established above the two 10+ single-
particle excitations in the Nd, Sm, and Gd X =78 iso-
tones [1,4,5]. These two bands have qualitatively
different XI=2 level spacings and resemble the ground-
state bands of the respective core nuclei, which are the
%=78 core for the levels above the (rrh»&2) 10+ and
the N=80 core for the levels above the (vh»&2) 10+
state. An interpretation in terms of coexistence, at about
the same excitation energy, of the two cores, which are
supposed to have different quadrupole deformations, has
been suggested [1,5].

Lifetime measurements in the collective sequences
found above the two isomers can give a more definite
answer to the question of the coexistence of different nu-
clear deformations. The present Brief Report reports the
results of such a measurement in the N=78 nucleus
140S

Another problem that has been widely investigated
both theoretically and experimentally [6—13] in this re-
gion is the transition from spherical to deformed shapes
in nuclei with neutron number below N=82. Lister
et al. [11] derived the deformation from the energy of
the first 2+ state in the even-even nuclei and discussed its
behavior as a function of the neutron number. The
B(E2) values of the 2+ ~0+ transition and the deforma-
tion parameters P in even-even Sm isotopes for N = 72,
74, and 76 obtained from lifetime measurement of the 2+
excited state have been reported by Kern et al. [7],
Soramel et al [12],and Wadsw. orth et al. [13].

Similar measurements are not possible for N=78 and

80 nuclei where the presence of high-lying isomeric states
in the nanosecond range prevents the determination of
the true lifetime of the first 2+ state with the plunger
method. It is, however, a matter of fact that the collec-
tive bands built above the 10+ isomers of ' Sm are well
described as the decoupling of two h» &z proton particles
and two h»&2 neutron holes to the N=78 and 80 core
nuclei, respectively. Therefore, picosecond lifetime mea-
surements performed for the states of these bands allow
one to extract B(E2) values and deformation parameters
which can be assigned within this frame to the N=78
and 80 core nuclei.

For the present work lifetime measurements have been
performed by means of the recoil-distance Doppler-shift
technique, using a precision plunger apparatus. Excit-
ed levels in ' Sm were populated through the
' 6Pd( Cl,p2n )' Sm reaction at a bombarding energy of
143 MeV. The beam was provided by the Tandem XTU
accelerator of the Laboratori Nazionali di Legnaro. The
target consisted of a stretched self-supporting ' Pd foil
with a thickness of 830 pg/cm . The evaporation resi-
dues were stopped in a stretched gold foil. The separa-
tion between the foils was adjusted with a micrometer
screw, and the target to stopper capacity was continuous-
ly monitored during the experiment. At foil separations
smaller than 300 pm the distance was also measured us-
ing an. electromagnetic gauge head. Data were recorded
at 20 distances ranging from electrical contact to 3 mm.
The average recoil velocity U =5.85(6) pm/ps was deter-
mined experimentally from the energy difference between
the shifted and unshifted components of the strongest
peaks. Gamma rays were detected using three
Compton-suppressed germanium detectors positioned at
15, 30, and 90 with respect to the beam direction. In
order to reduce low-multiplicity events originated mainly
by Coulomb excitation and P-decay processes, a multipli-
city filter composed of 17 BaF2 crystals was used. Ger-
manium events in coincidence with at least one element
of the filter were recorded in list mode. At each distance
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the intensity of the lines was normalized with respect to
the 2+~0+ transition of ' Sm measured in the y-ray
spectrum of the detector placed at 90. With a normali-
zation performed using y rays following Coulomb excita-
tion of the Au stopper, one obtains the same results.

The recoil-distance data were analyzed starting at the
highest observed state in each cascade. When appropri-
ate, known discrete feeder states together with their mea-
sured effective lifetimes and feeding intensities have been
taken into account. Gamma-ray intensities were ob-
tained from the detector at 30 and corrected for angular
distribution effects. While fitting the data, the side feed-
ing was considered in two ways. In the first we assumed
for it a negligible lifetime value, and in the second we
used the lifetime of the feeding cascade. The error in the
final lifetime includes the uncertainty in the side-feeding
time.

An effective lifetime of 2.9(7) ps was estimated for the
16+ state of the band built on the (vrhllzz) 10+ isomer,
fitting the decay curve of the 994-keV transition with a
single exponential. From the decay curves of the 751-
and 442-keV transitions, the lifetime values of the 14+
and 12+ states were obtained. In the case of the band
built on the (vh»z~) 10+ state, an effective value of
6(2) ps was obtained for the lifetime of the 14+ state, and
then from the decay curve of the 619-keV y ray the life-
time of the 12+ state was extracted. In Fig. 1 the recoil-
distance data for the 442- and 619-keV transitions, and
the best fit through the experimental points are shown.
The obtained lifetimes together with the extracted B(E2)
values are summarized in Table I. The quadrupole defor-
mation P for the two bands was obtained from the B(E2)
values, using the formula of an axially symmetric rotor:
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Since both bands built on the 10+ isomers have a rota-

tionally aligned structure, small E effective values are ex-
pected. The value K =2 was assumed, as it was previous-
ly used in the case of ' Nd [14]. In the case of the band
of proton character, this assumption is consistent with a
prolate shape where both protons occupy orbitals at the
bottom of the h»&z shell. Conversely, low K values for
neutrons which are at the top of the h»&~ shell require an
oblate nuclear shape.

The deformation parameters /3 obtained in this way are
also shown in Table I. A change of two units of the K

FIG. 1. Intensity of the stop peak of the 442- and 619-keV
transitions in '" Sm. A partial level scheme of ' Sm with the
first members of the (~h»&2) and the (vh11&2)

' bands is shown
in the inset.

value produces a /3 variation less than 1 l%%uo. It has also to
be noted that the inclusion of the y parameter following
the assumption of a triaxial rotor model produces a max-
imum change in the P value of 10%%uo when varying y be-
tween 0 and 30.

The different p values obtained for the two excited

TABLE I. Lifetimes, electromagnetic transition rates, and deformation parameters deduced from
the present work.

Nucleus

140S

141E

J;~Jf
12+ 10+
14+—+ 12+
12+—+10+
15 — 11—
2 2

E, (keV)

442
751
619
526

~ (ps)

22(3)
1.7(7)
11(3)
13(3)

2160(290)
2010(830)

820(220)
1540(360)

50(7)
47(19)

19(5)
36(8)

B(E2)
(e fm ) {%'.u. )

0.142(10)
0.135(28)
0.088(12)
0.123(14)
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bands above the (mh»iz) and (vh»i~) 10+ states
(/3=0. 142 and 0.088, respectively) definitely confirm the
description of ' Sm at excitation energies above 3 MeV
in terms of the coexistence of two shapes.

As a by-product of the present work, we got also the
lifetime of the —", state in the N=78 ' 'Eu nucleus and
the B(E2) corresponding to the —", ~—", transition.
The obtained values are also shown in Table I. For the
band based on the —", state in ' 'Eu [15], we assume an
efFective K value of —,

' as was already done for analogously
decoupled mh &&iz bands in the odd Pm and Eu nuclei of
this region [13,16,17]. With this assumption a deforma-
tion parameter /3=0. 123(14) was extracted, which may
represent the deformation at N =78.

As already mentioned in the Introduction, the /l values
of the two excited bands in ' Sm can be associated with
the quadrupole deformation of the N=78 and 80 core
nuclei, which in our case are ' Nd and ' Sm, respective-
ly. Several theoretical calculations [6—10] predict the
nuclear quadrupole deformation in the Nd-Sm region
below N =82. However, a comparison with B(E2)
values or with quadrupole deformation parameters de-
rived from lifetime measurements was possible only for
N (76 in Sm and for N ~ 74 in Nd. Adding our two new
values of /3 we have now, for the samarium isotopes, data
from N =72 to 80, which can be used to map the trend of
the nuclear deformation in this region. We should keep
in mind that, with the assumptions made before, the
value of P for N =78 is related to Nd and not to Sm and
this must be remembered when comparing with theoreti-
cal calculations for samarium isotopes. A value of P
about 20% higher in Sm than in Nd at N=78 is indeed
foreseen in both the calculations which we adopt in the
following [6,7]. In Fig. 2 the deformation parameters ob-
tained from the present lifetime measurement, together
with the ones deduced from previous experiments
[12,13,18,19], are plotted as a function of the neutron
number for the samarium isotopes with N (82. The re-
sults of two available potential-energy calculations are
also plotted in the same figure. One calculation is based
on a Woods-Saxon (WS) model with pairing [7] and the
other one on a folded Yukawa (FY) model [6].

As it is evident from Fig. 2 some discrepancies between
the experimental data exist, especially at N=74, where
the results of the two theoretical calculations are most at
variance. The set of data obtained at Padova [12,18] is in
agreement with the WS calculations, whereas the sharp
increase of deformation predicted in the FY model at
N =72—74 is in accordance with the Daresbury data [13].
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FIG. 2. Experimentally deduced quadrupole deformation pa-
rameter P as a function of neutron number in Sm isotopes. The
squares represent the data points of the Padova group (Refs.
[12] and [18] and this work), the circles those of Makishima
et al. [19],and the triangles those of Wadsworth et al. [13]. In
cases where the lifetime of the 4+ state was also available, the
weighted average of P derived from the B (E2) of the 2+ ~0+
and 4+~2+ transitions is plotted. The dashed line represents
the predictions of the FY model [6], while the solid one corre-
sponds to the WS calculations [7].

Anyway, the two new points from the present experiment
nicely follow the expected trend of deformation towards
N=82. At N=80 the experimental value is somewhat
larger than expected from theory, but not in disagree-
ment with the calculations since (see, e.g. , Fig. 5 of Ref.
[7]) there is a rather fiat minimum at N =80 in the calcu-
lated potential-energy surfaces.

In conclusion, from the present lifetime measurement
it was possible to complete the systematics of the onset of
deformation below N = 82 and to confirm the shape coex-
istence description of ' Sm above 3 MeV.
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