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An algorithm is developed by which two nucleon efFective interactions are constructed to fit on-
and off-shell t and-/or g-matrix elements. The effective interaction is defined as plane-wave matrix
elements of local operators that may have explicit energy and medium dependences. It comprises
central, tensor, spin-orbit, quadratic spin-orbit, and angular momentum square operators, all with
Yukawa form factors. As examples, the Paris and Bonn potentials are used to construct t matrices
for projection onto chosen forms of efFective interactions.

I. INTRODUCTION

Microscopic analyses of few body and nucleon-nucleus
scat tering ultimately require a specification of the
nucleon-nucleon (NN) t matrix and/or g matrix, both
on and off the energy shell [1,2]. These matrices are so-
lutions of the Lippmann-Schwinger and Bethe-Goldstone
equations respectively when a realistic NN potential is
used as input. Many such solutions are required in prac-
tical applications, and as they are obtained numerically,
an interpolation method or an eA'ective operator specifi-
cation is almost mandatory. Collectively, these schemes
are called effective interactions about which there exists
an extensive literature. But as it is not our aim to give
an historical review of the concept of eA'ective NN inter-
actions, we note only some pertinent studies [3—5].

The specification of eR'ective interactions is a part of a
program in which the relationship between two nucleon
observables and complex nuclear structure and reactions
is the central issue. Herein we concern ourselves with
part of this total program. This is illustrated in Fig. 1,
which is a scheme of various routes that link two nucleon
observables with the notions of interactions between two
nucleons.

Boson-exchange models [6—8] form one route and solu-
tions of their equations of motion lead directly to partial-
wave two-nucleon t matrices t~&F&+(k', k; E). Ex aequo the
same rationale applies to the specification of partial wave
g-matrix elements, and so no further general reference
will be made to them. As it is important to have a nonrel-
ativistic potential, those field-theoretic studies construct
NN potentials [one-boson-exchange potential (OBEP)]
of central, tensor, spin-orbit and quadratic spin-orbit
components, which give proper descriptions of the long-
and medium-range interactions. The short-range part is
simply parametrized as, ultimately, it must reAect quark
degrees of freedom. The other route shown in Fig. 1
makes use of inverse scattering theory [9] in which the
Schrodinger equation is the equation of motion. Inver-
sion is the most appealing and mathematically rigorous
link between data and potentials since it is based solely

OBEP ~

inversion
1r

V(r)

(k', k;E) =

efFective interaction

FIG. 1. A scheme which links NN data and efFective in-
teractions.

upon the chosen equation of motion and the existence of
a sensible potential. Not only does inversion show how
that link is made, but also it facilitates a direct connec-
tion between data and off-shell t matrices [10,11]. In the
most widely used form of inversion of NN data, the un-
derlying potentials are local and energy independent for
each partial wave [9, 11,12]. Such potentials will be ap-
propriate and very convenient for nuclear structure and
reaction applications.

We consider the eA'ective interaction to be a local op-
erator in relative coordinates whose plane-wave matrix
elements optimally reproduce the t-matrices on and oA'

shell. An often used ansatz is a mix of central, tensor, and
spin-orbit operators [3—5]. We extend that ansatz herein
by adding quadratic spin-orbit, (L.S), and angular mo-
mentum square, (I), terms. The resultant form, which
is very similar to those of the one-boson-exchange poten-
tials, has enough degrees of freedom to fit on- and oA'-shell
t matrices in many partial waves, but yet be convenient
for evaluations of two-body matrix elements. Since the
application programs do not include the second tensor
term Sq2(Q) of Love and his collaborators [5], which de-

pends upon the direction of the vector Q = k+ k', it is
not considered herein. As we shall show, it is fallacious to
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use only a part of an effective interaction in applications.
It remains to define the projection method by which

the optimum set of parameters associated with the ansatz
is determined. Details of the method are given in Sec. II
and examples are presented in Sec. III.

free NN interaction cases but, if the data to be matched
are reaction matrix elements, then they will also be den-
sity dependent, viz. Vp(E, k~) where kz designates any
nuclear medium correction effects.

The complete t-matrix in partial-wave decomposition
1s

II. THEORETICAL BACKGROUND

The problem of interest is to match on- and oA'-shell
t-matrix elements to values of an effective interaction
whose character and functional forms have been chosen
for convenience of use in other studies. We seek a scheme
that allows those t-matrix elements to be of varied origin.
For example, the free on-shell NN t-matrix elements, the
half off-shell free NN t-matrix elements, the fully off-
shell free NN t-matrix elements, or the nuclear matter
g-matrix elements may be selected as the input and they
form, as such, the reference data. With reference data
assumed to be in partial-wave form, we denote t-matrix
elements by t~&P&+(k', k; E). For the two-nucleon system
k, k' are the relative momenta in the incident and outgo-
ing channels whose orbital angular momenta are I and
I.' respectively, with E being the center-of-mass energy.

We seek a local energy-dependent, and possibly also
density-dependent, operator whose plane-wave matrix el-
ements reproduce, in a least-square sense, the reference
data. This local operator is the effective interaction and
it is written in the form

V(r) = ) Op(p)Vp(E),

Hereafter we shall use the collective channel quantum
number n = (STL'LJ) whenever possible. Then, with
the partial-wave expansion of the effective interaction

(k'IVlk) = ).&-(k')(k' IOp(V)Vp(E)lk )~.'(k)

we can equate multipoles giving

t (k', k;E) = ) (k'niOp(p)ikn)Vp(E).
P

(4)

The matrix elements of Op(p) are products of radial in-
tegrals I"(k', k, p) and matrix elements of the operators
in the effective interaction. The integrals involve Bessel
functions and are specified by

I" = I"(k', k, p) = jl, (k'r)e ""r"+ijl.(kr) dr. (5)
0

They are analytic in terms of Legendre functions of the
second kind, with arguments

h
(k'Irlk) = ) y,',,(f'),",, (k', k; E)y,', t(f,)

JSTL'LM

(2)

wherein the operator structure involves central, tensor,
spin-orbit, quadratic spin-orbit and I components that
act upon relative two-nucleon states. We allow for a max-
imum of six Yukawa form factors to be associated with
each operator whence the sum over P is at maximum 84.
In erst application we shall not use the full Qexibility of
this ansatz. In particular, we will constrain the (L S)
and I form factors to have the same set of ranges as
the (I S) term. Such a choice facilitates tranforma-
tion of the ensuing effective interaction into forms using
other operator specifications [13], which is also true for
the central interactions if one wishes to transform to a
form involving Wigner, Majorana, Bartlett, and Heisen-
berg potentials. With these reductions the effective in-
teraction has a maximum of 18 ranges in its specification.
Practical applications may reduce this even further. Typ-
ically, only four ranges are required for any component.
On the other hand, all complex strengths are taken as
independent. They are only functions of energy for the

Specifically

I (k', k, p) =,Q ( )

( zkk' 2z~
x

~
L+ + — II r

p 1 —z

t' 2z kk' l
—z' p' y

I-+' I+'

The nondiagonal integrals for the tensor force are more
involved and we use the results (A.8) and (A. 10) of Haftel
and Tabakin [14] to find

I22 0(k', k, p) =
W

2 2

k+ k' 2 k —k' 2
~12k 1— —12k 1— 9'+(k+k')z (, „'+(k+k')2 „2+(k —k')' „'+(k —k')'

and



PARAMETRIZATION SCHEME FOR EFFECTIVE INTERACTIONS

2I+5 Ck)
Ir'+s, r+i(k' k I ) = ~, ~ [Ir+~,r. + Ir+2, r+2(k' k S')1 Ir+i, r+i(k' k S )

The central, (I S), (I 8), and Iz matrix elements
involve L' = L and A = 0. The tensor matrix elements,
however, involve I' = L and L' = L + 2 with A = 2.

It is convenient to use matrix notation, with which (4)
becomes

with d(i) being the dimensionality of the components.
The reference data, T (E) = T (k', k; E), then form a
column vector of length rn.

When solving (13), we use the singular value decom-
position (SVD) [18] of the matrix 0, namely,

T (E) =0 p(V)Vp(E). n = UDVt. (17)
Since we assume all ranges to be independent of O', I",
and E, and all strengths Vp(E) to depend only upon en-
ergy, this system of equations must be satisfied for any
pair of momenta k' and k. But, with a finite number of
potential strengths and ranges to match t matrices in a
hyperplane of (k', k, Ej, the problem is an ill-posed one.
This situation is typical of inverse problems, for which
there exists an extensive literature on methods of solu-
tion [15) and in which regularization techniques play a
prominent role [16]. For the ill-posed problems we face,
a posteriori regularization is most pertinent since then
physics is the determining factor in selecting the opti-
mal regularization procedure. As a consequence, we con-
sider here only the solution of the normal equation which
amounts to minimization of the Euclidean norm

min:= ~(0 p(p)Vp(E) —T (E)((. (»)
This minimum must be found with respect to variation of
the set of ranges (p) and interaction strengths (Vp(E)).
With the conditions imposed, the problem is linear with
respect to the strengths but nonlinear in the ranges. Nev-
ertheless, that problem is separable so that the solution
is found in two steps. In the first, we formally replace
Vp(E) by the normal solution of (11) and search for

min:= ~)0 p(p)Op+ (IJ)T~(E) —T (E)(~ (13)
to determine optimal values of the ranges p ~ po,.
a result independent of the values of the interaction
strengths. The matrix Op signifies the generalized in-

verse [17] of 0 p. Then, with that set of optimal ranges,
the normal equation for the strengths has solutions

OtOv; = A;v;.

The same positive-definite eigenvalues A1 & A2 & .
A„& 0 and zero values A„+1 ——~ - ——A„= = A„, = 0
occur in both equations, with the rank r = r(O) being
the same for both matrix products. Using o; = +~A;,
i = 1, . . . , r the eigenvectors satisfy

Ovi = ~iud

and

0 u;=o;v;f (21)

so that that triple set (u;, v;, cr;) form the singular value
system of O. Furthermore, the matrix U consists of the
orthonormal eigenfunctions (u;) being r column vectors
of length m. Likewise (v;) form the column vectors of
V, and D is the diagonal matrix

D = diag(oi, . . . ) a„).
The generalized inverse of 0 is defined thereby as

0+ = VD+Vt

(22)

wherein

The details of this decomposition follow by considering
the semipositive Hermitian matrices and their eigenvalue
systems, viz.

OOtu; = A;u;

Vp(E) = ) Op+. (y.,)T.(E). (14) D+ = diag(~, ', . . . , ~„'). (24)

We recall that the matrix elements of 0 p(p) and those
of the generalized inverse Op+ (p) are functions of k' and
k while those of the t-matrix are functions of k', k, and
E. To evaluate the norm in (12) and (13), it is customary
to choose a diagonal weight function m and to discretize
k', k, and E. For convenience, these weight factors are
included in (ll) and they shall be specified in Sec. III
when the numerical results are given. Thus, we obtain a
rectangular matrix, 0 F R " and m )) n, where

With this representation, the minimization problem (13)
reduces to

(25)

or equivalently

(26)

m = d(n)d(k')d(k)d(E)

n = d(P) (16)

Because the eigenvectors (uz) depend upon the ranges
(p) in a complex functional form, the minimum of Eq.
(25) or the maximum of Eq. (26) must be found numer-
ically.
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ms —d(n). ('29)

This case can have m3 & n and so be underdetermined.
Even so, the method remains valid and gives a unique
solution. Various other schemes can be designed. For
example, if an energy-independent representation of the
on-shell f matrices is desired, then the dimension is

m4 —d(n) d(E) (30)

Finally, we note that the solution of (14), for {Vp(E)),
is the result of applying the optimal set of ranges in the
computation of the generalized inverse of the matrix O.

With the optimal set of ranges (po), the strengths
Vp(E) are computed from (14) using the data in sub-
sets for every chosen value of F. The dimensions of the
column vectors in 0 and T in (14) reduce thereby to

mi —d(n)d(k') d(k),

for an interaction with energy-dependent strengths
matching all chosen on- and oA'-shell $-matrix elements.
A less general effective interaction results from match-
ing on- and half oA'-shell t-matrix elements for which
E = h k /2m and the dimension is reduced to

m2 —d(n) d(l").

The least constrained effective interaction uses only the
on-shell data, for which as k' = k,

It is during this last step of finding the strengths (Vp (E))
that various options of regularization procedures would
enter.

III. EXAMPLES

By the very nature of its method of construction, an
eA'ective interaction will reQect not only the bias taken as
to its form but also the selection of data from which it is
specified. In our case, we have chosen the form of the ef-
fective interaction with applications in mind of defining
microscopic model optical potentials and transition in-
teractions of use in microscopic distorted-wave Born ap-
proximations (DWBA) of (p, p') and (p, n) reactions. As
a consequence of the energy regime below 500 MeV that
is pertinent to those applications, the data selected was
from all coupled and uncoupled channels up to and in-
cluding total angular momentum J = 4. Therewith this
eA'ective interaction development is an integral part of the
latest version of Raynal's DWBA-90 program [13] as that
permits use of the full complexity of these effective inter-
actions. It can also use energy- and density-dependent
g-matrices as well as microscopic optical potentials which
may be generated consistently from the same effective in-
teractions.

It was our aim also to define effective interactions that
well represent both the on- and off-shell properties of the
t matrices. This is achieved by explicitly using a corn-

TABLE I. ER'ective interaction for E = 172 MeV, k = 1.44 frn to the Paris t-matrix.

Central interaction

Re V (MeU) Im V (MeU)

S=0, T=0
Re V (MeU)

S=O, T =1
Im V (MeU)

0.71000
1.26374
2.14196
4.00000

Volume integrals

Central interaction

0.71000
1.26374
2.14196
4.00000

Volume integrals
Spin-orbit interaction

18.024327
148.69515

—220.75975
585.41253

-127.16301
783.60799

—2539.0942
3497.4085
—1211.7

S=1, T=0

—1.0635907
26.898631

—374.77139
834.47924

-185.95

42.080521
—285.95988
89.929157
621.60107
—466.57

—49.510696
236.41704

—1146.2398
2042.9705
—908.93

S=1, T=1

—10.110740
89.933070

-561.06459
1768.3668

307.73

34.575848
—237.31385
369.48829

—134.57094
—99.071

—0.25508064
7.6999532

—159.01109
209.08513
—217.08

0.94706
1.43559
1.95761
4.00000

Volume integrals
Tensor Sqq interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals

11.147494
—272.17358
494.46009

—1877.2219

—34.426498
300.00814

—682.62652
1933.0394
—139.37

35.375879
—216.60942
468.71518

—1019.4288
—88.816

4.1856042
—51.135144
126.32996

—479.48753
—1.3474

—13.271205
178.43357

—489.34442
49.537669
—663.66

3.3172104
—45.314688
160.97252

—248.64338

43.282

—11.864801
120.35606

—266.55093
562.13762

135.08

0.31998681
—7.8849014
32.279060

—386.79969
—9.6968
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piete table of on- and oK-shell t matrices [19,20] and they
form a larger data base than used in other specifications.
Previously only the an-shell values of the t-matrix ampli-
tudes [3] or the integrands of the defining integrals of the
partial-wave on-shell amplitudes [4] were fittted. Now
we claim that it is not sufBcient to have just the phase
shifts from experiment, unless one makes use of quan-
tum inversion [10] since the output kernels of Gelfand-

Ievitan or Marchenko fundamental inversion equations
yield the correlated wave functions. From those func-
tions half oH'-shell t matrices can be obtained and then
the fully oA'-shell values follow from an integral equa-
tion [20]. At present our inversion studies are incomplete
whence herein we make use of the Paris [6] and Bonn
[7] potentials for computation of t matrices either in mo-
mentum [19,21] or in coordinate [20] space.

TABLE II. ER'ective interaction for E = 172 MeV, k = 1.44 fm to the Paris t matrix.

p (fm ')

Central interaction

0.71000
1.26374
2.14196
4.ooooo

Volume integrals

L interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals

Central interaction

0.71000
1.26374
2.14196
4.00000

Volume integrals
I interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals
Spin-orbit interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals

(L S) interaction

0.94706
1.43559
1.95761
4.QOOOQ

Volume integrals

Tensor Sq2 interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals

Re V (MeU)

S=o, T=o

—18.330983
305.62993

-509.36186
842.81923

22.195262
-131.69523
210.41806

—252.03458

0.0
S=1, T=o

—111.42369
873.08042

—2922.7137
3956.5065
—805.52

55.144410
—428.39488
345.37322
900.17687

0.0

30.068101
—198.39737
417.53165

—510.35050

179.86

—19.749942
156.85739
254.70007

—1928.8521

0.0

—7.0996164
52.664619

—63.287466
—630.37120

—40.183

Im V (MeU)

5.0464033
—35.391743
—182.13855
451.86596
—296.66

—1.5160382
5.5341767
9.3558769

—54.982265

0.0

62.779395
—496.07939
625.43262
72.406612
—568.53

—22.932404
189.73695

—393.15008
577.50148

0.0

—8.1954638
155.74963

—270.46789
1942.8008

1473.8

19.295254
—181.81620
479.65463

—935.27802

0.0

12.193188
—126.78881
314.31218

—1226.1995

24.103

Re V (MeU)

—55.963896
345.85801

-1452.9948
2369.7517
—792.20

13.100200
—94.662342
124.18207

—17.251216
0.0

S=1, T=1

—56.400142
289.45052

—979.25593
2179.2348
—98.992

101.01598
—703.69514
1306.7686

—1794.7433

0.0

—86.701892
690.26858

—1435.4625
1430.1383
—589.68

—100.24739
719.63852

—1365.1688
1901.0828

0.0

0.70209051
—31.818117
142.18029

—614.57626

8.3208

Im V (MeU)

43.800022
—395.95911

813.88952
—606.72542

—271.06

—12.667806
87.859467

—90.081534
—80.021256

0.0

9.9482966
—99.831498
255.50527

—607.30475
—314.69

—34.131979
289.14393

—581.49844
791.91392

0.0

10.360891
—72.034989
134.04650

—69.788931

90.674

34.653355
—300.15510

623.75241
—892.14394

0.0

1.2616654
—15.882337
46.445924

—181.45882

3.5533
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TABLE III. ER'ective interaction for E = 172 MeV, k = 1.44 fm to the Bonn-R t matrix.

p (fm ')

Central interaction

Re V (MeU) Im V (MeU)

S=0, T =0
Re V (MeU)

S=O, T=1
Im V (MeU)

0.71000
1.26374
2.14196
4.00000

Volume integrals

Central interaction

0.71000
1.26374
2.14196
4.00000

Volume integrals

Spin-orbit interaction

0.94706
1.43559
1.95761
4.00000

Volume integrals
Tensor Sg2 interaction

33.624745
53.748090
122.88682

—609.34366

1119.1
S=1, T=O

—96.154968
575.69430

—1994.8973
2846.4309
—1095.5

59.186510
—667.07225
1314.3374

—4328.2765
—2327.8

—6.1094675
58.821167

-490.16148
1318.4042

3.4732

55.025157
—425.43295
524.57620
71.881025
—482.60

46.834783
—328.65148
741.17406

—2050.2645
—527.63

—53.013265
291.80127

—1261.3024
2075.3637
—850.16

S= 1, T=1

—6,4485486
81.119633

—578.53303
1858.1802

352.37

—6.2174043
123.73341

—368.46772
—176.59858

—679.60

28.959560
—189.37474
203.63369
89.802735
—139.91

2.4880234
—16.335390
—97.894229
166.59942
—203.80

—9.2276092
96.315478

—206.29062
401.44244

96.836

0.94706
1.43559
1.95761
4.00000

Volume integrals

—37.911555
339.37330

—803.71221
2851.6767
—135.86

3.7295015
—49.102252
120.66045

—445.34627
—5.6328

4.1370261
—57.125981
200.96819

—444.55518

45.749

0.35353505
—8.7871237
37.038233

—418.06771
—9.3047

As indicated in Sec. II, our procedure permits a weight-
ing of the minimizations [(12), (13)] in select regions of
momentum space. Specifically, we use

(k —ko)')

where n and P are Gaussian widths, h k&/2m = Eo is a
pertinent energy, and mo is the normalization. Addition-
ally, in the search of ranges via (13) we add to the norm
a regularization, namely,

(32)

to ensure a spread of the values of those ranges. Therein,
y and c are two control parameters.

Tables I and II give two efI'ective interactions that were
obtained by a mapping onto the half oA'-shell Paris t ma-
trices with parameter values n=5 fm i, P=0.4 fm i, and
ko ——1.44 fm i. The dimensionality is given by (28). The
first interaction comprises four Yukawa potentials e ""/r
each in both of the central and the spin-orbit compo-
nents, and, multiplied by r~, in the tensor components.
Real and imaginary terms have the same ranges. The
second interaction is an enlarged version of the first; en-
larged by the inclusion of I2 and (L S)~ terms whose
volume integrals were constrained to be zero. Thereby
we can compare like components of the two interactions.

The inclusion of the additional operators does improve
the fit to the input t matrices but changes the strength
parameters from those of the first interaction. Omitting
the L2 and (L S)2 terms from Table II does not equate to
Table I. Hence one cannot simply compare common com-
ponents of any two efI'ective interactions, e.g. , the central
singlet even part of the interactions [3—5], if either their

0.2—

0.0
U'

-0.2—

-0.4
0.0

I

0.5
I I

1.0 1.5
q (fm ')

I

2.0 2.5

I"IG. 2. Comparisons of So half-off shell t matrices at
E=172 MeV, equivalent to an on-shell momentum k=1.44
Fm . Their real (Re) and imaginary (Im) parts are shown
for the Paris t matrix (solid line) and the efFective interactions
of Table I (dashed line) and Table II (dotted line).
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0.2

0.0 0.0

-0.2

O'
~ -0.4

-0.6—

-0.8
0.0

I

0.5
I I

1.0 1.5
q (fm ')

I

2.0 2.5 0.0
I

0.5
I I

1.0 1.5
q (fm ')

I

2.0 2.5

FIG. 3. As for Fig. 2 but for the Sq channel.
FIG. 5. As for Fig. 2 but for the imaginary part of the

D2 channel t matrix.

0.1

0.0

-0.2—

-0.3
0.0

I

0.5
I I

1.0 1.5
q (fm ')

I

2.0 2.5

FIG. 4. As for Fig. 2 but for the real part of the D2
channel t matrix.

modes of construction vary or one involves more linear
independent operators than the others. It is even less sen-
sible to compare effective interactions, as derived herein,
with any obtained from fits to select nuclear reaction data
[22, 23] even if the latter were to use the same set of op-
erators.

We show in Table III an effective interaction of pre-
cisely the same form including ranges and weighting pa-
rameters as for Table I. The input t matrices were based
upon the Bonn-R potential [7]. As the Paris and Bonn-R
potentials differ, so also do the strengths of their associ-
ated effective interactions.

Given the diversity between the parametrizations and
numbers of Tables I and II, one might expect quite sig-
nificant variations in the t matrices they produce. But
in fact, for low partial waves, both give comparable and
good fits to the input data. Those of the Pq and Po ~ ~

channels fit both the real and imaginary parts of the Paris
half oR'-shell t matrices to better than a few percent over
an off-shell range of +1 fm about the on-shell value,
1.44 fm i at an energy of 172 MeV. The So and Si
channel values are shown in Figs. 2 and 3. Therein the
results obtained from Table I are presented as dashed
lines, those of Table II are given by dotted lines, and

the input data are shown as solid lines. Both are good
representations of these t matrices on and off shell, with
unitarity preserved to within 10%. From these results of
low partial-wave channels, there is no obvious need for
the introduction of L and (L S)~ operators. It is the
higher partial-wave data that necessjtate their inclusion.
Consequently, analyses of data below, say, 100 MeV need
only parametrizations as given by Table I. We show in
Figs. 4 and 5 results for the real and imaginary parts,
respectively, of the D~ channel at 172 MeV wherein is
used the same nomenclature as in Fig. 2. In this instance
the improvement in fit that is obtained by using Table II
rather than Table I is dramatic. Overall we have, with
Table I, a fit that is better than 10'%%uo.

IV. SUMMARY AND CONCLUSIONS

A method has been developed with which both on- and
off-shell NN t or g matrices for many energies can be
used to specify effective interactions. With the assump-
tion that characteristic ranges of the eR'ective interaction
are energy independent, the procedure separates allowing
determination of the optimal set of ranges which can then
be used to solve the normal equation for the strengths.
The use of the singular value decomposition of a matrix
facilitates solution of the first step.

The method was applied to free NN t-matrix data ob-
tained from the Paris and Bonn-R potentials, and map-
pings were achieved to local effective interaction in rel-
ative coordinates. Those interactions have the form of
central, i2Siz, (I S), (I. S)z, and L operators each
with a combination of Yukawa form factors. Such an
effective interaction form is used in the latest nuclear re-
action analyses program DWBA-90. Herein we have found
that the (L . S)z and L terms are important in fitting
the total t matrix whenever partial waves with I ) 1 are
of significance. Such is the case for energies in excess of
100 MeV.
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from the Australian Research Council.
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