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We calculate the effects of Pauli-blocking in the quasideuteron model of hard photon-absorption.
Our approach is based upon phase space considerations and uses Fermi-gas state densities that
conserve linear momentum. The Pauli-blocking function that we obtain differs from Levinger s
phenomenological exponential factor and yields nuclear photoabsorption cross sections that are in
good agreement with experimental data for photon energies up to the pion threshold, The temper-
ature dependence of the nuclear photoabsorption cross section in the quasideuteron regime is also
investigated. The model that we use to describe nuclear photoabsorption is particularly suited for
application to preequilibrium models of hard photon emission.

I. INTRODUCTION

The quasideuteron model [1—3] describes the dominant
mechanism for nuclear photoabsorption for incident pho-
ton energies in the range 40 + ez + 140 MeV. This model
was first proposed by I,evinger [1,3] and has subsequently
been applied extensively to analyze nuclear photoabsorp-
tion cross sections [4—7]. The model does, however, con-
tain two free parameters and treats the eAects of the
Pauli exclusion principle in an entirely phenomenologi-
cal manner. In this work we develop a quasideuteron
model of photoabsorption which includes Pauli-blocking
eA'ects theoretically and does not contain any free param-
eters. Recent interest in quasideuteron photoabsorption
stems from attempts to describe hard photon emission
by applying detailed balance [8—10]. For this purpose
one needs a good knowledge of photoabsorption cross
sections, and, in addition, when applied to preequilib-
rium reaction models, one needs a thorough descrip-
tion of the photoabsorption process in terms of parti-
cle and hole excitations. In a subsequent paper we in-
tend to show how our model of photoabsorption can be
extended to describe preequilibrium photon emission in
proton-induced reactions. The temperature dependence
of the nuclear photoabsorption cross section is of con-
siderable importance since it is needed for calculating
photon emission rates from hot nuclei [8,9] as well as
in dipole sum-rule considerations [11]. In the present
work we therefore calculate the temperature dependence
of Pauli-blocking eAects and show its impact on photoab-
sorption cross sections. In addition to the above appli-

cations, the quasideuteron model has also been used to
investigate the swelling of nucleons in nuclei in the Euro-
pean Muon Collaboration effect [12], and antinucleon an-
nihilation processes in antinucleon-nucleus reactions [13].

In the quasideuteron model it is assumed that pho-
toabsorption takes place on correlated neutron-proton
pairs within a nucleus. The relatively small photon
wavelengths ensure that the interaction takes place with
a nucleon-nucleon pair, rather than with the nucleus as
a whole, and the predominantly electric-dipole nature of
the interaction implies photoabsorption only by neutron-
proton pairs. I evinger showed [1, 3] that the nuclear
photoabsorption cross section o&d(e~) can be expressed
in terms of the free deuteron photodisintegration cross
section od(e&),

L
0 qd(&p) — +~0 d(ep)f (ep)

where L is the Levinger parameter and f(e~) is the Pauli-
blocking function. The factor NZ is the total number of
neutron-proton pairs inside the nucleus, which is multi-
plied by a reduction factor L jA to account for the fact
that it is only correlated pairs that can be considered
to be quasideuterons [13, 14]. In addition, the function
f(e~) accounts for those excitations of neutron-proton
pairs that cannot occur since the Pauli-exclusion princi-
ple allows only final particle states which lie above the
Fermi level. This eR'ect is particularly important for low
photon energies, and 1evinger suggested that it can be
represented by an exponential Pauli-blocking function
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where D is a constant. Although a theoretical estimate
for the Levinger parameter is well known [1],no theoret-
ical derivation for the Pauli-blocking function has been
given. In practice, I and D are treated as free param-
eters to fit the photoabsorption data. The difficulty in
separating the eA'ects of the Levinger parameter and the
Pauli-blocking function in Eq. (1) has resulted in a sub-
stantial ambiguity in the I and D values used by difFerent
groups; tlxey range from I = 4.9 and D = 60 MeV (Ref.
[9]) to I = 10 and D = 80 MeV (Ref. [15]).

The motivation for the present work came from an
attempt to describe the quasideuteron photoabsorption
process in a framework that lends itself to application
within a preequilibrium description of hard photon emis-
sion. Such an attempt is facilitated by the observation
that hard photon absorption in the nucleus leads to the
excitation of a neutron-proton pair. This can be viewed
as the creation of a two-particle —twa-hole state [15, 16]
of which the two particles, for a given hole pair, can be
treated using techniques that have been devised for pree-
quilibrium nuclear reaction models. To this end we use
a Fermi-gas model of the nucleus and require that the
accessible state density includes only states that can be
reached by momentum, as well as energy, conservation.

In Sec. II we give a derivation of the nuclear pho-
toabsorption cross section in the quasideuteron model
in which the Pauli-blocking function and the Levinger
parameter are calculated in a consistent way. An essen-
tial part of our approach is concerned with the calcu-
lation of the state densities of excited neutron-proton
pairs. We show in Sec. III how the temperature de-

pendence of the nuclear photoabsorption cross section
can be calculated. In Sec. IV we compare our Pauli-
blocking function with previous phenomenological expo-
nential parametrizations. The nuclear photoabsorption
cross section that we obtain in the quasideuteron model is

then compared with experimental photoabsorption data
for a number of nuclei and some conclusions are given.

II. CALCULATION OF THE
PAULI-BLOCKING FUNCTION

A. Formalism

In Levinger's original derivation of the nuclear pho-
toabsorption cross section, eR'ective-range theory was
used to show that the wave function of a neutron-proton
pair inside a nucleus (a quasideuteron) is praportional
to that of a free deuteron for close neutron-proton sep-
arations. This allows the quasideuteron photoabsorp-
tion cross section on a pair with relative momentum k,
ozg(k, ez), ta be written in terms of the deuteron photo-
disintegration cross section as [1]

—k
~

is the initial relative momentum

of a neutron-proton pair. n = h/(2. 23m) ~ is related
to the neutron-proton scattering length [17],m being the
nucleon mass, and ro is the effective range. The nuclear
volume in the above expression is V = 3a1.2 A fm .

Following Levinger, we assume that if all the possible
final neutron and proton states after photoabsorption are
not Pauli-blocked, the photoabsorption cross section. on
a quasideuteron is given by Eq. (3). However, if the
available phase space for the neutron and proton after
photoabsorption is reduced by Pauli-blocking, we assume
that the quasideuteron photoabsorption cross section is
also reduced by the same amount. Thus we suppose
that the cross section for photoabsorption is proportional
to the available phase space. This is reasonable since
Fermi's golden rule ought to be applicable as the elec-
tromagnetic perturbation is small compared to the nu-

clear interactions. The problem of determining the nu-

clear photoabsorption cross section, and hence the Pauli-
blocking function, requires an integration of Eq. (3) over
all possible initial neutron and proton momenta, in which
the efI'ects of Pauli-blocking are taken into account. This
integral, for a Fermi-gas nucleus, can be expressed as

o'q&(~~) = d kid k»p(lp k )p(lp k )o'qg(k e~)F(k k k~)

where k„, k», and k~ are the neutron, proton, and

photon momenta, respectively, before photoabsorption,
and k~ is the Fermi momentum. The density of single-

particle neutron and proton states in momentum space,

p(lp, k~) and p(lp, k ), must reproduce the number of
neutrons and protons in the nucleus, so

N
p(lp, k„) = 4sxkF

g
p(lp, k ) = 4

~4 ma~3

The adopted normalization is important since the
quasideuteron photoabsorption is of a volume nature

I

[6, 7]. The blocking factor F(k„,k, kz) reduces the
cross section for photoabsorption on a particular neutron-
proton pair, o&~(k, cz), and is discussed in detail below.

After photoabsorption both the neutron and proton
upon which the absorption takes place must have mo-

menta above the Fermi momentum. Photoabsorption
processes where either one, or both, of these nucleons do
not satisfy this requirement are forbidden by the exclu-
sion principle, and since the quasideuteron photoabsorp-
tion cross section is proportional to the available phase
space, the cross section for photoabsorption on a partic-
ular neutran- proton pair in Eq. (3) should be reduced.
This reduction can be calculated by determining the ra-
tio of the phase space available upon photoabsorption
to the "full" phase space that would be available if the
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exclusion principle did not apply.
Figure 1 shows, in momentum space, the absorption

of a hard photon upon a neutron-proton pair within the
nucleus. The initial and final linear momenta, and the
corresponding energies, are related by

k +k +k~ = K=k'„+k',
(6)

Fermi-sphere Fer m I-spher e

Ev + cw + Ep = E = c + E

where primes refer to final states after photoabsorption,
and K and F are the total linear momentum and total en-

ergy, respectively. If the exclusion principle is obeyed, the
vectors k'„and k' must extend beyond the Fermi sphere
as defined by the radius k~. Considering all accessible fi-
nal states that are consistent with the above constraints,
one obtains the neutron-proton state density which de-
pends on K and E only. This neutron-proton state den-
sity is written as p+(2p, E, K), where the superscript
P indicates that the Pauli exclusion principle has been
taken into account. The blocking factor F(k, k, k&)
can then be expressed as the ratio of this two-particle
state density to the one that is obtained when the Pauli

I

FIG. j.. Absorption of a hard photon by a quasideuteron
in the nucleus. The initial linear momenta of the photon,
neutron, and proton are k~, k, and k~, respectively, and the
final linear momenta are k' and k' . The total momentum is
K.

exclusion principle is excluded,
P

(7)
p(2p, E, K)

Considering the structure of Eq. (1), the Pauli-
blocking function can be finally expressed as

f f dsk dsk p(lp, k )p(lp, k )rrqg(k, c~)F(k, k, k~)

fo fo dsk, dsk p(lp kp)p(lp k )aqua(k e'~)
(8)

The denominator can be evaluated analytically by ob-
serving that the six-dimensional integral reduces to a one-
dimensional integral when it is transformed into relative-
momentum space, the distribution of relative momenta
of two nucleons in a Fermi gas being [18]

k~s 2k' 2 ky y

This yields the denominator of Eq. (8) in the form
(L/A)NZog(c&), where L = 6.5, obtained using the stan-
dard values of o. = 0.232 fm, rg ——1.761 fm, and
a Fermi energy of 35 MeV used throughout this paper.
This divers from Levinger's result [1] of I = 6.4 only be-
cause of the numerical values of the constants adopted.
The numerator of Eq. (8) has to be evaluated numerically
using neutron-proton state densities that are derived be-
low.

B. State densities arith linear Inoxnenturn

When a hard photon is absorbed by a quasideuteron, a
neutron-proton pair becomes excited within the nucleus
and this can be viewed as the creation of a two-particle-
two-hole state. We are interested in processes that are
shown in Fig. 1 and described by Eq. (6). We consider
specific neutron and proton initial states (which become
holes after photoabsorption) and wish to determine the

I

I

density of accessible final states for the two excited par-
ticles. We do not determine the accessible two-particle-
two-hole state density, as is done in Refs. [10,16], since
we assume a quasideuteron photoabsorption cross section
that is k dependent and therefore different for diAerent
quasideuterons. Hence we calculate, for each hole pair,
the density of accessible two-particle states that are char-
acterized by a total energy E and a total momentum K.
We note that these quantities are measured from the bot-
tom of the nuclear potent, ial well.

Techniques for calculating accessible particle-hole state
densities for various types of transitions have been devel-
oped for use in preequilibrium reaction models [19]. The
procedure that is adopted for the Fermi-gas model is to
convolute single-particle state densities with an energy-
conserving delta function. We have found, however, that
for the present purpose this may not be suKciently ac-
curate since the role of linear momentum cannot be ne-
glected. Since the photoabsorption cross section on a
quasideuteron is dependent upon the neutron and pro-
ton momenta, it, is appropriate to include momentum
effects in the accessible state density calculations. For
t, his reason we consider only states that can be reached
by momentum and energy conservation, and hence we
derive the density of two-particle states with a specific
total momentum as well as total energy. To do this, we
include a momentum-conserving delta function into the
state density convolution integral. When Pauli-blocking
is considered, this state density may be written as

p (2p, E, K) = d k' d k' p(lp, k'„)p(lp, k' )b(E —k' /2m —k' /2m)b'(K —k' —k'„)

x 0(k' —kF)0(k„' —kF)
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The delta functions impose both energy and momentum conservation and Pauli-blocking is accounted for by the unit
step function, 0 (1 if argument is greater than zero, 0 otherwise). The integration over k can be done immediately,
with momentum and energy conservation both being accounted for in one delta function,

p+(2p, E, K) = z z d k' b(E —k' /m —I& /2m+ (I&k'/m)cos0 )O(k' —k~)

xo((k' + Ii —2k' Ii cos 0 ) ~ —k~), (11)
where 0 represents the angle between k and K. The integration over P implicit in the above equation may be
p erformed immediately yielding

k' dk'

I"+ k" —k' &

2k' I&

p~(2p, E, K) =
I~k'

~
m 2m)

xe(k' —k~)e((k' + Ii. —2k' Ii. cos 0 ) & —k~). (12)

This integral can be solved by substituting t = cos 0, and determining the range of k for which the second integral
(over t) gives unity. The 0 functions can be eliminated by beginning the integral over k at k~, and restricting the t
integral over values of t satisfying

The resulting state density has dimensions MeV i (MeV/c) s and is given by

~~E & k~+ k&I~ + -,'A'
2+me„r mE —

4 if &

kF and 11~2 ( )~Q ( k2 k~I~-+ 11~2

p (2p, E, K) = & z „.
~

I& ) 2kF and kz~ —kJ;Ii + —,'Ii2 ( mE & I + k~Iq + —,'y&'
mKv

kF and k2 ( )~E ( k2 + k y~ + 11~~2

K ( 2kI; and mE ( k&2

0 if ll, 2

(14)

As expected from symmetry arguments, the two-particle
state density is dependent only upon the magnitude of
the total momentum and not its direction. The two-
particle state density that includes all transitions (includ-
ing those that violate the Pauli principle) can be obtained
from the results in Eq. (14) in the limit of k~ ~ 0, yield-
ing

P) ) )=r2 E Ki ~&I,&,K~ ~E —
4 if ~& & 4K,

0 otherwise.
(15)

Equations (14) and (15) are used to evaluate expression
(7) and thus also the numerator of the Pauli-blocking
function in Eq. (8).

We have also performed a numerical evaluation of the
two-particle state density with linear momentum K and
energy E in Eq. (10) to check our analytic results, in the
specific case of z = z„= K. Our procedure was to set up
a three-dimensional grid of points in momentum space,
representing allowed momentum states, and to de6ne the
total two-particle momentum K as a vector in this space.
The proton momentum k'„was then allowed to scan all
points on this grid, and for each particular point taken
the neutron momentum vector k'„was defined so that the
total momentum gave K. For each particular pair, en-
ergy conservation could then be checked and the number
of two-particle states per MeV is given by the number
of proton and neutron configurations that have energies
lying within a 1 MeV bin around E, not counting any

I

configuration in which either the neutron or proton mo-
mentum is less than the Fermi momentum. This gives
the density of states with momentum exactly K, and the
number of states per unit energy space per unit momen-
tum space lying around K is this density multiplied by r.
Excellent agreement was obtained between our numerical
results and the above analytic expressions.

In the specific case of K = 0 the above relation (15) can
be understood in a simple physical way. The neutron and
proton after photoabsorption now move in opposite direc-
tions with the same absolute values of momenta. Hence
the motion of one nucleon essentially defines that of the
other, and the two-particle state density has a square-
root energy dependence typical of a one-particle density
in energy space in a Fermi gas. We also note that Eq. (15)
with K = 0, after a simple transformation, agrees with
the expression that Bethe and Peierls [20] used for the
phase space available after the photodisintegration of a
deuteron.

In order to demonstrate the influence of linear momen-
tum on t,he Pauli-blocking function as calculated by Eq.
(8) we also need two-particle neutron-proton state densi-
ties where only energy is considered. Such state densities
can be obtained straightforwardly from Eq. (14) by in-
tegrating over aH possible rnomenta which are consistent
with a given energy E,

+4mB
p+(2p, E) = p (2p, E, K)47rI& dI&
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This state density can also be obtained directly by convo-
luting neutron and proton single-particle state densities
in energy space within the Fermi-gas model,

and proton single-particle states in energy space are given
by

p (2p, E) = p(I»e )p(I»e )Ir(E e e )

x O(err —ey )e(err —ey )derr der r

(»)

3N
p(lp, e„) =

2~F ~F

3Z 67r
C(» e-) =

2EF EF

(18)

where eF is the Fermi energy and the densities of neutron
I

yielding the analytic solution

9NZe(E —2ey) 1 2 1 2 . , E —2e~l
4eF3

E —2e~ EeF —e& + Esln— (19)

Mutual agreement between Eqs. (16) and (19) provides
a stringent test on our state densities with linear momen-
tum, and this was carefully checked. A similar procedure
may be applied to obtain p(2p, E), the total state density
that is obtained when the Pauli exclusion principle is not
obeyed, yielding

32K'F
(20)

r r r r
~

r r r r )» r r
l

r r r r
~

r r r r
~

» r r7

x]0 '
n 6

These last two equations should replace Eqs. (14) and

(15) if one wants to calculate the Pauli-blocking function
when momentum conservation is ignored.

Figure 2 shows the two-particle state densities of Eqs.
(14) and (15) as a function of total energy for two dis-

I

tinct values of I~, for the case of SPb. As expected,
state densities for Ix = 0 display a square-root energy
dependence, and when Pauli-blocking is included this
density is cut to zero at twice the Fermi energy (70
MeV). This threshold corresponds to configurations in
which the neutron and proton move in opposite direc-
tions to each other with momenta kF in magnitude. In
the case of Ii = 600 MeVjc the threshold appears at
about 96 MeV. This corresponds to a configuration in
which the two particles are aligned with identical mo-
menta, and in this case the threshold is the same for both
the state densities in which Pauli-blocking is included and
ignored. The small magnitude of the densities shown in
Fig. 2 should not concern the reader since this reflects
the small magnitude of x and r., Thus, for instance,
even though we find that p (2p, E = 100 MeV, Ii. = 0) =
3.74 x 10 MeV (MeV/c), when the state density
with linear momentum is integrated over all possible val-
ues of momenta [see Eq. (19)] the total density is given by

p (2p, E = 100 MeV) = 801 MeV '. In this example,
the excitation energy E = 100 MeV corresponds to an
excitation energy of 30 MeV relative to the Fermi level.

5
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FIG. 2. The two-particle state density for Pb as a func-
tion of the excitation energy E for total momenta A = 0, 600
MeV/c. The two-particle state densities including, as well as
neglecting, Pauli-blocking are shown; see Eqs. (14) and (15).

III. TEMPERATURE DEPENDENCE

There has been some recent interest in evaluating pho-
ton emission rates from hot nuclei which have been pro-
duced in heavy-ion collisions, by applying the principle
of detailed balance [8,9]. For such an approach one needs
to know the photoabsorption cross section on an excited
nucleus, and in the absence of any experimental mea-
surements one has to rely on theoretical estimates. It is
a straightforward matter to determine the temperature
dependence of the nuclear photoabsorption cross section
in our model.

Prakash ef al. [9] calculated the temperature de-
pendence of the photoabsorption cross section in the
quasideuteron model, and expressed their results in terms
of a "correction factor. " In fact they considered only
the relative temperature variation of the Levinger pa-
rameter and completely neglected any possible variation
of the Pauli-b}ocking function with temperature. But
Herrmann et aL [8], when using detailed balance to
study the emission of photons following the reaction

Mo+ Mo at an incident energy of 19.5A MeV, pointed
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out that the Pauli-blocking effects should decrease (and
hence the Pauli-blocking function should increase) for
photoabsorption on hot nuclei. However, no quanti-
tative estimate of this eAect was presented. In the
quasideuteron model, the temperature dependence of the
nuclear photoabsorption cross section is given by the
product of the dependences of the Levinger parameter
and the Pauli-blocking function on the nuclear tempera-
ture. We indicate below how these eA'ects can be calcu-
lated.

In an excited nucleus at an equilibrium temperature T,
the probability of occupation of a single-particle st, ate by
a nucleon follows a Fermi-Dirac distribution. This should
be taken into account when the procedure for calculating
I. and f(e~), described in Sec. II, is followed. Thus, the
expressions for the single-particle densities in momentum
space, p(lp, k, ) and p(lp, k ), should be modified for
finite temperatures t,o

[

CO—

CQ—

Q.

208

p(lp, k„T) =

p(lp, k, T) =

exp[(e —c~)/T] + 1'

exp[(e —c~)/T] + 1

(21) IOO 200
Energy. E (MeV)

300

The constants xT and KT are obtained from the require-
ment that the integrated densities over all momentum
space must reproduce the number of neutrons and pro-
tons, so

FIG. 3. A three-dimensional representation of the
temperature-dependent 2p state density for Pb as a func-
tion of temperature T and energy E for A = 0. The numerical
values on the contour lines should be multiplied by 10 . The
discontinuity due to Pauli-blocking at 70 MeV for T = 0 is
smoothed out with increasing nuclear temperature.

Kp
N

J' dsk„/(exp[(r„—e~)/T] + I}' (22)

and a similar expression applies for KT. The accessible
2p state density, including Pauli-blocking, is also diA'er-

ent at finite temperatures. It can be evaluated in an
I

approach analogous to Eq. (10), but using a distribution
of occupied states rather than the sharp cutoA's that are
descibed by the 8 functions. The 2p state density is now
given by

p (2p, E, K, T) = r.~

xb(E —Ic' /2m —k', /2m)6(K —k' —k', ),

K~

~xr I("—~~)ITI + ~)
(23)

where the expressions inside the large parentheses are the densities of single-particle states that are unoccupied in
momentum space. The high dimensionality of this integral can be reduced analytically to give

p (2p, E, K, T) = k' dk'

+ coso

l r
exp[(E —e —e~)/T] + 1)

m
x sino do 6, ~

E-
I~k'

I m 2m)

K 7r

exp[(e —eF)/T] + 1

which can then be solved numerically without any di%-
culties. In the limit of T ~ 0 this state density reduces
to Eq. (14). In Fig. 3 we show a three-dimensional
representation of the temperature-dependent state den-
sity for I~ = 0. At a nuclear temperature T = 0 MeV
the state density as a function of the two-particle energy
E has a discontinuous cut at E = 70 MeV, as is also
shown in Fig. 2. As mentioned above, this occurs be-
cause the two particles must move in opposite directions

I

with equal absolute linear momenta, and for total ener-
gies below 2m~ they will be blocked by the Pauli principle.
As the nuclear temperature increases, particles below the
Fermi level become excited, which leads to a reduction in
Pauli-blocking eKects below the Fermi energy and an in-
crease in blocking above the Fermi energy. This is clearly
seen in Fig. 3, where the sharp discontinuity evident at
T = 0 MeV becomes smoothed out for higher nuclear
temperatures.
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within a Fermi-gas model of the nucleus, and therefore
obtain more general and accurate results.

Our Pauli-blocking function (obtained with state den-
sities that conserve linear momentum) has the same gen-
eral energy dependence as that of Levinger's ad hoc ex-
ponential function, i.e. , at low incident energies it tends
to zero and at high energies to unity, as it must, but the
exact energy variation is rather different (see Fig. 4). We
note that it is not possible to reproduce the steep energy
dependence of f(e&) which we obtain with a phenomeno-
logical exponential function. Since the Pauli-blocking
function calculation requires such a large amount of CPU
time, we have found a polynomial fit to our results to
facilitate future uses of our Pauli-blocking function in
nuclear reaction calculations and data evaluations. Our
results can be well approximated in the photon energy
range 20—140 MeV by the polynomial

f(~~) = 8.3714 x 10 —9.8343 x 10

+4.1222 x 10 ~ —3.4762 x 10

+9.3537 x 10 (25)
Our approach for calculating the Pauli-blocking func-

tion does not allow us to treat the Levinger number L as
a free parameter. Rather, we obtain a value of L = 6.5 di-

rectly from our model, and it is consistent with the range
of values from L = 4.9 through 10.0 which have been
used in previous works [9—10,12—15). With the Pauli-
blocking function and Levinger parameter that we have
determined it is possible to evaluate nuclear photoab-
sorption cross sections using Eq. (1). The free deuteron
photodisintegration cross section was taken as [16]

mb,

I I I I
l

I I I I
l

I I I I
l

I I I I7

(, ) 612(
— »)

(26)

with e& measured in MeV. This parametrization fits the
experimental data well below 100 MeV. However, there is
a large scatter in the experimental free deuteron photo-
disintegration cross sections in the range 100 MeV ( c& (
140 MeV (Ref. [22]) and the parametrization seems to fit
the lower values rather than the average in this energy
range. This may lead to a certain underprediction of the
corresponding nuclear photoabsorption cross section at
the highest energies. In Fig. 6 we show the quasideuteron
contribution to the nuclear photoabsorption cross sec-
tion compared with data for the nuclei Pb, Ta, Sn, and
Ce. We also show the tails of the giant dipole resonances
(GDR) which may contribute even at these high pho-
ton energies. The data as well as the GDR tails are
taken from Ref. [4]. It is seen that the sum of these two
contributions describes the data fairly well. The com-
parison with data that we obtain seems to be better
than that obtained with a phenomenological exponen-
tial Pauli-blocking function (see, for instance, Lepretre
et al. [4]. If their quasideuteron component is added to
the GDR component they significantly overestimate the
data below a photon energy of 40 MeV).

We now discuss the temperature dependence of the

O 0

o 20
CQ

CQ
I

t I

10 —::

Ce Sn

20

~ yJ1 I

I i k "'"'""I""""- I i i I"""""-y"-." ....I

60 100 20 60 100 140
Photon energy (MeV)

(D
(D ~ 6

M

C
63 0
CL 'cg

C
6)

co E
C.

8

FIG. 6. The calculated quasideuteron component of the
nuclear photoabsorption cross section as a function of photon
energy is compared with experimental data for Pb, Ta, Sn,
and Ce. The full curve is the sum of the quasideuteron and
GDR contributions. The tails of the GDR as well as experi-
mental data are taken from Ref. [4].
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FIG. 7. Variation of the Levinger parameter with nuclear
temperature.
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I evinger parameter and Pauli-blocking function that is
obtained in our model, using the results of Sec. III. Since
the photoabsorption cross section on a quasideuteron is
proportional to I/(h n + k2) and with increasing tem-
peratures the average relative momentum increases, the
I evinger parameter should decrease for increasing tem-
peratures. This is shown in Fig. 7 and it agrees with
the results of Prakash et al. [9]. Our completely new
result, however, is the temperature dependence of the
Pauli-blocking function as shown for T = 0, 10, and 20
MeV in Fig. 8. It is evident that, except for the highest
incident photon energies, Pauli-blocking eA'ects decrease
with increasing temperature, in agreement with the sug-
gestion by Herrmann et al. [8], and this work provides
a, quantitative estimate of the effect. The Pauli-blocking
function increases significant, ly with increasing tempera-
ture for low incident photon energies due to a depletion
of the number of occupied states below the Fermi energy
for high nuclear temperatures. From the figure it, can
be seen that an inversion of this effect occurs for very
high incident energies, where the Pauli-blocking function
actually decreases with increasing temperature. In this
case the eAects of Pauli-blocking due to excited nucleons
in a hot nucleus lead to a decrease in the Pauli-blocking
function. The overall temperature dependence of the nu-
clear photoabsorption cross section in our model is given
by the combined efFects of the temperature dependences
of I, and f(e&) In Fig. 9. we show the quasideuteron pho-
toabsorption cross section on Pb as a function of the
incident energy for temperatures T = 0, 10, and 20 MeV.
For incident photon energies below about 65 MeV the
decreasing effects of Pauli-blocking with increasing tem-
perature lead to a dramatic increase in the cross section,
while for energies above this value the cross section de-
creases with increasing temperature. These results are
quite diAerent to those of Prakash et a/. , who find that
the nuclear photoabsorption cross section decreases with
increasing temperatures for all photon energies. As men-
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FIG. 8. The Pauli-blocking function for three different

nuclear temperatures. Except for the highest energies, an

increasing nuclear temperature leads to a reduction in the
efIects of Pauli-blocking.
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FIG. 9. The quasideuteron photoabsorption cross section
for Pb as a function of incident photon energy for three
diR'erent nuclear temperatures. The decreased eff'ects of Pauli-
blocking at high temperatures result in a dramatic increase
in the cross section for low incident photon energies.

tioned earlier, this discrepancy results from their neglect
of temperature efI.'ects on the Pauli-blocking function.

It is of interest to compare our results with those ob-
tained by knoll and Guet [ll] using dipole sum-rule con-
siderat, ious. Knoll and Guet suggest that the nuclear
photoabsorption should increase with increasing temper-
ature, and this is (in contrast to the results of Prakash
et al. ) now supported by our calculations for photon
energies below 65 MeV. The discrepancy between the
quasideuteron model and the sum-rule prediction per-
sists at higher energies. This suggests that Levinger's
Eq. (3), which describes the extent to which a neutron-
proton pair is correlated in a deuteron-like structure, may
need nzodifying for high temperatures where other cor-
relations become important. This presumably may show

up in a reduction of the decrease of I with increasing
temperature.

In an alternative explanation of the quasideuteron nu-
clear photoabsorption cross sections, Lepretre et al. [4]
and Bergere [5], following the ideas of Laget [23], pro-
posed that a quasideuteron within a nucleus can only
undergo photoabsorption via exchange processes, and so
only a fraction of the free deuteron photodisintegration
cross section should be used. It seems to us that even
if this is so, Pauli-blocking eA'ects would still damp the
photoabsorption cross sections, and then their explana-
tion would not be consistent with the data. In our model
we provide a theoretical basis for Pauli-blocking eA'ects
which is supported by the observed photo-absorption
cross sections, and therefore suggests the importance of
nonexchange terms in the absorption of a photon by a
quasideuteron.
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In this work we have developed expressions for state
densities in which we only consider states that can be
reached by both energy and momentum conservation.
This approach could be easily extended for use in pree-
quilibrium reaction calculations at energies where the
semiclassical Fermi-gas model of the nucleus is valid. In
the preequilibrium model the neutron or proton emission
spectrum for nucleon-induced reactions is dominated by
the emission from the first preequilibrium stage and the
theoretical expression for this first-stage emission rate
is given by the ratio of a one-particle —one-hole to two-
particle —one-hole state density [24]. For these simple con-
figurations one could evaluate these state densities using
our approach and obtain nucleon emission spectra within
this more accurate application of detailed balance.

To summarize, we have presented a model for
quasideuteron photoabsorption which provides a theo-
retical basis for the effects of Pauli-blocking. We used a
Fermi-gas model of the nucleus and in the phase-space ex-
p ressions we included only states that can be re ached by
momentum and energy conservation. The Pauli-blocking
function and Levinger parameter were evaluated in a con-
sistent way, and when used to calculate nuclear photoab-

sorption cross sections, good agreement with the data
was obtained for a range of medium-heavy target nuclei.
We have also shown that in order to correctly determine
the temperature dependence of the quasideuteron pho-
toabsorption cross section, one must include the variation
of Pauli-blocking effects with temperature. Our results
for this temperature dependence were in agreement with
the qualitative suggestion of Herrmann et al. and differ
significantly from the results of Prakash et a/. where the
temperature variation of the Pauli-blocking function was

neglected .
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