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Assuming the gN interaction is dominated by the N (1535) excitation we evaluate an g-nucleus opti-
cal potential that takes into account the free decay modes of the N* plus its many-body decay modes up
to one-particle-hole excitation. The potential is able to generate bound states in light and heavy nuclei
but provides large widths for these states. The results are highly sensitive to the value of ReX +. In

N

general, the widths are larger than the separation between the levels, although for ReX + sufficiently
N

repulsive a few narrow states can be found. In connection with a recent experiment our results suggest a
potential for the N* more attractive than for nucleons.

I. INTRODUCTION

It has been suggested that the gN interaction is
sufticiently attractive to support bound states of the q in
nuclei [1—3]. The question arises of what is the width of
these states. In Refs. [2,3] the widths of some g states
were calculated and found to be narrow enough to be ob-
servable in principle, i.e., the sum of half-widths of two
neighboring states would be smaller than the diA'erence
between the binding energies. Some searches for these
states have led to negative results [6], while in a recent
coincidence experiment, a broad bump in the region cor-
responding to bound etas is observed [7].

We have reanalyzed the problem by using a model that
has a minimum amount of theoretical assumptions and,
at the same time, is consistent with the known phenome-
nology of baryon decays. We have also considered the
many-body modes of g decay in the nucleus involving g
annihilation on two nucleons. These modes contribute to
the imaginary part of the N* self-energy, which we can
determine rather reliably. On the other hand, we do not
have enough information to undertake the evaluation of
the real part. Hence we have varied it between reason-
able limits. The g potential is found to vary appreciably
with the value of ReX +, but the widths of the bound
states are generally larger than the separation between
the levels. However, for ReX + su%ciently repulsive one
can obtain a few narrow states.

onances, up to the N'(1700), is about or less than lgo.
Hence we take the N* (1535) pole, depicted in Fig. 1, as
the dominant term in the gN —+gN amplitude. With the
quantum numbers of the particles involved the coupling
riNN* is given by [1,2]

5H, (x)=g„P,(x)/tv(x)4&„(x)+H. c.

The q self-energy in nuclear matter, H, is then given by
the many-body diagram of Fig. 2 in analogy to the 6-hole
model for ~-nucleus interaction [8]. We have

d pII(k)=g 4f n(p)
(2m )

1

v's —M, +i[I (s)/2] —X,(k +p, k+p)

(2)

with n (p) the occupation number in the Fermi sea, M
the mass of the N* (1535), I (s) its free-space width, and
X + the N* self-energy in the nuclear medium. The
kinematical variables are k =co„(k), the g energy, k—:k„,

II. THE MODEL

The first basic fact of phenomenology that we take into
account is that, in the region of relevance to the problem,
the r)(0 ), N( —,

'+) system couples practically only to the
N* (1535; —,

'
) resonance, because about 50%%uo of its width

comes from decay into the Ng channel, while the branch-
ing ratio for the gN channel in the decay of other N* res-

N (1535)

FIG. 1. Model for gN~gN amplitude through coupling to
the N* (1535).
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N'

problem of the N*N interaction, for which no experimen-
tal information is available (recall that 2 + =t, pz in

the low-density limit, with t the t matrix for N N in-

teraction).
We then assume ReX + to be of the type

ReX~, = (p/po) V~„.

FIG. 2. Diagrammatic representation of the g self-energy in
the nucleus through N -hole excitation. The circle in the N
stands for the N* self-energy.

At the same time we will also include a nucleon self-
energy that we take as

ReX~ =(p/po) V~ ( Vz = —50 MeV) . (5)

and p =Ez(p), the nucleon kinetic energy. In the static
limit for the nucleons, before the N self-energy is includ-
ed-, we have for the s variable

s = [M+ co„(k)] —k (3)

The evaluation of the real part of X + is hardly possible

at the present stage since it is equivalent to solving the

Since V + is unknown we will vary V +, within reason-

able limits, to study its effect on the width of the g. The
dependence of ImX, (k +p, k+p) on the energy and

momentum of the nucleons is found to be sufficiently
smooth in our calculations and can be neglected to a
good approximation. We will then write from now on
ImX, (k, k).

Then the g self-energy can be written as

II(k) =g„p 1

s —M, +i[I (s)/2] i lm—X (k, k)+ReX~ —ReX

where p is the nuclear density and ImX +(k, k) is the

imaginary part of X +, which, as we shall see, can be cal-

culated rather reliably using empirical information on the
N* decay channels.

I

ergy dependence from phase space. We accomplish that
by taking a coupling of the type

5H + (x)= iCQ,—(x)y5$~(x)N(x)@(x)+H c.
III. THE N FREE WIDTH

We quote below the data from the compilation of parti-
cle properties [9] (the mean values suggested in the refer-
ence are inside brackets)

N'mass: 1520 to 1560(1535) [MeV]
width: 100 to 250(150) [MeV]

partial decay modes:

Nvr 35 —50%, we take 40%,
Ng 45 —55%, we take 50%,
Nvr~-10%, we take 10%,

r—= —ImX .
2

(10)

Thus for N*~Nri decay, Fig. 3(a), we find the c.m. sys-
tem

where the structure of the different mechanisms leading
to the N~~ decay is accounted for by means of the
effective coupling constant C.

In order to evaluate the width corresponding to these
decay channels we calculate the N* self-energy associated
with the diagrams of Fig. 3 and use the relationship

30 MeV N~,r—=75 MeV. 37.5 MeV Ng,
2

7.5 MeV N~~ .

We must determine the energy dependence of the
width, for which we need the coupling of the N* to N~
and to Neer, in addition to. the Nri given in Eq. (1). The
coupling N*Nmis given [1,2]by.

5H +(x) =g g +(x)@(x)~Pz(x)+H.c.

N

N

N $mqj
/

N

(b)

N gq &q
/

/

N

(c)

For the N*Nmm, accounting for 10% of the width, we
choose not to make an elaborate model, but take the en-

FIG. 3. Mechanisms contributing to the width of the N*. (a)
N*~Ng; (b) N*~Nm, ' (c) N ~N~~.
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d q 2 M 1

2~ 4 ~E k —q s —qo —E k —q+lE
r" =3 —q', for Nm. decay,4~ s

(13)

q q m ~+LE
where the extra factor 3 comes from the isospin counting
and

with E(p) the nucleon relativistic energy. By using Cut-
kosky rules [10] [X~2i ImX, G (p) —+2ie(p )ImG (p),
D (q) ~2ie(q )ImD (q), with G (p) and D (p) the nucleon
and g propagator of Eq. (11)]we have, finally,

X' "(s,M', m '„)
2V's

A,
' '(S,M', m' )7T

(14)

r'~' g'„M
—q, for Nri decay .

2 4~ s

Analogously,

(12)
with q, q' being, respectively, the g and ~ momentum,
given be the decay of an object of mass &s in its c.m.
frame, and A,(x,y, z) the Kallen function. The width for
the N~~ decay channel is given in terms of Eq. (9) by

d'q& d'q2

(2') (2m. ) 4m „d

2

(q&) —q, —m„+is
1 M 1

(q2) —
q2

—m E(k q& qz) &s —
q&

—
q2

—E(k —
q& q2)—+i@

(15)

with m„d the reduced mass of the NN* system and q=q, +q2. Using Eq. (10) and applying Cutkosky rules to Eq. (15),
we obtain

r(2')
=6 C

4m„d

2
max

4 (2~)3 m

+s —M —~~f dc@,[(&s —co, co2) M]P(c—o„co~)—, (16)

where

1, if [s +2m —M —2V s (co, +co~)+2', co~]
2q1q2

P co, co 0, otherwise,

2
2 2 1/2

s —M —2Mm
with q, z=(co, z

—m ) and co,„= — . (17)
2 s

The factor 6 in Eq. (15) comes from isospin. A compar-
ison of Eqs. (12), (13), and (16) with the numerical results
of Eq. (7) at &s =M*=1535 MeV provides the values of
the coupling constants

1 2 2 2q1 1

16~ "k s (Vs —M ) +(r/2)'

(19)

g„=2.06, g =0.664, C =9.23m

With this set of coupling constants one obtains only a
rough agreement with the ~ p ~giV reaction. We have
varied the values of M +, I + and the decay branching
ratios within the experimental uncertainties in order to
obtain a good reproduction of the experimental

p~gn cross sectio—n [11]. Within the N*(1535) domi-
nance model we use, the amplitude for this process is
given by the diagram in Fig. 1, replacing the lower g by
one pion. The cross section for this process in the c.m.
system is readily evaluated, and we obtain

g =0.564, g„=1.613, C =7.14m (20)

With these values the cross sections that we obtain for
m p —+gn are do. /dQ=0. 118, 0.219, and 0.198 mb/sr

with q, k the eta and the pion momenta, respectively.
A fair reproduction of the cross section at Vs = 1511,

1542, and 1572 MeV is obtained if one takes M + = 1555
MeV, r=110 MeV, which are close, respectively, to the
upper and lower bounds of the experimental values. Ob-
viously the model provides only an s-wave contribution,
but the experimental data are also smooth functions of
the angle. One has to repeat now the steps used after Eq.
(12), and we obtain new values for the coupling constants
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for Vs =1511, 1542, and 1572 MeV, respectively, which

compare favorably with the experimental data of Ref.
[11].

With a fair control of this reaction, the model provides
the correct low-density limit [12], [II=t„&v „&v(k,k)p]
for the imaginary part of the g self-energy coming from
the dominant channel gN~mN. We also changed the
branching ratios of Eq. (7) within the experimental limits,
but the results are very stable; hence we kept the same
branching ratios as in Eq. (7) in the calculations.

IV. MANY-BGDY DECAY CHANNELS OF THE N*

A. Pauli blocking corrections

N"

(a) (c)

FIG. 5. Many-body diagrams for the N* self-energy analo-
gous to Fig. 4(b). (a) N*~N ph driven by g exchange; (b)
N*~N ph driven by ~ exchange; (c) N* ~N ph vr from

~N~~ with one pion exciting a ph.

In the decay of the N* in nuclear matter we have to
care that the final nucleon momentum is above the Fermi
momentum k~. This would introduce corrections in the
N'~Ng decay channel, but they can be safely neglected
in the N*~Nm and N*~N~m decay channels because
of the smaller masses of the one- or two-pion system with
respect to the g. However, in the case of the bound-state
problem, the diagram of Fig. 3(a) will not give a contribu-
tion to I, because there is no phase space available for
this decay with the energy brought by the nucleon and
the q in the diagram of Fig. 2.

Hence Fig. 3(a) does not contribute, reducing the N*
free half-width from 75 to 37.5 MeV. The s dependence
of the N~ and Neer channels in Eqs. (13) and (16) further
reduces it to 33.1 MeV for an g just bound.

~

~

d4q 1—iX(k, k)= g„D„(q)(2'�) "k q
—e(k —q)+—i e

2f„
q U~(q)F„(q), (21)

5H„~~(x)= ig „I/J—(x)y 51/l(x )e(x )

in analogy to the mNN coupling

(22)

where E(k —q) is the nonrelativistic nucleon kinetic ener-
gy, U&v(q) the Lindhard function for ph excitation [13]
with the normalization of Ref. [14], and k, k the energy
and momentum of the N* (the origin of the energy is set
here to the nucleon mass). We need an extra coupling,
the gNN, which is given by

B. N* decay due to N*N~NN reaction 5H Jv~= igg(x)y—5r N(x)P(x) . (23)

By analogy to the 6 decay in pion nuclear problems
(Fig. 4), where the pion can excite a particle-hole (ph)
pair in the medium, and lead to the 4N —+NN decay
channel [Fig. 4(b)], that accounts for two-nucleon pion
absorption [Fig. 4(c)], we can also introduce the
N*N~NN decay channels of Fig. 5, which give rise, by
means of Eq. (6), to two-nucleon absorption mechanisms
in the g nuclear problem, as depicted in Fig. 6.

We evaluate now these three new channels. The con-
tribution of Fig. 5(a) in the framework of nonrelativistic
kinematics is

. f„
~ =I CT'q, 6H NN

m~ m„
(24)

with f„lm =g„l2M, flm =gl2M. In addition, we
must add form factors of the type

2 2
A, —m,

(i =~,q) (25)
A, —

q
F;(q)=

normalized to unity when the mesons are on shell. For
simplicity we have assumed the same range for gNN*

Their respective vertex functions for mesons coming in
with a momentum q are

f4 ii
i

(c)
N )N N~i &N

FIG. 4. Many-body diagrams in the b self-energy. (a)
A~Nm", (b) the m is allowed to interact with the medium excit-
ing a ph. The mechanisms account now for h~N ph; (c) corre-
sponding diagram for the pion self-energy in the nucleus incor-
porating the mechanism (b) for the 6 self-energy. The mecha-
nisms of (c) account for two-nucleon pion absorption.

(a) (b) (c)

FIG. 6. Diagrams equivalent to the one in Fig. 4(c) contribut-
ing to the g self-energy in the nucleus and accounting for the
corresponding pieces of the N* self-energy of Fig. 5.
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and gal% vertices in Eq. (21). We use, from Ref. [15].

f„=0.59, f=l,
(26)

A„=1.5 GeV, A =1.3 GeV .

We also mention that, because a different expression of
form factor was used in Ref. 1, the coupling constants of
that work, denoted g', are related to those of Eqs. (18)
and (20) by

g; =a;g [M~s /co„(q)E~(q)](1+q /A'i )/(2vr ),
i =m., g with n =3 and a„=1. The Ai is the range pa-
rameter given in Ref. [1].

The coupling constants are in agreement with those
quoted in Ref. [16]. We can use again Cutkosky rules
[adding U(q)~2ie(q )ImU(q)], and by means of the
useful approximation [17]

B(q )1m U&(q) = vrp5(q — q /2M—) (27)

q=~Mk —k/2, q =q/2M. (28)

Analogously, for the diagram of Fig. 5(b) we obtain

I (m, abs)

3 4 Mq~ 3

4~ m2
1 F (q, q),

q
—

q
—m„

(29)

Strictly speaking, our formulas in Eqs. (11) and (15)
should also include a form factor. However, since we are
only interested in the imaginary part of the self-energy
which comes when the mesons are placed on shell, the
form factor would be unity with our normalization. In
Eqs. (2) and (6) we have the eta on shell and the form fac-
tor is also unity:

we obtain
p(q, abs) gz f

p q
3

2 4m m2

2
1 4 0—F,(q q)

q
—

q
—m„

with the same kinematics as in Eq. (28). The factor 3
comes from the pion isospin sum.

Finally, the diagram of Fig. 5(c) gives

q1 d q2
i X(k', k)—=2i J J 6(2-)' (2~)' 4~„d

2 2

(~i+~z) L (qi) this(qi)
m

XD (qz) F (q, ),1 4

k —q, —
qz

—E(k —q, qz)+ie—
(30)

1 f C
(2')' m 4~„d

where the factor 2 appears because the ph can be excited by either pion.
Using again Cutkosky rules and Eq. (27), placing on shell the pion with momentum qz, the nucleon and the particle-

hole excitation, we obtain from Eq. (30)

I-(2m, abs)
'2

q2max q&max
0 2 2 M 2 4 0p J q, dq, J q, dq, [2Mk' q,' k' 2M—~(q—z)] — q', F'(q'„q, )2 0 0 co qz

1

q1
—

q1 m~ q& =q&/2M

where q, =lp& qz=lpzl k =Ikl and Pz(q„qz) is a phase-space factor:
T

2 2 2

1, if k — — — —co(qz) &1,M 0 k q1 q2

q1q2 2M M 2M

0, otherwise,

(31)

(32)

Furthermore,

1/2
q2max

= ~

q&-,„=[qz+(A —qz)' ]/2,

and

(33)

put, like in Eq. (16), easy analytical integration limits in-
stead of the strict ones. We also note that the phase fac-
tor eliminates the unphysical regions.

V. NUMERICAL RESULTS

A =4Mk —2k —4Mm

We have assumed for simplicity k «q, , k «q2, and

For k =m„, ~s =M+m„, the choice of X* mass
and width of Eqs. (7) and the coupling constants of Eq.
(18) we get
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I free

2
=33.1 [MeV],

I (g, abs)
=1.35p/po [MeV],

I (m, abs) =4.4 1p /po [Me V ], (34)

I (2~, abs) =29. 12p /po [Me V ],
I-abs

=34.88p/po [MeV] .

The many-body corrections give a width comparable to
the free width at p=po. It might look curious that the
contribution from the 2~ absorption diagram is larger
than the one from one-pion absorption, whereas for pions
on shell I' ' & I""'. This is a consequence of phase space
plus the additional counting factor of 2 and the fact that
(q, +qz) is larger in the case of lvr ph excitation than in
the case of 2m. on shell. A similar behavior has also been
observed in the evaluations of the proton decay in nuclei
[18] and in the many-body modes of antiproton decay in

nuclei [19,20]. It is also worth mentioning that one
should go ahead with the diagrams of Fig. 6, consider the
ph excitation to be a contribution to the g or m self-
energy, and then generate all the random-phase approxi-
mation diagrams. Taking into account this series of dia-
grams can lead to important corrections in the 5 self-
energy for k =m, Ref. [21]. However, as the energy in-
creases the corrections become less important [22]; and
for an energy k =m„ they can be safely neglected.

The introduction of the I "'/2 and ImX —= —I" '/2
of Eq. (34) into Eq. (6) gives us the optical potential of an

g particle in the nuclear matter. In order to obtain the
optical potential in a finite nucleus we use the local-
density approximation and substitute p by p(r) with p(r)
being the proton density distributions, Ref. [23], after
correcting for the finite proton size [24]. We further as-
sume equal density distribution for protons and neutrons.

With this optical potential we calculate the bound
states of the g in the nuclei ' C, Ca, Pb in order to
have the results for a sample of nuclei over the Periodic
Table. We use the complex version [25] of the highly ac-
curate method to solve the Schrodinger equation [26].

In order to have a feeling for the optical potential that

TABLE I. Bound states of g found for different nuclei and different assumptions on the potential.
The first block assumes no medium renormalization of the X or N*. The other three blocks consider
ImX ~ evaluated in the text and three different choices of V +( —50 MeV, 0, and 50 MeV, with

N N

VN= —50 MeV). 8 is the binding energy and I the width of the state. The numbers in the second
column of 8 and I correspond to the choice of M + = 1555 MeV and I + = 110 MeV.

V~ —V „[MeV]

0 (and Im X =0)

Nucleus

12C

40Ca

208Pb

26

47
24
59
51
36
22

B [MeV]

9

22
5

32
25
13

3

82

98
83

101
97
90
84

I [MeV]

18

25
18
27
26
22
18

0 (Im X ~NO) 12C

40Ca

208Pb 25
18
6

8

21
4

31
24
12

1

94
90
81

19

27
19
30
28
24
20

—50 (Im X ~NO) 12C

40Ca

208Pb

6
18

3
27
21
10

3
11

18
13
3

32
42
33
47
44
40

6
10

11
10

8

—100 (Im r„,&0) 12C

Ca
208Pb

5

14
22
16
6

6
12
7

16

23
25
24
21
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we have, we write it down for p =po, VN = —50 MeV, and
several values of V, corresponding to V += —50, 0,
and 50 MeV. We also show the results obtained with-
out the many-body corrections (i.e., ImX
=ReX& =ReX&~ =0), which we denote as V„"'.

Recalling that 2' V„=—II, and Eq. (6), we obtain

V„'"(po)=( —70.45 i4—8 69.) MeV,

Vz(po) =( —34.52 i 4—9 01.) MeV,

for VN
= —50 MeV,

(35)
Vz(po ) = ( —34. 36—i 23.86) MeV,

tractive and of the same strength (and opposite sign) as
the nucleon potential. In this case the widths range from
16 to 25 MeV. However, even in this case these widths
are much larger than the separation between the levels.

With the input parameters derived from m p —gn
cross sections we have recalculated the optical potential
and the energies and widths of the new states. Corre-
sponding to Eqs. (35) we now obtain

V„'"(po)=( —40. 82 —i 14.00) MeV,

V„(po)=( —31.89 —i 20.93) MeV,
for VN

= —50 MeV,

for VN =0 MeV, Vz(po)=( —22. 99—i8 69) .MeV,
for VN =0 MeV,

V„(po)=( —27. 79 i 12.—79) MeV,

for VN ~ =50 MeV,
V„(po)=(—17.24 i 4.57)—MeV,

for V + =50 MeV . (36)
Of course, the g particle does not feel exactly a density
po, but something smaller. With the first two potentials
we can expect g widths about 90—100 MeV. With the
last one, we expect the width to be around 24 MeV [note
that if the effective value of p decreases, ImV„ increases
such that Im V„(p,tr)p, tr= const].

It is interesting to see that for VN= V + the inclusion

of the absorption channels in the N' width does not
change much the imaginary part of V„, with respect to
V„"'. However, it reduces appreciably the real part,
making the potential less attractive. The resonant char-
acter of the optical potential [Eq. (6)] is responsible for it.

Energies and widths, calculated with the potential of
Eq. (6), ImX of Eqs. (34) and the different choices of
ReX +, are given in Table I. We also add the results

given by the omission of the many-body corrections. In
the case of ' C and no medium modifications, we find
only one bound state, which we denote ls. (Note that the
principal quantum number n does not count the number
of nodes, because here we have a complex potential. It
only serves as a classification index ordering the levels as
the energy in each partial wave / increases). For Ca, we
find two bound states: one with l =0 and the other with
l =1, while in Pb we find four: two with / =0 and two
with I =1. The width of these states is very large, rang-
ing from 82 to 100 MeV. In all cases the sum of half-
widths for two neighboring states is much larger than the
difference of energy between the levels (90 versus 10—25
MeV). This would make the identification of the indivi-
dual states impracticable. For the case of medium
corrections and assuming V + = —50 MeV one loses the

N
1s state of ' C, the 1p of Ca, and the 2p in Pb. This is
a consequence of the fact that the real part of the attrac-
tive potential V„ is considerably reduced in size. One
also sees that the binding energies are considerably re-
duced with respect to the former case. The widths are
about 80—95 MeV, similar to those before, and they are
much bigger than the separation of energies of about
7 —13 MeV. The widths are very sensitive to the value as-
sumed for V +. The most favorable case for narrow g
widths is given by V =50 MeV, repulsive instead of at-

The values for the energies and widths appear in the
second column of B and I in Table I, besides the results
discussed above.

As a comparison of Eqs. (35) and (36) shows, the new
potential is less attractive and has a smaller imaginary
part. As a consequence, the states are less bound and
have a smaller width than with the potential of Eqs. (35).
We observe that the trend is, however, similar to the one
before. The separation between the levels is in general
smaller than the widths of the states. The most favorable
case for narrow states appears at V + =50 MeV. The

N
two states in Pb appear overlapped, but are separated
about 4.5 MeV from the continuum. The bound state of

Ca is also separated by about 3.8 MeV from the contin-
uum. However, we should also notice that this case is
also the weakest case theoretically because by taking the
100-MeV difference between the binding of the N and the
1V*, the pole in the propagator of Eq. (6) appears at
&s = 1655 MeV for p =pa, or 170 MeV above the energy
of the Ng system in the atoms studied. Because of that
we can no longer claim dominance of the N* pole. Other
terms in the amplitude would now play a more important
role. Also, below threshold, resonances like the
(1440) would provide a stronger weight to the optical po-
tential, with a repulsive contributive which would un-
favor the binding of the etas in the nucleus.

The other point worth mentioning is that in the wide
range of cases studied, there is always an attraction on
the g which allows this particle to be bound in nuclei
even if with a large width. This would have as a conse-
quence that, in the production of etas in nuclei, some of
the strength would be collected below the continuum of
the asymptotic eta nucleus system.

At this point it is interesting to make connection with
the experimental work of Ref. [6]. In this work the (m, p)
reaction on ' 0 was measured and no appreciable
enhancement was seen in the region where a peak had
been predicted in Ref. [3]. The conclusion of the authors
of Ref. [6] is that the height of the peak should be three
times smaller than what had been predicted. This sug-
gests that the width of the states is at least three times
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bigger than what was used in Ref. [3] and hence I should
be about 30 MeV or more. This would be compatible
with the results of Table I provided the 1V* potential is
more attractive than the one of the nucleon. This seems
to go in the opposite direction as the delta potential de-
duced from the studies of the delta hole model of Refs.
[27—31]. Indeed, the studies with the phenomenological
delta-hole models of Refs. [27—29] give a delta potential
less attractive than the one of the nucleon. These pic-
tures, however, use only pion exchange for the delta-hole
interaction. Instead, the microscopic models of Ref.
[30,31] include also the Landau-Migdal interaction in this
channel, which has a repulsive character. It can be seen
in Ref. [31] that the effect of the Landau-Migdal force
can be simulated by adding a repulsive piece to the delta
self-energy. This, in addition to a calculated attractive
piece and to an attractive Hartree potential equal to the
nucleon potential, leads to a delta potential less attractive
than the one of the nucleon, in accordance with the re-
sults of the phenomenological models. However, the ori-
gin of the Landau-Migdal force lies in the p-wave charac-
ter of the ~XX coupling and this force is absent in the
N*-hole model we have developed here, because the X*
is an s-wave resonance. Hence, the analogy with the del-
ta case would suggest a potential more attractive than the
one of the nucleon.

VI. CONCLUSIONS

We have taken advantage of the strong coupling of the

tl to the X*(1535) in order to make a model for the

gN~gN interaction. The evaluation of the g nucleus
optical potential required the computation of the X*
self-energy in a nuclear medium. Using available empiri-
cal information we could evaluate rather reliably the
imaginary part of X +, but not the real part. Thus we

evaluated the optical potential for several choices of V +

ranging from 50-MeV attraction to 50-MeV repulsion.
We also evaluated the optical potential with two sets of
values for the position and width of the N*. The results
for energies and widths depend strongly on the value of
V + and the mass and width of the N*. For the case

N
where the nucleon and N* have the same binding, we find

several bound states in medium and heavy nuclei. The

widths are, however, very large, of the order of 25 —80
MeV. For other choices of V + the widths become
smaller. Assuming a repulsive N* potential with 50 MeV
of strength the widths are about 20—25 MeV if average
values for M + and I" are taken, or about 5 MeV if the

choice leading to good m.N —+pe cross sections is taken.
In the first case the widths are larger than the separation
of energies, while in the second case, for nuclei like Ca
one obtains a bound state with a half-width smaller than
the binding and hence, separated from the continuum.
However, we also observed that this is a case where the
dominance of the N pole no longer holds and other
terms of repulsive character would become more impor-
tant, thus reducing the binding of the g and the changes
to have widths narrower than the separation between the
levels. Thus, even with the present uncertainties we tend
to conclude that it is rather unlikely that any narrow
peaks, corresponding to bound eta states in nuclei, are
detected experimentally. In this sense, the experimental
results of Ref. [6], together with the theoretical analysis
of Ref. [3], already suggest that the widths in a nucleus
like oxygen are around 30 MeV or larger. This, accord-
ing to the present study, would indicate that the X* feels
an attractive potential bigger than the one of the nucleon.
Our calculations further indicate that there are bound
states of eta in nuclei, which would pick up some of the
strength in g-production reactions in nuclei even if with
large decay widths.

The many-body study done here could be applied to
the problem of propagation of g particles through nuclei.
It is clear, however, that we need further information
concerning mostly V +. Experiments on g absorption

could provide information on that magnitude since we
have shown that there is a large sensitivity of ImV„ to
the value of V +. In addition, precise experiments

searching for eta bound states could also provide more
detailed information on that magnitude.
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