PHYSICAL REVIEW C

VOLUME 44, NUMBER 2

AUGUST 1991

Momentum-space method for pionic atoms

A. Cieply, M. Gmitro,* and R. Mach
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, CS 250 68 Re3, Czechoslovakia

S. S. Kamalov
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, SU 101 000 Moscow, U.S.S.R.
(Received 9 July 1990)

A new momentum-space method is developed for calculation of the strong-interaction shifts and
widths in pionic atoms. The singularity connected with the Coulomb potential is treated by using the
Vincent and Phatak prescription. The nuclear and atomic distances are separated in our scheme and
this secures numerical stability of the calculation. The latter property makes the method a useful alter-
native to the earlier algorithms. Sample results for a series of light pionic atoms are shown.

I. INTRODUCTION

A momentum-space pion-nuclear optical potential con-
structed semimicroscopically within the multiple-
scattering theory has been shown recently [1] to describe
very well the available 7 -nucleus (4 < 4 <40) elastic and
total scattering data for the pion energies 20=T7, =250
MeV. The potential contains two phenomenological
complex parameters which have been fitted to the avail-
able 71-12C data. They turned out to vary smoothly with
the energy and are universal with respect to the nuclear
mass number 4 and the pion charge. When compared
with the widely used coordinate-space Ericson-Ericson-
type pionic atom potentials [2], which are based on the
assumption of the zero range of the corresponding 7N in-
teraction, the potential of Ref. [1] contains the finite-
range features in a natural way.

The goal of the present paper is to develop a
momentum-space method for the pionic atoms along the
line of Ref. [1]. To illustrate the need for it we mention
that, e.g., the coordinate-space formulation of the finite-
size (FS) effects [3—5] in the context of the 7-mesic atoms
leads to the integro-differential equation which can be
solved only with a number of additional approximations
[5]. The investigation of similar problems of the detailed
pion-nuclear dynamics as well as the studies of the
respective relativistic features can indeed be simplified if
one addresses oneself to the flexible and convenient
momentum-space representation [6].

The main difficulty one encounters in studying the
atomic systems in the momentum space is the well-known
logarithmic singularity associated with the Coulomb po-
tential of point charges which occurs in each pion-
nucleus partial wave.

A regularization method had been proposed a few
years ago by Kwon and Tabakin [6]. The computer pro-
gram BOPIT [7], which implements the algorithm by
Kwon and Tabakin, is, however, not fully satisfactory
since the calculation is rather sensitive to the choice of
the integration grid [S—7] which should compromise the
requirements dictated by two very different (atomic and
nuclear) characteristic scales.
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Another regularization procedure for the Coulomb
term in the momentum space was developed by Vincent
and Phatak [8] in the case of pion-nucleus scattering. In
the present paper we show that this formalism can be
straightforwardly extended for the solution of the bound
pion-nucleus problem. Unlike in the BOPIT program, the
integration within the nuclear scale is separated from the
integration of the long-range part of the electromagnetic
potential and this secures the very stable performance of
the algorithm. The idea of the Vincent and Phatak regu-
larization has been mentioned by Kwon and Tabakin [6],
but, surprisingly, it has not been exploited in Refs. [6]
and [7].

There are a number of interesting physical problems to
be solved in order to achieve an understanding of the ex-
isting mesoatomic data ‘“‘anomalous” states, role of the
nuclear correlations, and other nuclear structure effects).
We plan to consider some of them in the forthcoming ar-
ticles. In the present paper we limit ourselves to more
technical problems. We shall, in Secs. II and III, present
the method of mesoatomic calculations based on the
Vincent-Phatak algorithm and compare it in Sec. IV with
some earlier calculations. Also in Sec. IV, we display
some sample calculations of the 1s and 2p shifts and
widths for the light pionic mesoatoms.

II. METHOD

The full pion-nucleus optical potential is taken in the
form

V=Ve+Vyp+Vis+Vy, (1)

where Vy is the strong-interaction potential and Vgg is
connected with the electromagnetic corrections due to
the extended charge distributions of the nucleus and the
pion. The potential V- corresponds to the Coulomb in-
teraction of the point charges, and finally Vyp is the
vacuum-polarization potential.

Following Vincent and Phatak [8] we split the poten-
tial (1) into the short- and long-distance parts as follows:
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V=v<+v>, ()
V<=VO(R —r), (3)
>=V@(r—R), 4)

where ®(x)=1 for x >0 and ®(x)=0, otherwise. The
matching radius R is taken such that, for > R, it holds
with the needed accuracy that

(Vps+Vy)®=0, 5)

where ® denotes the radial part of the pion-nucleus wave
function.

In the outer region (r > R) we are then left with the po-
tential

VA o
Vc(r)+VVP(r)=—-q7— [1+_]‘1 K(t)e

—2m,rt

dt

__%Z_cy(,) : ©)

where m, is the electron mass and the function K (¢) (to
be specified in Sec. IIIB below) characterizes the
vacuum-polarization effects [6,9]. As usual, Z denotes
the nuclear charge and a stands for the fine-structure
constant.

With the potential (6), we can numerically solve the
equation

d®> 1(1+1) 2P
A )= | D 2P,
dpzul P P2 p r
2
_ ":Tzcv(r) 5 |u (p) )

starting from the asymptotics

u (p)——Wpi11,(2p) , (7a)

where Wp; 1,,(2p) is the well-known Whittaker func-
tion [10] and

A=[(I+1)P?—=(aZ)*]"*—=1 (A=])

in the relativistic (nonrelativistic) case. Equation (7) with
8=0,1 represents the relativistic Klein-Gordon (KGE,
8=1) or nonrelativistic Schrodinger (SE, §=0) equation
for the Ith partial wave. We have denoted p=kr, where
the complex momentum k is related with the total energy
E =E, —iil,, of the mesoatomic system. The parame-
ter P is proportional to the famous Sommerfeld parame-
ter P = —i7. The definitions are

aZ

E=(m2_k2)l/2_m’ P=T(m2__k2)l/2 (83)
in the relativistic situation, and
k? aZ
E=——— P=%4
) X (8b)

in the nonrelativistic case. Here /1 stands for the pion-
nucleus reduced mass.

The solution u;” (p) of Eq. (7) taken at the point p=kR
will be used in Eq. (10) below for the calculation of the

eigenenergy of the system.

The wave function u;(p), which corresponds to the
inner-region potential ¥ <, has a plane-wave asymptotics
and can be written for r >R as a superposition of the
spherical Hankel functions in the form

u<(p)=ph! ip)+[1—2kF,(k,R)]ph; Pip) . (9)

Matching smoothly at the point » =R the short- and
long-range solutions, we obtain the condition

{ph{ ip),u; (p)}
+[1—2kF,(k,R){ph\ T ip),u; (p)} =0, (10)

where {u,w} denotes the Wronskian u(dw/dp)
—(du /dp)w at the point p=kR. The discrete complex
momenta k =k,; being found as the iterative solutions of
Eq. (10), determine the energies and widths of the mesoa-
tomic system.

To solve Eq. (10), we need to know the amplitude
F,(k,R) which fully contains the effects connected with
the potential ¥ <. Our method of calculating F;(k,R)
goes via the Lippmann-Schwinger (LS) equation solved in
the momentum space and we describe it in the next sec-
tion.

III. AMPLITUDE F,;(k,R)

The LS equation for the pion-nucleus scattering matrix
T (E) reads as

(QT(E)Q)=(Q'|UIQ)

+ [(QlulQ")yG(@™
d3Qn
@3’

where we defined the Green’s function and the potential
as

X{(Q"|T(E)|Q) (11)

2Mg

(V<)?
QF—Q"*+ie’ '

=y <—
u=v 82-/“5

G(Q")= (11a)

Here 6 has the same meaning as in Eq. (7), Q,=ik and
Ms=M

or
My=(QF+ M)

corresponds to the Schrodinger or Klein-Gordon solu-
tion, respectively. Equation (11) can be rewritten in
terms of the pion-nucleus partial-wave scattering ma-
trices T,(Q',0,E(Qy)) and solved by the matrix-
inversion method [11] repeatedly for each (complex)
search value E of our eigenvalue iteration process [see
Eq. (10)]. The actually needed scattering amplitude
F,(k,R) is then obtained from T,(Q,,Q,E (Q;)) by the
relation

/na
Fy(k, R)=—=~—T(Q0,Q0,E (Qo)) - (12)

The rest of this section is devoted to the construction of
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the momentum-space matrix elements of the potential
V<=V®O(R —r). The quadratic term of the potential U
can be treated in the same manner as in Ref. [6].

A. Strong potential

For the strong-interaction part we take the pion-
nucleus optical potential as constructed in Ref. [1]. In
variance with Ref. [1], we use here the Watson version of
the multiple-scattering theory, which allows one a more
transparent treatment of Coulomb effects in comparison
with the Kerman, McManus, and Thaler formulation.

The semimicroscopic first-order potential is expressed
as a product of the isoscalar (ay,) and isovector (ay;)
parts of the scalar pion-nucleon amplitude and the nu-
clear form factor F(q),

(QIVIE)Q)=WA |ag+ ay |F(q),

q=Q'—Q. 13)

The amplitudes ay, and a,, were constructed from the
standard [12] partial 7N amplitudes f/,(g,q;;e) with the
assumption that the off-shell extrapolation is defined
similarly as in the separable-potential model [13], namely,

PRUACTRIAC

'(gr,q5e)=0 (14)
fi,t qf q Lt Di;’(e)
Here 0,=1 (04, = —1) stands for the repulsive (attrac-
tive) 7N interaction,
w (@)
In[DL} ) (e)]= - 28 (15)

TYM+m € —®

and 8{,(w) are the pion-nucleon phase shifts. In the ac-
tual calculations we always take

L

j = — q
vi(g)=v;(q) (1+aZg?)? (16)
with a3 =0.224 fm>.

Note that the angular momentum L (in the 7-N c.m.
system) differs due to the angle transformation from the
momentum / (in the 7-nucleus c.m. system). As a matter
of fact, every pion-nucleus amplitude F; receives contri-
butions from all partial amplitudes f/,. For a detailed
discussion see Landau [14].

Our separable-potential model defined via Eq. [14] can
be put into correspondence with the finite-range model by
Kalbermann et al. [5]. The zero-range potential of the
Ericson-Ericson type, which they start from, is extended
in Ref. 5 to the finite range by the form factors g, (g,)
and g; (g;) as

i qi5e(q0)=8(q7)f1:(q0,905¢(q0))8L(q;) - (17)
Rewriting our Eq. (14) in the form
01 [vi(go) P=D(} (e(go))fL(g0,905¢(q0)) ,  (18)

we arrive at the relations

v (g;)
UL(q())

_belgp)
gL(qf) UL(qo)’

gr(q;)= (19)
between the two approaches. While the Gaussian form
has been used in Ref. [S] for the functions g; (g) and the
range parameters R; and R, have been fitted to the 7-
mesoatomic data, we take as fixed the parametrization
(16) of v; (g) tested previously [1] in the 7-scattering cal-
culations for the low- and medium-energy pions. The
range parameter R, is in Ref. [5] also interpreted in
terms of the cutoff mass A~1/R,. Our parameter
a2=0.224 fm? corresponds to A=0.42 GeV, a value
much smaller than those shown in Table 2 of Ref. [5]. It
seems, however, that the pionic atoms do not provide any
sensitive ground to test this parameter [5].
The factor

W=—2m[u(Q",p u(Q,p)] "', (20)

which appears in Eq. (13), takes into account the relativ-
istic relation between the ¢ matrix and the pion-nucleon
amplitude [15]. We define

w(Q,p)=E_(Q)Ey(p)/wlq;) 1)

and
o(g;)={[E,(Q)+EN(p)?—(Q+p)}}!/%, (22)

where the pion energy
E_(Q)=(m?+Q?)”

and the total nucleon energy
En(p)=(M2+p?)}/2

is evaluated for the effective nucleon moment

e = Q. A1
p Pett A+ 24 (Q—Q). (23)

Using the “factorization” approximation [16] one avoids,
without any serious loss of accuracy, the numerical
averaging of the nucleonic Fermi motion normally need-
ed in Eq. (13). Expressions analogous to Egs. (21)-(23)
also hold for u(Q’,p’), w(q,), and pg, respectively.

The relative pion-nucleon momenta q, and q; are
given in terms of the pion-nucleus momenta Q' and Q by
the approximate relativistic formulas

o Q 7
9 =P Fon T Exp) |
24)
_ Q __p

the accuracy of which was discussed earlier [15]. The en-
ergy dependence
2 }1/2

4 —1 21172
T(Q'"FQ)] } +m+M

A—1
24

e=E— [(m +M)*+ (Q'+Q)

- [(MA —M)>*+

(25)
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with M 4 for the nuclear mass appears to be a natural rel-
ativistic expression obtained in the Galileo-invariant
(A +1)-body optical model [16,17].

The first-order potential V\(E) just described has
been phenomenologically extended in Ref. [1]. Here we
follow the same line. The full strong-interaction potential
adopted by us is

Vi(E)=V(E)+VHE),

where

<Q'|V1‘V”(E)IQ>=——2A%A(A -1

UQ(Q')U()(Q)
X 2
[v0(Q0)]

depends on the Fourier transform G(q) of the nuclear
density squared pz(r), and d =1+1m /M, where m (M)
is the pion (nucleon) mass. In Eq. (26) we use the form
factors vy(q) of Eq. (16) to define the off-shell extrapola-
tion. Note that the Lorentz-Lorenz renormalization and
spin effects are not considered in our potential
VAAE)+VHE).

dB Co o
0ot QQ

G(q) (26)

(Q'|Vyp®(R —r)|Q)=—47ZaR ZF,,(q)FN(q)F(q)flwdt

where x =gR and y =m_,R. The function K (¢) has been
taken in the form of the Uehling formula [7,9]

1
2¢2

2__ 14172
K(t)=— %
t

o +K,(1), (29)

where we have corrected errors having appeared in Refs.
[6] and [7]. Here the first term is connected with the
effects of the order aZa and the lengthy expression for
K ,(¢) corresponding to the corrections of the order a*Za
can be found in Ref. [7].

The corrections due to the finite distributions of the
nuclear and pionic charges assume the form

(Q')VFsiq>=-4ﬂﬁqf—[F,,(q>FN(q)F(q)—1]. (30)

In Egs. (28) and (30) above, the pionic [F,(g)] and nu-
cleonic [Fy(q)] form factors are taken as equal, namely,

q° -

F (q)=Fy(g)= |1+ —4 ——
KA 0.71 GeV?

(31)

The nuclear form factor F(q) describes the distribution
of the nucleonic centers within the nucleus and is con-
nected with the observed charge form factor F_, (q) as

Fa(g)=Fy(g)F(q) .

For the complete specification of the optical potential
Vy(E), we also need the Fourier transform of the nuclear

As it was already mentioned in the Introduction, the
parameters B, and C,, when fitted to the scattering data
in Ref. 1, appeared to be A independent for the nuclei
with 4 <40. Such a success of the potential
VIE)+VP(E), as defined by Egs. (13) and (26) in the
scattering calculations, has actually motivated the
present application to the mesoatomic problems.

B. Coulomb interaction and the electromagnetic corrections

The just calculated matrix (Q'|Vy(E)|Q) of the
strong potential should be supplemented with the elec-
tromagnetic terms of ¥ < as follows: The Coulomb po-
tential in the inner region (» <R ) has the Fourier trans-
form

2

sin(ZgR) -

’ _ I 2
(Q'|VcO(R —r)|Q)=—27ZaR ToR

which is free from the singularity discussed in the Intro-
duction.

The Fourier transform of the vacuum-polarization
term Vyp®(R —r) is expressed (see, for comparison, Egs.
(25)-(28) of Ref. [7]) as

K (¢)

_ r ., .
—= 1 —ecosx — L e sin , 28
FENER co . e x (28)

density squared
G(@)= [ e pXr)dr . (32)

In the actual calculation we have extensively used the
three-parametric Fermi density [18] (3pF), the
harmonic-oscillator density [18] (HO), and the sym-
metrized Fermi density [1] (SF). It is apparently well
known to the practitioners that the mesoatomic charac-
teristics depend only slightly on the functional form of
p(r): Two densities, p,(r) and p,(r), provide practically
equal 7-atomic shifts (both of electromagnetic origin and
those due to the strong interaction) and widths if they are
fitted to the same magnitude of the nuclear charge radius.

Specifically, the numerical results shown below were
calculated for 3He, 'Li, °Be, !°B, and !'B with the
harmonic-oscillator form factor

A_4 2.2

R A [ (33)

F(g)= |1—

(omitting the second term in the parenthesis for *He) and
the corresponding expression for G(g). The adopted
values of the parameter a are displayed in Table I.

The rest of our examples have been calculated with the
symmetrized Fermi density distribution [1,19]

sinh(c /b)
cosh(c /b)+cosh(r/b)

Analytical expressions for F(q) and G(q) are given in
Ref. 1. The parameters b and ¢ are displayed in Table II.

p(r)=po (34)
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TABLE I. Parameters of the harmonic-oscillator density distribution pyo(r). The values of
a*=2A4(R% —r2)/(54 —8) were taken from Ref. [18].

Nucleus
‘He "Li ‘Be 108 g
a (fm) 1.385 1.619 1.663 1.595 1.560
R, (fm) 1.88 2.39 2.519 2.45 2.42

They were taken from Refs. [1] and [19] and partly ob-
tained as our own fit.

IV. THE NUMERICAL PERFORMANCE
AND COMPARISON WITH OTHER COMPUTATIONS

Equation (10) has been solved by the simplex method.
In the test calculation for the pure point-Coulomb poten-
tial (Vy+ Vyp+ Vs =0), we were able to reproduce the
Bohr energies of the 1s and 2p orbits with relative accura-
cy always better than 1072 in the nonrelativistic and rela-
tivistic cases. For a comparison we have performed
analogous calculations with the code BOPIT [7]. With the
grid parameters recommended in Ref. [6] BOPIT leads to a
precision roughly equal to 10™* in both of the above
cases, e.g., for 1s level in the 160 mesoatom. As one can
see from Table III, varying the number of grid points
from 48 to 16, the precision of our method remains prac-
tically the same. Actually, only about 20 grid points are
needed for obtaining very stable and precise results. Our
experience tells us that the high numerical accuracy of
the present method is preserved even if the other parts of
the pion-nucleus potential (Vgg, Vyp, Vy) are included.
This is because the atomic (»>R) and nuclear (r <R)
domains are treated separately in the coordinate and
momentum space, respectively. Unlike the Kwon-
Tabakin approach [6], where the choice of the grid point
distribution requires a special attention, our solutions
turn out to be very stable under variations in a number of
mesh points and in their distribution. With this develop-
ment we now have a practical alternative to the BOPIT [7]

TABLE II. Parameters of the symmetrized Fermi density
distribution. Note that R% = L1[7(7b)*+3c?]+r?, where we
take r, =0.81 fm.

Nucleus b (fm) ¢ (fm) R, (fm)
“He 0.300 1.251 1.685
SLi 0.566 1.342 2.483
2c 0.393 2.275 2.428
3¢ 0.356 2.315 2.372
4N 0.393 2.450 2.529
160 0.404 2.624 2.654
3 0.507 2.629 2.891
2Ne 0.502 2.771 2.958
BNa 0.498 2.875 3.007
Mg 0.484 2.984 3.039
285 0.477 3.134 3.114
28 0.520 3.291 3.300
40Ca 0.493 3.593 3.430
S6Fe 0.490 4.156 3.787

program. The present algorithm is certainly superior to
the predecessor in much higher numerical stability. To
obtain accurate results, one should only choose the
matching parameter R as small as possible: R =7-10 fm
is a reasonable choice complying with condition (5).

All further calculations were performed by solving the
Schrodinger equation inserting, however, the optical po-
tential which contains the relativistic corrections de-
scribed in Sec. III A. We proceed so as to avoid possible
problems arising in the relativistic case due to the ambi-
guity of introducing the strong-interaction potential into
the Klein-Gordon equation.

In the second series of our tests we have calculated the
energy shifts due to the nuclear finite-size and the
vacuum-polarization corrections. The latter are calculat-
ed to the order a’*Za and also include the effects of the
nuclear size. All the results presented in Table IV were
obtained for the point charge of an orbiting pion. Com-
paring the energy shifts AEgg obtained in Refs. [6] and
[20] shown in Table IV, one can see that they differ by
about 10% (20%) for the FS shifts of the 1s (2p) levels.
To trace the origin of such differences is, however, very
difficult since this is a result of different approximations
adopted in calculations but insufficiently specified by
various authors. In particular, the calculated values of
AEgg, although fully insensitive to the functional form
adopted for the nuclear density distribution p(7), depend
strongly on the value of the nuclear charge radius R,
corresponding to the chosen distribution p(r). The exper-
imental values of R, may differ by a few percent, this
leads to a 10-15 % change of the calculated AEgg. Our
theoretical values of AEgg lie mostly between those ob-
tained by BOPIT and the ones quoted in Ref. [20].

As for the calculated vacuum-polarization corrections
AEyp shown in Table IV, we note that our results are
rather close to those obtained with the BOPIT code [7].
At the same time, the values of AEy; collected in the re-

TABLE III. The relative accuracy |(E —Eg)/Ep| achieved
in reproducing the Bohr energy Ejp in the case of ls level in
pionic '°0O. The results obtained using our code PIATOM and
BOPIT [7] in the relativistic (KGE) and nonrelativistic (SE) cases
are compared for different number of grid points (NP).

NP BOPIT PIATOM

KGE SE KGE SE
48 5.4X107° 5.5%X107° 4.0X107° 3.0X107¢
40 6.6X107° 7.1X1073 6.3X107¢ 5.2x107¢
32 1.1x107* 1.1x107* 9.6X107¢ 8.5%X 107
24 2.8x107* 2.9%x107* 5.1X1073 3.8X107°
16 6.9%x107* 7.0x107* 8.4X107° 6.4X107°
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TABLE IV. The energy shifts due to the nuclear finite-size (AEgs) and vacuum-polarization effects
(AEyp) for several m-atomic levels. Our results are presented in comparison with the values obtained
previously by using the momentum [6] and coordinate [20] space techniques. The notation of charge
distribution used is the following: (a) harmonic oscillator for 1s-level calculation and two-parameter
Fermi density for 2p-level calculations, (b) nuclear density not specified in Ref. [20] and (c) symmetrized

S

Fermi density.

AEFS (CV) _AEVP (CV)

Ref. [6] Ref. [20] Present Ref. [6] Ref. [20] Present

Nucleus Level (a) (b) (c) (a) (b) (c)
2c 1s 897 810 848 642 540 624
UN 1s 1744 1570 1661 954 750 917
10 1s 3266 3160 3029 1278 980 1271
328 2p 27 20 25 777 660 801
“0Ca 2p 119 100 100 1352 1150 1460

view article by Backenstoss [20] are systematically lower
roughly by 20%. This is due to different approximations
adopted for AEvp in Ref. [20]. In particular, those calcu-
lations are performed to the order aZa and neglect the
nuclear finite-size effects.

One can summarize that our results for the energy
shifts connected with the electromagnetic effects are
stable and consistent with analogous evaluations.

A. Illustrative examples
of the strong-interaction shifts and widths

Here we shall display several examples of the calculat-
ed mesoatomic level shifts AE, and the absorption
widths I' ;g5 defined as

E(nl)ZEB(nl)+AEEM(nl)+AEN(nl)—éFABS(nl) . (35)

Here, Ep are energies of the Bohr orbits and AEgy,
represents the summed contribution due to the finite dis-
tributions of the nuclear and pionic charges and the
vacuum-polarization corrections.

The calculations were performed for the 1s and 2p lev-
els of the light (4 <56) pionic mesoatoms. To fix the pa-
rameters B, and C, of the optical potential (26), we have
used the most accurate, available, 1s-level data for the
pionic *C [21,22] and '°0O [23] and for the 2p-level data
of pionic *S and *°Ca [24]. The result of the fit is

By=(—0.093+i0.042)m ~*,
Co=(—0.125+i0.090)m ~5 .

These values have been used in all the calculations to be
discussed below.

Before comparing our calculations with the results of
previous studies, one should notice that the (small) iso-
scalar combination of the wN s-wave partial amplitudes
(usually denoted as b,) has been kept fixed in our fitting
procedure as it corresponds to its microscopic origin in
Eq. (13). Further, the second-order Pauli correction
sometimes added to b, as, e.g., in Ref. [2], is expected to
be absorbed into the coefficient B,. Since there is a
strong correlation between the values of b, and ReB,, we
have obtained a larger negative value for ReB, corre-

sponding to a strong s-wave repulsion. The value of
ImB, was obtained in an agreement with the results of
other analyses [25]. As for the numerical value of Cy, it
always depends on the particular form of the optical po-
tential taken by different authors. Our values of ReC,
and ImC, lie within the boundaries found in earlier
works. The negative sign of the ratio
ReCy/ImCy=—1.4 is in agreement with the neglect of
the Lorentz-Lorenz anticorrelations in Eqgs. (13) and (26)
(see also, Ref. [26]).

Our results for the 1ls levels are shown in Fig. 1. The
calculated values of I' yg¢(1s) for 15 mesoatoms are con-
nected by a full line in Fig. 1(b) and compared with the
data. In Fig. 1(a) the full line visualizes the nuclear shifts
AEy(1s) for the T, =0 nuclei and the dashed line those
for the T, =1 nuclei. The energy shift for the He pionic
mesoatom (T = —1) is actually of an opposite sign and
we present it in this way to simplify the picture. Our re-
sult is indicated by a star at the corresponding point. As
one can see, the well-known isospin dependence of AEy
is very well reproduced in Fig. 1(a). The most serious
discrepancy between the calculated and measured data is
in the case of “He; this was also observed in the earlier
coordinate-space calculations [27,22]. We have per-
formed a separate fit of the parameter B, for *He with
the results

B,=(—0.063+i0.028)m ~*,

C, being the same as above. To improve the agreement
of the calculated shifts and widths for mesoatoms of
A <16 nuclei, one should replace the p? term by a more
realistic two-nucleon correlation function. We expect the
long-range recoil correlations to strongly influence the
calculated characteristics of the lightest mesoatoms. The
corresponding calculations are in progress.

The characteristics of the 2p level are shown in Fig. 2.
The measured 2p-level widths are very well reproduced in
the whole interval 12< 4 <56. The agreement between
the calculated and experimental strong shifts AEy(2p) is
worse; in particular, the precise measurements for the
2*Mg and 28Si do not follow the trend of the other data.
Apparently, more details of the nuclear structure might
be needed in the construction of the optical potential for
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these open-shell nuclei. For instance, the ol term ob-
tained by Mach [28] in the context of the pion-nucleus
scattering and discussed some time ago by Friedman and
Gal [26] for the pionic atoms could be of importance
here.

Our calculated absorption widths are closer to the data
than in the case for the strong energy shifts if the com-
parison with experiment is performed in a straightfor-
ward fashion. As a matter of fact, the measurements of
the transmission energies in the pionic atoms are really
very precise. The evaluated experimental magnitudes of
the shifts AE, contain, however, some systematic errors
connected with the calculations of the electromagnetic
corrections. Due to them (see Table IV and the discus-
sion in Sec. IV), one should admit that the published ex-
perimental errors are unrealistically diminished. It seems
[29] that an error of no less than 5% should be expected
for the measured AEy. This indeed means that the data
presented in Figs. 1(a) and 2(a) may bear error bars much
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FIG. 1. Comparison of the 1s-level calculated pionic atom
energy shifts AEy (a) and widths I'sgs (b) with the data. A star
denotes the *He (T, = —1) calculated result, the full (dashed)
line connects the theoretical values for the 7, =0 (T, =%) nu-
clei. Data are from Ref. [21] (!*!3C), Ref. [22] (*He, %’Li, °Be,
12C, N), Ref. [23] (*He, '°0), Ref. [30] (!>!!'B), Ref. [31] (°F),
Ref. [32] (*Ne), Ref. [33] (**Na), and Ref. [34] (*Mg).
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FIG. 2. The same as Fig. 1 but for the 2p-level shifts and
widths. Data are from Ref. [35] (!2C, %0, **Mg, ?Si) and Ref.
[24] (28, °Ca, *°Fe).

larger than the published ones.

Systematic calculations of the shifts and widths of the
light mesoatoms are not numerous in the literature. In
the present, rather technical, paper we refrain from the
comparisons which would concern the details of the
physics studied by various authors. In general, the agree-
ment of the calculated shifts and widths with the data
might be remarkably better than ours [25,27]. In this
connection it is appropriate to comment that usually six
to seven free parameters of the pionic potential are fitted
so as to bring the calculated mesoatomic characteristics
as close as possible to the experimental values. At the
same time, the potential ¥V used in the present calcula-
tions contains only four free parameters.

V. SUMMARY

We have, in detail, presented a different momentum-
space method for the calculations of the strong shifts and
widths of the pionic mesoatoms. The method is very sa-
tisfactory in the numerical performance. The precision
of results is remarkably higher in comparison with that
obtained by using other computer codes. The new algo-
rithm is practically insensitive in a broad interval to the
choice of integration grid.

Our optical potential is constructed in the momentum
space and therefore retains the important effects connect-
ed with the 2-c.m.— A4-c.m. frame transformation includ-
ing the so-called angle transformation. Simultaneously, it
provides the technical means for an appropriate con-
sideration of the nucleonic Fermi motion and nonlocality
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of the wN amplitude (within the separable-potential mod-
el). An A4 universal quartet of phenomenological parame-
ters of the optical potential has been shown to provide an
adequate description of the mesoatomic characteristics in
the interval 4 <56 which we have investigated.

Although it has not been our goal in this article to
study the physics of the pionic mesoatoms, we show, as a
demonstration, a rather extensive sample of the 1s- and
2p-level characteristics and compare them with the data.
That comparison should only illustrate the calculation
feasibility of the method. In our opinion, the individuali-
ty of the light nuclei is too rich to try a quantitative
description of the corresponding mesoatomic characteris-
tics in terms of p(r) and p*(r) exclusively. We expect that

consideration of the nuclear correlations, spin-dependent
terms, and spin-orbital terms for the non-closed-shell nu-
clei is obligatory for a reliable analysis of the light pionic
mesoatoms. The suggested method is well suited for this
work. The results will be reported elsewhere.

Noted added in proof. We have performed also the rel-
ativistic calculations solving the corresponding KGE.
Using the same charge distributions as in [6] we returned
with practically the same results as those presented in
Table IV, columns (a) provided that the authors of [6]
calculated their values of AEyp including also the correc-
tions due to FS of pion. Further in the case of 2p level
they probably do not present the shifts AEyp but the
summed value AEgy.

*Deceased, October 10, 1990.
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