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Radial characteristics for nuclear states with weakly bound nucleons
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The dipole transition densities as well as the radial pattern of partial widths for bound states embed-
ded in the continuum, which are excited in the photonuclear reaction processes ' O(y, n) and ' O(y, p),
are investigated in the framework of the continuum shell model for radii up to 11 fm. The d3/2 nucleons
in the resonance states of ' 0 are loosely bound. Their extension well beyond the nuclear surface is tak-
en into account in a straightforward manner. The interaction of the incoming photon with the nucleons
of the target nucleus takes place mainly in the surface region at about 3 fm. The surface character is
caused, above all, by geometrical effects. The nucleons emitted originate mainly from the interior of the
nucleus due to the strong correlations of the nucleons. By this, the shell-model approach is justified in

spite of the large radial extension of the d3/p nucleons.

I. INTRODUCTION

Recently, neutron-rich nuclei on the very edge of parti-
cle stability are studied experimentally in reactions in-
duced by di6'erent incident particles [1,2]. Theoretically,
the study of these nuclei is of interest because their prop-
erties are determined mainly by weakly bound neutrons
which extend well beyond the nuclear surface. Bertsch
and Esbensen [3] treated the nucleus as a three-body sys-
tem consisting of two interacting nucleons together with
a structureless core. They could reproduce the properties
of "Li and ' Be quite well. Hoshino et al. [4] performed
large-scale shell-model calculations for light neutron-rich
nuclei by taking into account the effect of loosely bound
single-particle states. The radius of "Li came out close
to the empirical value.

The theoretical problem of shell-model calculations for
weakly bound states consists in the fact that the bound
shell-model orbitals no longer provide a good starting
point. When the residual interaction is neglected, some
of the particles may even be unbound [3]. This problem
raised for the description of the very neutron-rich nuclei
exists, indeed, for all resonance states, also for those of
stable nuclei. For example, even in such a stable nucleus
as ' O, the nucleons occupying the 1d3/p shell in the inte-
rior are unbound if the residual interaction is not con-
sidered. In shell-model calculations this fact is ignored.
All nucleons are considered to be bound. In the nuclear
exterior the many-body effects are small. The correla-
tions do not play a role and the interaction is close to the
free-particle one. The d3/2 particles are unbound. In or-
der to describe the resonance states in a straightforward
manner, one therefore has to include the unbound single-
particle states from the very beginning in the calcula-
tions —not only for "Li but also for the resonance states
of such a nucleus as ' O.

In the continuum shell model [5], the Schrodinger

equation is solved with bound and unbound single-
particle states. Analytical formulas are given for the
wave functions of the many-body states as well as some
numerical results are obtained.

It is the aim of the present paper to discuss in detail
the radial characteristics of a nuclear reaction induced by
photons with emission of nucleons from resonance states
to which the d3/2 unbound states give an important con-
tribution. While the photon interacts mainly at the sur-
face of the nucleus, the nucleons are emitted in this reac-
tion from the whole volume due to the correlations be-
tween the nucleons in the interior. This result justifies,
on the one hand, the method to determine the spectro-
scopic properties of a nucleus by means of different nu-
clear reactions. On the other hand, it shows the impor-
tance of the correlations in the interior of the nucleus and
therefore justifies the standard shell-model approach even
in the case if nucleons, which are very loosely bound, give
an important contribution to the wave function of the
many-body system.

In Sec. II, the model is sketched while details of the
calculations are given in Sec. III. In Sec. IV, the results
for the transition densities are represented and compared
to those obtained in the standard shell-model description.
Furthermore, the radial pattern of the photonuclear reac-
tion process is defined and numerical results for the
' O(y, p) and '

(Oy, n) reactions are shown. Some con-
clusions are drawn in Sec. V.

II. CONTINUUM SHELL MODEL (CSM)
WITH RADIAL DEPENDENCE

The CSM is a nuclear structure model in which the
coupling to the continuum of decay channels is taken into
account in a straightforward manner. It starts from the
conventional shell model (SM) with single-particle (s.p. )

basic states defined in a Woods-Saxon potential. Next,
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(E H)%' =F,— (2.1)

where F is the electromagnetic source term. In the pho-
tonuclear reactions, where the nucleus is excited by the
interaction of the electromagnetic field H;„, with the tar-
get nucleus in its ground state +o, the source term reads

F =H;„,4O . (2.2)

In such an approach, the F term contains the whole in-
formation on the dynamics of the photonuclear reaction.
Hence, in order to study the radial dependence of the
different characteristics of the photonuclear reactions in
the entrance channel, the F term should be modified. In
our opinion, the most natural and simple way is to
change the source term as follows:

the continuum of unbound s.p. states defined in the same
potential is included by means of a coupled-channel
method. The CSM allows a unified description of the
structural (shell-model) and dynamical (coupled-channel
calculations) aspects.

The details of the model can be found in Refs. [5] and

,'6]. Here, only the main idea of the model and those for-
mulas, which are needed for the inclusion of the radial
dependence into the CSM are presented, especially for
the case of the photonuclear reactions.

The total functional space is subdivided, by using the
projection operator technique, into the two orthogonal
subspaces P and Q under the condition P+Q =1. The
subspace Q contains the many-body states of A nucleons
formed by the bound s.p. states and by the s.p. resonance
wave functions up to some cutoff radius. Therefore, the
structural part in the CSM is the same as in the standard
SM approaches. The eigenstates 4&~ of the Q-projected
Hamiltonian H&& are called [5] "quasibound stated em-
bedded in the continuum" (QBSEC). These QBSEC's
differ from the "bound states embedded in the continu-
um" introduced by Mahaux and Weidenmuller [7] by the
contribution of the s.p. resonances from the interior of
the nucleus. The subspace P contains the many-body
states with 3 —1 nucleons in bound orbits and one nu-
cleon in a scattering state as well as the part of the s.p.
resonance wave functions beyond the cutoff radius.

When a nucleus is excited by an external electromag-
netic field, the distortion of the nucleus is relatively small,
and the process can be treated in a first-order Born ap-
proximation. In this case, the external field operator is
not included into the nuclear Hamiltonian and the
Schrodinger equation reads as follows:

W„=('ug '~5(r r')—~F) .

The solution OE of the Schrodinger equation reads

(2.4)

'IIE=pg+g&g &c"g 'IHlgF. &

R E Eq +i I R
—/2

(2.5)

where E~ iI ~I—2 are the complex eigenvalues of the
energy-dependent effective Hamiltonian

(2.6)

in the Q subspace with coupling to the continuum. In
(2.6) we use the standard notation H&&

=QHQ,
H&P=QHP, etc. , where Q and P denote the projection
operators on the Q and P subspaces, respectively, G is the
Green's function with appropriate boundary conditions,
and Gz is its projection onto the subspace P. The eigen-
functions 4z of the effective Hamiltonian (2.6) include
the effects of the external mixing due to the coupling to
the continuum. In other words, 4~ consists of different
shell-model states 4z mixed with different complex
weights due to the nonvanishing second term in (2.6).
The internal (configurational) mixing related to the pure
structural shell-model Hamiltonian H&& is already con-
tained in the functions 4~

The energy Ez and width I ~ of a resonance state R
are determined by solving the equations

proach gives us the radial pattern of it, which is the con-
tribution Ao(ro) to the cross section cr from a small in-
terval around ro, including the geometrical effects. How-
ever, the total (integrated) physical cross section is not
equal to the sum of the Ao. (ro) over all ro considered in
the numerical integration because the interference effects
arising from different radii are neglected. In this sense,
the function 5(r r'—) in (2.3) is dimensionless. The same
is true for transition strengths also considered in the
present paper.

In order to illustrate how this procedure works in prac-
tice, let us consider the transition from the ground state
+o of the target nucleus A to the unbound state %z of
the system (A —1, 1) under the electromagnetic pertur-
bation H;„,. Here the index c denotes a certain channel.
In the first-order Born approximation, this process is de-
scribed by the usual transition amplitude [8] (Oz' '~F),
where 4' is solution of the Schrodinger equation
(E H)%=—0 without source term. Now, in the radial-
dependent case, we have the modified transition ampli-
tude

F~F„„=F5(r r') =H;„,5(r r')&0 ,—o—(2.3) E =E (E=E ), I =I (E=E ) . (2.7)

where 5(r —r') is the Dirac delta function. Then, an in-
tegration over the radius variable r' in the matrix ele-
ments gives us the r-dependent characteristics.

Notice that we only use 5(r r') instead of the —full ra-
dial part of the Dirac delta function 5(r —r') l(rr') in or-
der to keep the radial part of the spherical Jacobian r in
the radial integrals. The advantage of using (2.3) is that
the contributions from different radial ranges to the total
characteristics can be studied immediately. More pre-
cisely, if we consider, e.g. , the cross section o, our ap-

In the CSM, the function Qz in Eq. (2.5) is the wave
function of the resonance state R,

+R R ) @R(ER )+~R(ER ) &

where co&, defined by

Hpg+~(+)

(2.8)

(2.9)

is the continuation of C)'z into the continuum. By using
the P projector,
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P y f dElgc(+)&(gc(+)l
C C

Eq. (2.8) reads as follows:

~(+) C,(+)
R R

+y f"dE'P(, +)
E[+)—E

(2.10) Here, Ez is the photon energy, C is a dimensionless con-
stant, while the reduced matrix element (Q~ llH;„, llano&
describes the transition from the target state No to the
resonance state AR under the small distortion H,„,. For
electric dipole transitions, the space-dependent part of
H;„, reads r Y, in the long-wavelength approximation.
Defining

x (gc(+)lHl@(+)
& (2.11)

D~ =D~ (E =E~ ) (2.18)

(E(+) H )gc(+)—0 (2.12)

Coming back to the transition amplitude (2.4), it splits,
according to (2.5), into three terms: (i) the direct term,

(2.13)

(ii) the resonance term,

where c, is the threshold energy of the channel c. Final-
ly, the symbol Pz denotes the scattering wave function.
It is solution of the P-projected Schrodinger equation in
the coupled-channel representation

in analogy to (2.7), one gets the following expression from
(2.17) for the radial-dependent electric-dipole transition
strength:

Dg =CE, &f)~ ll«I'( ~(r —r')ll+0&' (2.19)

In the following, DR is called the geometrical dipole tran-
sition strength. This expression is quadratic in the transi-
tion densities, both of which are taken at the same radius.
That means interference effects from different radii are
neglected. The dipole strengths are complex like the NR
and QR due to the coupling of the resonance states to the
continuum. They are directly connected with the reso-
nance part of the photoabsorption cross section [8]

x (4'~ ' HlP~'+'& (2.14)
E —ER+iI R/2

and (iii) the channel-resonance scattering term (CHR),

w(cHR) y ( ——
)lg( i)lF &

1

E —ER+ I R/2

(2.15)

(E'+' H»)PF(+) =PFS(r r—) . —(2.16)

The CHR scattering part follows from the coupled-
channel wave functions defined by Eq. (2.9). According
to (2.11), the co+ do not depend on F„„,. The resonance
reaction part is connected with +R. It is the only par't of
the analog which is calculated in the usual SM.

To describe photonuclear reactions, the electric mul-
tipole strength of the resonance state R is defined [8] by

(2.17)

In Eqs. (2.14) and (2.15), the matrix elements
((I)I( lHlgF'+'& are the amplitudes of the partial widths
for the emission of nucleons from the excited resonance
states R into the channels t.".

In the following, we present the radial patterns of the
photonuclear cross section, the corresponding dipole
transition strengths and densities, as well as the ampli-
tudes of the partial widths, which characterize the pho-
tonuclear process.

The cross section follows from the total wave function
(2.5). It is the coherent sum of the direct, resonance, and
channel-resonance terms in accordance with the three
transition amplitudes (2.13)—(2.15). The direct reaction
part of the cross section can be calculated by means of
the scattering wave functions gf which obey the P
projected Schrodinger equation with source term

o' '(E)=crd"(E) —Im —g, (2.20)
R E E+i I —/2

where o.z" denotes the direct part while the second term
contains the resonance and channel-resonance parts of
the total photonuclear reaction cross section.

III. DETAILS OF THE CALCULATIONS

In the present paper the y+' O reaction has been
chosen to study the radial pattern of the photonuclear re-
actions. In the calculations, the four one-nucleon exit
channels (p+' Ns, ), (p+' N*), (n +' Oz, ), and
(n + '50* ) with threshold energies taken from the experi-
ment are considered. The wave functions of the target
nuclei correspond to the 1p3/2 and 1p&/2 hole states of
the ' N and ' 0 nuclei.

The shell-model calculations are performed using a
Woods-Saxon potential for the single-particle states with
parameters similarly to those in Ref. [9]. Also the
Coulomb potential is included. The effective nucleon-
nucleon forces are of the type

V(1,2) = —Vo(a +bP, 2 )5(r, —r2 ) (3.1)
I

with the parameters Vo =500 MeV fm, a = 1, and
b =0.5. The symbol P &2 denotes the spin-exchange
operator.

In the compound nucleus ' 0, the resonance states
with one-particle —one-hole ( 1p- 1h) structure are con-
sidered, which are the dominating states excited in the
y+ ' 0 reaction in the energy region of the giant dipole
resonance. One of the nucleons is allowed to occupy the
(Id~i~, 2s)i2, ld3/2) shells by leaving one hole in the
(lp3i2, lp)zz) shells. The ld3&z shells describe the part of
the unbound d3/p orbits in the interior of the nucleus.
Besides these 1p-1h states, more complicated ones with
2p-2h structure are considered. In these cases, two nu-
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TABLE I. Shell-model energies E&, positions Ez, widths I &, isospins T& and leading configura-
tions of the nine 1 resonances with 1p-1h structure in ' O.

State

2
3
4
5
6
7
8

9
10

Resonance R
Leading configurations

2$1/z lp i gz

2si/z 1p3
1d3/z 1p, /z

2s&/z 1p3/z
1d3/z 1p, /z

2S1/2 1p 3/2

1d3/z 1p 3/z

1d5/z 1p 3/z

1d3/z 1p 3/z

TR

EsM
R

(Mev)

10.88
13.59
16.79
16.91
17.57
20.11
22.49
23.92
25.30

Eq
(Mev)

9.57
13.22
16.85
15.96
17.35
19.61
22.44
22.45
24.39

(keV)

230
600
520
310
140
480

1360
2000

cleons are allowed to occupy the (1d~/z, 2s, /z, ld3/p)
shells by leaving two holes in the (ls) and (lp3/p lp»z)
shells. The cutoff' radius taken in the calculations is 7.5
fm. In the ' 0 target ground state, all nucleons occupy
the s.p. states up to the Fermi surface, i.e., the 1s»z,
1p3/p and 1p, &~ shells.

Diagonalizing the shell-model Hamiltonian H&&, 10
QBSEC's with lp-lh structure and 76 with 2p-2h struc-
ture for J = 1 are obtained. Every QBSEC contains,
due to internal mixing, contributions from all states of
the. s.p. basis. The states with the largest weights are
called leading configurations, although their weights are
smaller than 0.7 in some cases.

Basing on these shell-model calculations, the coupled-
channel equations are solved in the CSM in order to take
into account the continuum influence including the
"tails" of the d3&z unbound states. In this approach, all
the parameters of the potential and the Hamiltonian are
the same as in the shell-model calculations. Thus, a
unified description of both the structure and the scatter-
ing characteristics is guaranteed.

Diagonalizing the effective Hamiltonian (2.6), one gets
the resonance energies E~ (2.7) containing the effects of
external mixing via the continuum of decay channels.
Table I presents the shell-model energies Ez, the CSM
resonance energies E~, widths I ~, isospins T~, and the
leading configurations for all lp-lh 1 QBSEC's. The
leading configurations of the states 4, 6, 8, and 10 contain
one particle in the d3/Q shell which is, indeed, an un-
bound state. The isospin is not a good quantum number,
but the impurities are small in most cases. Due to isospin
mixing, Dz differs from zero for T=0 states, but ~ReD~

~

is at least 2 orders of magnitude smaller than for T=1
states [8]. The shifts Ez Ez in the positi—ons of the res-
onance states are caused by the coupling to the continu-
um. The two resonance states 8 and 9 with different iso-
spin have different Ez but almost the same E~. The res-
onance state 1 is the center-of-mass spurious state. It is
possible to exclude it by using the method given in Ref.
[5]. Since, however, its mixing with the other resonance
states is not significant in ' O (see Ref [5]), we do not con-
sider it in the following and do not exclude its small con-
tributions to the physical resonance states.

The 1 states with 2p-2h structure are described in
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0.0
—0.2
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—1.8
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I I
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FIG. 1. The geometrical dipole transition densities for the
resonance states 7, 9, and 10: Bz (full line), B~ (dashed line),
and B~ (dash-dotted line). The amplitudes B& and Bz are cal-
culated at the energies E&.
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Ref. [10]. Also, these states have contributions from
configurations with particles in the d3/2 unbound states.

IV. RADIAL PATTERN QF THE y+ ' 0 REACTION

A. Dipole transition densities and partial widths

They are real, energy independent, and play a basic role
in the CSM since they are an input to the coupled-
channel calculations. The full curves in Fig. 1 show the
radial profile of the BIt for the QBSEC's R =7,9 [giant
dipole resonance, (GDR)], and 10 (see Table I). The
states R =9 and 10 have the leading configurations with
one particle in a shell nlj with n =1 while it is in a shell
with n =2 in the R =3 and 7 cases. We see that the main
contribution to the geometrical shell-model dipole transi-
tion density comes, in any case, from the ' 0 surface re-
gion around 3 fm independent of the difFerent nodes n in
the leading configurations. By this the surface nature of
the GDR is expressed.

The role of the continuum can be demonstrated from
the analysis of the radial profiles of the following three
geometrical dipole transition densities (GDTD): Bz

a~=Re&4, IS(r —')I~),
Bz =Re&A+ I6(r —r')IF) .

(4.2)

(4.3)

They are displayed for R =7, 9, and 10 in Fig. 1, too.
One sees that the inner nuclear region (r ~ 2 fm) is almost
not infIuenced by the continuum. The difFerence between
B~ and BR is small, even in the region of the nuclear sur-
face. So, the wave function co~ modifies the geometrical
transition density only slightly and only in the surface re-
gion.

According to our approach, the radial profile of the
transition strength (2.19) can be obtained for every
QBSEC. First, let us consider the geometrical shell-
model dipole transition densities

(4.1)

Calculations performed for the GDTD of the 2p-2h
QBSEC's lead qualitatively to the same results. The sur-
face character observed is therefore independent on the
model space chosen.

Now let us examine the radial pattern of the partial
width amplitudes

~ =&4' Ivs(r —r )Ig'+') (4.4)

which give the contribution to the partial width ampli-
tudes from a certain spatial region around r. In the fol-
lowing, y~ will be called partial width profiles (PWP).
They are, by definition, the exit channel analog of the
GDTD (4.3). The PWP calculated for 27 resonance
states with 2p-2h structure exhibit large contributions
from the interior of the nucleus. A typical example is
shown in Fig. 2. There is no surface efFect due to the
strong correlations between all the nucleons inside the
nucleus, including the nucleons in the d3/2 unbound
states.

The many-particle wave function co~ can be expanded
in channel wave functions co~ as follows:

co~ = Ag Ic )a~(r)lr . (4.&)

Here, the symbol A represents the antisymmetrization
operator. 6'„depend on the radial coordinate of one par-
ticle only [6] while Ic ) contains the dependence on spin,
isospin, and angular coordinates of all particles as well as
the radial coordinates of the 2 —1 nucleons of the target.
In Fig. 3, we see the radial dependence of

I co+ fr I=
Icoz (E =Ez )/rI for the resonance R =9 (and c = 1) for

illustration. The main contribution to the matrix ele-
ments (4.3) arises from the region around 3 fm due to the
radial part of the spherical Jacobian r at small distances
and due to the exponential decrease of the target wave
function 4O at large distances.

Next, let us consider the GDTD in detail. Recently,
charge dipole transition densities (DTD) have been stud-
ied in the continuum random-phase-approximation
(RPA) formalism [11]. Contrary to our approach, the
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I
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I

g o.o4
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3 4 b
' 0 i 0 3
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g0.02

0 2 4 6 8 10r [fm]

FIG. 2. The real parts of the PWP for one of the QBSEC's
(R =1), the wave function of which consists of large contribu-
tions from 2p-2h configurations and small ones from 1p-1h
configurations; c denotes the number of the exit channel.

FIG. 3. The channel-resonance wave function Ice~(r)lrI for
the resonance 9 and the channel index c =1 in dependence on
the radius r. The wave function is calculated at the energy

0
ER =9
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Flax. 8. The scattering wave function ~Pz /r~ vs radius for the
channel index c = 1 at the photon energy E~ =22 MeV.
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It is interesting to investigate the geometrical effects in
the y+ ' 0 reaction in more detail. In the present paper,
the geometrical r dependence of the GDTD is already
taken into account in the definition (2.19) due to (2.3) [see
the discussion below (2.3)]. Its infiuence is shown in Fig.
7. Here, the energy-radius contour map of the cross sec-
tion is shown with F replaced by (2.3) as well as by

I I I I I I I I I I I I I

atr [mb]

I I I I I I I I I I I I I0 I I I I I I I I I I I I I

s — ho [mb/fm ]

'12
I I I I I I I I I I I I I

~ 14 16 18 20 22 24 26

E [MeV]

FIG. 7. The energy-radius contour map of the total dipole
cross section of the y+' 0 reaction with the source term (2.3)
(upper part) and the source term (4.5) (lower part). The level in-
terval is 1.5 mb (upper part) and 0.06 mb/fm (lower part).

FIG. 6. The radial profiles of the cross section of the
' O(y, n) and ' O(y, p) reactions at the photon energy E~ =22
MeV. The full and dashed lines correspond to the full and
direct fraction cross sections, respectively. The coherent sum of
the direct and CHR cross sections is displayed by the dash-
dotted line.

Frr' F5(r —r')F—+ rr' rr' (4.6)

As can be seen from the results, the surface character of
the photonuclear reaction is mainly a geometrical effect
above all in the regions at E~ about 13 and 20 MeV. The
direct reaction part also shows a maximum at about 3 fm
as can be seen from Fig. 6 (dashed lines). This property
results from the behavior of the scattering wave functions
~Pz /r~ (Fig. g) which show the same behavior as the
~
co+ Ir~ (see Fig. 3 and the following discussion). The

inAuence of the interference effects from different radii is
small, generally.

V. CONCLUSIONS

In this paper, the geometrical dipole transition densi-
ties, as well as the radial pattern of the partial widths and
the profile of the photonuclear reaction cross sections on
the double-magic nucleus ' 0 are calculated by taking
into account the coupling between bound and unbound
states in a straightforward manner. The results obtained
show that the interaction of the incoming particle with
the target nucleus takes place in any case at the surface of
the nucleus. The surface character is caused mainly by
the geometrical factor arising from the spherical Jacobian
r in the radial integrals. The surface character is
intensified by the factor j I(9r) (or r' in long-wavelength
approximation) in the integral describing the multipole
transitions of the photonuclear reactions. Therefore, it
will still be more marked in the higher multipole transi-
tions than in the dipole transitions.

Based on these numerical results, we propose to in-
clude, at least, the geometrical factor from the Jacobian
r into the definition of the transition density. Otherwise,
a radial dependence of the interaction between the in-
cident particle and the nucleons of the nucleus is feigned
which, in reality, does not exist. In the transition densi-
ties used in Ref. [11],these factors are not included. The
authors mention, however, that the contributions of the
p-h configurations which are dominant at low r are
quenched in the integral, whereas those of the main p-h
configurations at large r are enhanced. As a consequence,
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the information on the microscopic structure of the state
in the internal region is partially cut out. This statement
corresponds exactly to the surface character of the pho-
tonuclear reactions observed in the present CSM calcula-
tions. Thus, the numerical calculations point to surface
effects even in the light double-magic nucleus ' O.

We conclude from our results that the "radius" of ' 0
is about 3 fm in the photonuclear reaction. This value is
in full agreement with the value of the rms for ' 0 due to
the realistic parameters used for the Woods-Saxon poten-
tial in our calculations. The results show further that the
energy transferred to the nucleus in the photonuclear re-
action is distributed over the whole nucleus, due to the
strong correlations in the interior. The emission of the
nucleons takes place, therefore, mostly from the internal

part despite of the surface character of the photon-
nucleus interaction.

The results obtained here show that the continuum
shell model is a proper basis for describing the properties
of nuclear states which consist of particles some of which
are loosely bound and extended well beyond the nuclear
surface. It is therefore suitable for a description of light
neutron-rich nuclei.
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