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The neutron dispersive optical model potential that was developed previously from an analysis of ex-
tensive data on the neutron-**Ca system is adapted to the neutron-*’Ar system by adjusting the central
depth of the local equivalent of the Hartree-Fock-type potential. The n-*°Ar data for this adjustment are
the total cross section for 11 <E <40 MeV and the centroid energy for the observed single-particle and
single-hole states of the valence shells. The resulting potential for n-*’Ar yields good predictions for the
particle-hole gap for the valence shells and for the energy-averaged s-wave and p-wave scattering func-
tions in the resonance region. However, it gives a poor prediction for the total cross section from 2 to 11
MeV. A similar discrepancy was observed earlier for **Ca. A parity dependence in the surface imagi-
nary potential is suggested from a more careful examination of the s-wave and p-wave scattering func-
tions for “°Ar; that parity dependence gives a good prediction of the total cross section for 2 to 11 MeV.

I. INTRODUCTION

It has been known for many years that the phenomeno-
logical neutron optical model potential (OMP) exhibits a
dichotomy between the low-energy region of approxi-
mately O <E <10 MeV and higher energies. In particu-
lar, models that were parametrized to fit neutron scatter-
ing and total cross sections for energies above 5—10 MeV
usually predicted too high total cross sections at lower
energies [1,2]. Also, there was evidence [3] from the s-
wave and p-wave neutron strength functions deduced
from resonance scattering that the diffuseness of the sur-
face imaginary potential approaches a delta function at
zero energy. Further evidence of anomalous behavior
comes from a recent series of measurements and analyses
[2,4-6] of differential cross sections for E <10 MeV for
targets of >V, ¥Co, %Y, and 2®Bi. These analyses show
that the radius of the real potential increases with de-
creasing energy, the surface imaginary diffuseness de-
creases and, in some cases, the imaginary radius in-
creases. Similar results were found [7] for scattering
from 2%%Pb.

Developments of the past few years, initiated largely by
Mahaux and Ngo [8], have led to the present consensus
that the phenomenological OMP should include real
dispersive components which are connected to the imagi-
nary potential by the dispersion relation. These com-
ponents provide for a unified description for both the
OMP at positive energies and the shell model at negative
energies because they include the effect of the coupling of
the single-particle degree of freedom to low-lying core ex-
citations. The consequences are profound. The disper-
sion relation leads not only to good descriptions of data
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for a broad range of positive and negative energies but
also to predictions of quantities such as spectroscopic fac-
tors, occupation numbers, and spectral functions of the
bound particle and hole states [9].

One consequence for the neutron dispersive OMP is
that a maximum is predicted near zero energy for the
effective radius of the real part of the mean field. That is
consistent with the above empirical observation that the
radius for the real part for the conventional OMP in-
creases at low energies. Consequently, it was reasonable
to expect [1] that the addition of the dispersive terms
would remove the dichotomy in total cross sections.
Indeed, an analysis [1] of the total cross section for “°Ca
for 0 < E <10 MeV led to the conclusion that the anoma-
ly is removed; however, analyses [10,11] of more exten-
sive data showed that the predicted total cross section is
still to high for 0<E <10 MeV. The integral nature of
the dispersion relation implies that one must utilize as
much data as possible for a wide range of positive and
negative energies. For the n-**Ca analysis [10,11], which
is of particular interest here, the data included (i) the to-
tal cross section for neutron energies from 1 to 80 MeV,
(ii) differential cross sections at 14 neutron energies from
5 to 40 MeV, (iii) analyzing powers for 5 energies from 10
to 17 MeV, and (iv) single-particle and single-hole
bound-state energies not only for the valence orbits but
also for deeply bound states down to — 66 MeV.

There are presently two methods [12,13] for deducing a
dispersive OMP from an analysis of such extensive data
sets; the methods are quite different but lead to essentially
the same results. For one method [12], called DOMA
(dispersive optical model analysis), the dispersion relation
is included for the primary fitting of experimental data.
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This method has been applied [10,12,14—16] for n-*°Ca,
p-*°Ca, n-°°Zr, n->*Pb, and n-**’Bi. The other method is
the moment approach for which one fits the data at each
energy using a conventional model, without the disper-
sive terms, and subsequently deduces the dispersive mod-
el from the radial moments of the resulting potentials.
The most advanced version is the variational moment ap-
proach [13] or VMA. It has been applied to the n-2%Pb
and p-ZOSPb systems [13,9,17] and to the #-*°Ca and p-
40Ca systems [11]. Less developed moment methods were
used [2,5,6,18] for n->'V, n-Co, n-**Y, and n-*Bi; for
these cases, differential cross sections were available only
for E <10 MeV.

The various DOMA and VMA have used “fixed
geometry;” i.e., all geometric shape parameters are as-
sumed to be independent of energy. It is remarkable that
such a simple model, with the dispersive terms included,
provides such an accurate description of the nucleon-
nucleus mean field for such broad regions of both positive
and negative energies [9—-17]; nevertheless, several of the
analyses suggest that further refinements are needed for
0<E <10 MeV. As stated above, the n-*°Ca dispersive
OMP [10,11] predicts neutron total cross sections for
0< E <10 MeV which are systematically larger than the
observed energy-averaged values. Calculations in Ref.
[10] suggested that this discrepancy might be removed by
making the shape of the surface imaginary potential ener-
gy dependent in a manner similar to that cited above for
conventional OMP analysis; however, those calculations
did not include the effect of the intricate shape [19] of the
surface dispersive term that results from the energy-
dependent shape of the imaginary potential. An analysis
which did include the effects of the intricate shapes for
the n-2®Pb system showed [19] that there is probably a
small decrease at low energies in the diffuseness of the
surface imaginary potential. These calculations showed,
however, that a low-energy increase in the radius is not
acceptable because that would lead to misfits to the
bound single-particle energies.

A possible alternative refinement [19] for the low-
energy region is a model which retains fixed geometry but
includes an [ dependence in the surface imaginary
strength. There is presently little theoretical guidance for
a detailed / dependence at low energies. Some guidance
can be found in the positions of the surface radial nodes
for each partial wave [19,20]. A recent suggestion [11] is
that the imaginary strengths for those / values associated
with the unfilled bound orbits should vanish below the
corresponding single-particle energies. Both of these
guiding criteria suggest that the / dependence is essential-
ly a parity dependence. Empirically, only a simple /
dependence can be justified by the limited information
contained in the total and differential cross sections. For
example, in a study [12,19,20] of n-2%Pb, the I values
were separated into only two groups with different sur-
face imaginary depths to give the best fit to the data.

There is one experimental procedure that gives specific
information on the OMP scattering functions for the first
few partial waves at low energies. It is to measure the
low-energy neutron total cross sections with very good
energy resolution, perform a careful multilevel R-matrix

analysis of the observed resonance structure to obtain the
scattering functions for each of the first few partial waves
and, finally, to average over energy to obtain the experi-
mental OMP scattering functions for the individual par-
tial waves. We previously followed that procedure for a
dispersive OMP description of the n-36Kr system [21].

Recently, a high-resolution measurement with a de-
tailed R-matrix analysis was reported [22] for the total
cross section of “°Ar for neutron energies up to 1.5 MeV.
The energy-averaged neutron total cross sections were in-
cluded for higher energies up to 40 MeV. As we will
show, those averaged total cross sections exhibit nearly
the same anomaly for O0<E <10 MeV as was found
[10,11] for “°Ca. It is of interest, therefore, to examine
the empirical low-energy scattering functions for “°Ar to
see if they give evidence for a parity dependence of the
imaginary potential. Unfortunately, a complete DOMA
for n-**Ar, similar to that [10] for n-**Ca is not possible
because there are insufficient data, i.e., there are no
differential cross sections or analyzing powers, there are
fewer bound states observed, the total cross sections only
extend to 40 MeV rather than to 80 MeV as for “°Ca, and
the statistical uncertainties in those cross sections are rel-
atively large. For this reason we will adapt the dispersive
OMP from the n-*°Ca system [10] to n-**Ar by adjusting
two parameters of the model.

Our paper is organized as follows. In Sec. II we recall
the form and the parameters of the dispersive OMP de-
duced from the DOMA [10] for n-*°Ca. (The VMA for
n-*Ca became available [11] after this work was complet-
ed.) In Sec. II C we adjust two model parameters to fit
the Fermi energy E for the n-**Ar system and the aver-
aged neutron total cross sections for 11 <E <40 MeV. In
Sec. III we compare the predictions of this model with
the observed spacings of the bound states, with the s- and
p-wave averaged scattering functions for 0<E < 1.5 MeV
and with the neutron total cross section for 2<E <11
MeV. In Sec. IV, we introduce a partity dependence into
the surface imaginary potential to force excellent agree-
ment with the s-wave and p-wave scattering functions and
we find that this parity-dependent model significantly im-
proves the fit to the total cross section for 2<E <11
MeV. Section V is our discussion.

II. THE PARITY-INDEPENDENT MODEL

A. Formulation

We recall the form of the fixed-geometry, parity-
independent dispersive OMP used [10] for the DOMA
for n-**Ca. The equations in Ref. [10] were written in
terms of the neutron energy E but here we rewrite them
in terms of the energy [20] relative to the Fermi energy:

6=E—Ep . (2.1)
The mean field is the sum
M(r;E)=Vy(r;E)F+AV(r; 8)+iW(r;6) , (2.2)

where YV (r; &) is the local equivalent to a Hartree-Fock-
(HF-) type potential, W(r,&) is the imaginary com-
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ponent, and AY(r; &) is the dispersive contribution. The
additional spin-orbit component is evaluated using empir-
ical parameters from the literature (Eq. (3.1) of
Ref. [10]).

For the energy region considered here, the central
depth of the HF-type potential varies exponentially with
energy:

Vo (r;6)= VH(O)eaé“/VH(O)

flrirg;ay), (2.3)

where V;(0) is the central depth at 6 =0 and where ry
and ay are energy-independent parameters for the radius
and diffuseness for the Woods-Saxon form factor.

The imaginary field is the sum of a volume component,
which has the same shape as the HF field, and a surface
component, which is a Woods-Saxon derivative with
energy-independent parameters r, and a:

W, (r,8)=W,(E)f(r;ry;ay) , (2.4)

Ws(r,6)=—4aSWS(6)g;f(r;rs;as) . (2.5)

The monotonic increase with energy for the volume
depth is parametrized by the Brown-Rho [23] (BR) form
and the rise and fall of the surface depth is parametrized
as the difference between two BR forms:

62
wer=wr—E 2.6)
2 2
w(&)=ws | =L ¢ @.7)

E+6Y  62+6,

The five parameters in Egs. (2.6) and (2.7) are correlated
by the assumption that the volume integral for the full
imaginary potential has a BR form such that the decrease
of the surface component at high energies is compensated
by the increase in the volume component. The number of
free parameters is thereby reduced to three, say, the sur-
face parameters, W, &, and &,, with the following re-
lations for the other two:

év = GSZ ’
Gv va = Gs Wsoo ’

(2.8)
(2.9

where G, and G, are the usual factors for converting well
depths to volume integrals.

The dispersive well depths are calculated from the
imaginary well depths using the dispersion relation

W,(6)déE
&—¢6

where P denotes the principal value integral and x
denotes either surface or volume, s or v. These integrals
are evaluated with the assumption that the central
depths, W (&) and W,(&), are each symmetric about the
Fermi energy. The predicted dispersive terms have the
same energy-independent shapes as do the corresponding
imaginary parts.

_Pre
AV (E)=—[" (2.10)

B. Parametrization [10] for #-*°Ca

The Fermi energy E was taken to be midway between
the ground-state energies for the two nuclei, *'Ca and
3Ca, which are formed by addition or subtraction of a
neutron from “°Ca. Thus, Ep=—12 MeV. The DOMA
was performed [10] using the extensive set of data out-
lined in Sec. I to establish the values for the nine free pa-
rameters and the two correlated parameters:

rg=1.18 fm, ayz=0.70 fm, (2.11)
r,=1.26 fm, a,=0.60 fm , (2.12)
We=—8.7 MeV ,

&,,=15 MeV , (2.13)
6,,=130 MeV ,

WP =—14.6 MeV, 6,=6,, 2.14)
V$*0)=—58.8 MeV, a“*=0.55. (2.15)

The superscript Ca for the HF depth parameters indi-
cates that these will be changed for the following analysis
of the n-*Ar system.

In Fig. 1, the curve represents the total cross section
for *°Ca predicted by this model, and the points represent
the observed cross sections for natural Ca. This figure is
the same as Fig. 3 of Ref. [10] except that here it is plot-
ted on an expanded energy scale to facilitate comparison
with the corresponding figure given below for “'Ar. A
clear discrepancy is seen between model and experiment
for O<E <9.5 MeV.

In Fig. 2, the two left-hand diagrams represent the pre-
dicted and observed bound-state structures for the n-*°Ca
system. These diagrams are the same as in Fig. 12 of Ref.
[10] except that here the 1d5,, and 1f5,, states are omit-
ted because there are insufficient data for the correspond-
ing states for n-*’Ar.
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FIG. 1. Neutron total cross section for “°Ca. Both the data
points and the theoretical curve are replotted from Ref. [10].
The data are for natural calcium (97% *°Ca) and the curve is
calculated for “°Ca from the dispersive optical model potential
recalled here in Secs. II A and II B.
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FIG. 2. Experimental and calculated energies for levels in the
valence shells for the n-**Ca and n-**Ar systems. Energies from
Table I are represented by the experimental structure for n-
“OAr. The dashed lines for the ground states for *'Ar and *Ar
indicate that these are not single-particle energies. The n-**Ca
structure is taken from Ref. [10] except that the 1f5,, particle
and 1d, hole states are omitted here.

C. Parametrization for n-*’Ar

As stated in Sec. I, there are insufficient data for a full
DOMA for the n-**Ar system. The most serious
deficiency is the absence of differential cross sections;
such data are required to establish the shape parameters
of the real and imaginary components of the potential
and to separate the imaginary potential into its volume
and surface components. All of the other observed quan-
tities for both n-**Ar and n-*°Ca are sensitive cnly to cer-
tain combinations of the shapes and strengths of the po-
tentials. For example, if we were to take the real part of
the mean field to have a Woods-Saxon from with depth V
and radius 7, then the data other than the angular distri-
butions would establish only the quantity V7", where n is
approximately 2. In the DOMA [10] for n-**Ca, the
shape parameters were deduced primarily from the angu-
lar distributions for 10 <E <40 MeV and subsequently
were assumed to be constant for the full range
—80 < E <80 MeV.

Although there are no angular distributions for “°Ar,
there are differential cross sections and analyzing powers
for many other nuclei with 40 < 4 <209. Recent global
OMP analyses [24,25] show that the shape of the mean
field is nearly independent of target mass. We assume,
therefore, that the shapes of each component of the mean
field for n-**Ar are the same as given by Egs. (2.11) and
(2.12) for n-**Ca. Regarding the imaginary depths, we

examine below the neutron total cross sections for “°Ar
for evidence that the imaginary volume integral is
different than that for *°Ca and, finding little difference,
Zvoe keep the depths given by Egs. (2.13) and (2.14) for

Ca.

With these assumptions, our model has only two free
parameters, i.c., the HF depth parameters V47(0) and
a®’. We will deduce these from the empirical bound-state
structure for the n-**Ar system and from the energy-
averaged neutron total cross sections. In Fig. 3 the sym-
bols represent the neutron total cross sections [22] for
“0Ar and the vertical heights of the symbols represent the
uncertainties from counting statistics. The original mul-
titude of high-resolution data points have been replaced
by averages over appropriate energy intervals in order to
show fewer points with a relatively smooth variation with
energy. Table I lists the binding energies and spectro-
scopic factors for the bound particle and hole states. The
spectroscopic factors are sums over the observed frag-
ments and the energies are averages weighted by the indi-
vidual factors. These data are from the best detailed
measurements [26,27] with good energy resolution and
are consistent with earlier work [28].

The “°Ar nucleus differs from “°Ca in that a pair of
protons in the 1d;,, orbit is replaced by a pair of neu-
trons in the 1f,,, orbit outside the 20-neutron closed
shell. The ground states of °Ar and *'Ar both have
J7™=17. In Table I the *'Ar ground state is denoted by
(f1,2)*+ f7,, to indicate that it is formed by addition of
an f,, neutron to the (1f,,,)* pair. In a like manner,
the notation (f,,)>— f,, for the **Ar ground state indi-
cates that it is formed by pickup of one of the paired neu-
trons. The 3.8-MeV energy difference shows that the
pairing energy is large. Following the same procedure as
for the n-**Ca analysis, we place Ep midway between
these ground states:

Ep=—8.0 MeV for n-**Ar . (2.16)

E (MeV)

FIG. 3. Neutron total cross section for “°’Ar. The points
represent energy-averaged experimental cross sections from
Ref. [22] and the curve is the cross section calculated from the
dispersive optical model potential from Sec. II C.
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TABLE L. Experimental energies and spectroscopic factors of particle and hole states for n-*’Ar.

Particle states®

Hole states®

nlj E (MeV) (2j+1)S; nlj E (MeV) S
(fr2 2+ f1n —6.10 4.0 (f122—F1n —9.87 2.4
23, —3.75 3.5 1d; —11.39 3.2
201, —2.64 1.8 251, —12.48 1.4

2From “’Ar(d,p) stripping in Ref. [26].
®From *°Ar(p,d) pickup in Ref. [27].

In Fig. 2, the n-**Ar levels from Table I are represented
by the second structure from the right. The ground
states are shown by dashed lines, rather than sold, and
are labeled 17, rather than 1f;,, to indicate that neither
represents the true energy of the 1f,,, orbit. The other
levels are shown by solid lines and are labeled as single-
particle or single-hole states; by this notation, we make
the tacit assumption that the particle or hole states are
reached by stripping or pickup without disturbing the
paired f,, neutrons in the “OAr core. We justify that ap-
proximation by the fact that the two f,,, particles have a
large pairing energy.

A comparison of the two experimental structures in
Fig. 2 shows that the binding energies are much less for
n-**Ar than for n-**Ca. Clearly, the depth of the HF
component must be less for n-**Ar than for n-*°Ca.
Essentially, two sets of data are required to determine the
two HF parameters V4"(0) and a”". For one set we take
the energies from Table I for the 2p, ,,, 2p3,,, 25/, and
1d;,, bound states. For the other we take the total cross
sections for 11 < E <40 MeV from Fig. 3. (We omit the
total cross sections for £ <11 MeV because we want our
procedure to be somewhat parallel to the DOMA [10] for
n-**Ca, for which the low-energy data carried little
weight.) To first order, we adjust the depth V547(0) to
produce an average fit to the bound states and then
choose the energy coefficient a®" to give a good descrip-
tion of the total cross sections. Since the two parameters
have some correlation, we iterate these steps to obtain the
best overall fit. For the following discussion, we present
figures based on our final parameters. These are

VAT (0)=—53.2+£0.5 MeV , 2.17

a®'=0.39+0.05 . (2.18)

The curve of Fig. 3 represents the total cross section
calculated from our model. For the fitted region,
11 <E <40 MeV, the curve agrees well with the average
trend of the empirical points. In Fig. 2, the right-hand
diagram represents the bound-state structure calculated
from the real part of the model, i.e., from the HF plus
dispersive components. The structure agrees well with
that observed.

We estimated the uncertainly for @™ in Eq. (2.18) by
comparing the empirical cross sections for 11 <E <40
MeV in Fig. 3 to calculated curves for various values of
a®’. We also investigated the effects of varying the
coefficient W, in Eq. (2.7) for the surface imaginary po-

tential. In this we were motivated by the fact that the
imaginary part of the symmetry potential is expected to
reduce the surface depth for °Ar relative to *°Ca. Actu-
ally, we found no evidence for this reduction. On the
contrary, we found the fit to be slightly improved by an
increase rather than a reduction of the depth. Following
that study we assumed, as stated above, that the surface
imaginary potential for “°Ar is the same as for “°Ca.

We now describe our method for adjusting V47(0) and
for estimating its uncertainty. The curves in Figs. 4(a)
and 4(b), respectively, represent the depth W, for the
imaginary surface potential and the corresponding real
dispersive depth AV,. These are the same as deduced
[10] from the DOMA for n-**Ca, except that here they
are shifted upward by 4 MeV in neutron energy because
E is —8 MeV rather than —12 MeV. To illustrate our
procedure, we calculate the level energies using our final
HF depth from Egs. (2.17) and (2.18). We temporarily ig-

Wg (MeV)

J ) d
4
= +
S < ! ]
2
» 0 —
> 4
a,L ]
NS ]
al P i - 1 —— | 1
10 0 10 20 30 40

E (MeV)

FIG. 4. (a) Imaginary and (b) real dispersive surface poten-
tials for n-**Ar. The curves are for the model in Sec. IIC. In (b)
the crosses represent the real dispersive depths required to bind
the 2s, 5, 1d3,5, 21,2, and 2ps ), states exactly at the empirical
energies from Table I. The open (solid) points show the surface
depths required to fit the energy-averaged s-wave (p-wave)
scattering functions in the resonance region.
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nore the dispersion constraint, Eq. (2.10), and adjust the
surface depths to fit exactly the energies from Table I for
the (2s,,,,1d3,,) holes and (2p;,,,2p,,) particles. The
adjusted surface depths are represented by the crosses in
Fig. 4(b). The fact that the crosses for the particles and
holes lie symmetrically about the curve demonstrates that
our final value V£7(0) is well chosen. Equivalent agree-
ment between the model and empirical level structures
are seen in Fig. 2 for n-*Ar; there the particle states for
the model are slightly underbound, whereas the 1d;,,
hole is about right and the 2s,,, hole is overbound. We
investigated the sensitivity of the calculated structure to
changes in V;}'(O). If, for example, we had chosen
V547(0) to be 0.5 MeV deeper, the crosses in Fig. 4(b) for
the particles would have moved down to the curve but
those for the holes would have moved downward away
from the curve. A decreased depth would have the oppo-
site effect. Related shifts would appear in the structure of
Fig. 2. From these studies we estimated the uncertainty
in V4%(0) given in Eq. (2.17).

III. PREDICTIONS FROM THE MODEL

A. Particle-hole gap

Let us define a centroid E; and particle-hole gap E,,
for the four bound states considered above:

E . =[E(p12)TE(p3 )+ E(s )T E(ds);)]/4,
E,=[E(p i)t E(p3,)—E(s )~ E(d;,,)]/2 .

(3.1
(3.2)

The empirical and model values for the centroid E, are
—7.57 and —7.62 MeV. This agreement merely demon-
strates that the central depth V57(0) at the Fermi energy
is well chosen. The empirical and model particle-hole
gaps are 8.74 and 9.33 MeV; the fact that these are in
quite good agreement represents a successful prediction
from the model because no parameter was adjusted to fit
the empirical E,,. The important role of the dispersive
surface term for this prediction is demonstrated in Fig.
4(b) by the fact that the crosses closely follow the shape
of the dispersive curve.

This prediction is also related to the HF effective mass,
mf;(r, &), which is defined by

da
dE

At the nuclear center and at the Fermi energy, one has

mg(r;6)/m=1— Vu(r;&) . (3.3)

mg(0;0)/m=1—a . (3.4)
To fit both the total cross sections and the bound-state
centroid, we reduced the energy coefficient a from 0.55
for “°Ca to 0.39 for *°Ar. In other words, we increased
the central effective mass from 0.45 for “°Ca to 0.61 for
“0Ar. This decreases the predicted gap E,,. If we were
to return the coefficient a to 0.55, E ok would be increased
to 10.19 MeV, i.e., to 1.45 MeV larger than the empirical
gap. Equivalently, the crosses in Fig. 4(b) would show a
more rapid variation with energy than given by the
dispersive curve.

B. Dispersive optical model in the resonance region

The primary motivation for the high-resolution mea-
surements [22] of the neutron total cross section of “°Ar
was to resolve resonances at low energies. The R-matrix
analysis [22] provides us with neutron-scattering func-
tions for the s, 5, p,,,, and p;,, partial waves for the en-
ergy domain E;=0.0 MeV to E,=1.5 MeV. Here we
compare the energy averages of those functions to the
model predictions. A detailed discussion and justification
of the following procedure is given in the section of Ref.
[21] which deals with a similar analysis for $Kr.

In Ref. [22] for “°Ar, the empirical scattering function
S;;(E) for the neutron orbital angular momentum [/ and
total angular momentum j=/+l was parametrized in
terms of a series of resonance energies and reduced
widths, Ej; and y%jl, plus an external R function,
R{ME). In Fig. 5 the data points represent empirical
values of Rf*(E) obtained at six energies at which the
resonance-potential interference patterns made it possible
to deduce the small uncertainties which are represented
by the vertical heights of the symbols. [The true R,j’“(E )
must increase smoothly with increasing energy.] In Fig.
6, the ‘“‘staircases” represent the cumulative sums of re-
duced widths up to the neutron energy E. Each riser is a
reduced width, y}zjk, and each tread is the spacing be-
tween adjacent values of Ej;;. The error bar at the top of
each staircase corresponds to the fractional uncertainty,
(2/n)'2, for a sum of n widths drawn at random from a
Porter-Thomas distribution.

The complicated energy dependence of each S (E)
must be averaged before comparison to the model. Good
agreement between model and experiment requires that
the model scattering function be approximately equal to
the smoothed experimental average:

FIG. 5. Experimental and predicted external R functions in
the resonance energy domain. Experimental values are plotted
as crosses for s, ,,, circles for p,,,, and points for p;,, partial
waves. The vertical heights of the symbols are estimated uncer-
tainties. The predicted curves are solid for s,,,, short-dashed
for p, ,,, and long-dashed for p;,, partial waves. Both predicted
and experimental R-function expansions used a 5.0-fm channel
radius.
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Studies [29,30] with numerical averaging have shown this
comparison can be accomplished by a simple prescription
which has an analytic basis [29-31]. To utilize that
prescription, we expand the model scattering function in
terms of a smoothly varying complex R-function:

L) 1+iP(E)RJM(E)

SPME)= , (3.6)
lj 1—iP(E)RPME)
ROME)=RQM(E) +imsQM(E) , 3.1

where P;(E) and ¢,(E) are the penetrability and the
hard-sphere phase shift evaluated at the same channel ra-
dius as used for the empirical R function. We then use
the following simple prescription for comparing the mod-
el functions to the averaged empirical functions:

E, s?M(E')dE'

ext ~ ROM —
RIYE)=R;"(E)—P E—E ) (3.8)
Azk o B om
via= [, s§™ENE", (3.9)
A=1 !
where P denotes the principal value integral.
175 T T T
150 |~ -
S1/2
125 [~ -
100 - .
75 -
w
O s} -
w
s s -1
Z=
w? o 1 1 1
. B
o
50 P -
< 1/2
N*J 251 b
W
WwiN < o 1 I 1
75 LA A S N A A | 1
o P3/2 T
25 — 1 4
0 0.5 0 15

E (MeV) |

FIG. 6. Sums of experimental reduced neutron widths and
integrals of predicted strength functions for the s,,,, p,,,, and
p3,, neutron partial waves for ‘“°Ar in the resonance region.
The heights of the risers for the “staircases” are reduced widths
and the lengths of the treads are the spacings between adjacent
levels. The error bars show the uncertainties in the full sums
for assumed Porter-Thomas distributions of widths. The curves
represent integrals up to the energy of E of the strength func-
tions from the model. Both predicted and experimental R-
function expansions used a 5.0-fm channel radius.
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As described above, the empirical or left-hand sides of
Eqgs. (3.8) and (3.9) are plotted in Figs. 5 and 6, respec-
tively. The model predictions for the right-hand sides of
the equations are represented by the curves in those
figures. In Fig. 5 the model predicts correctly that R **' is
much more positive for s waves than the p waves. That is
because the 3s,,, state is unbound such that it makes a
positive contribution to R ®** whereas the 2p, ,, and 2p; ,
states are bound such that they contribute negatively.
Also, in Fig. 6, the model predicts correctly that the s, ,,
strength function is relatively large; that is because the
unbound 3s,,, state is nearby. Finally, the model pre-
dicts correctly, by virtue of its spin-orbit component, that
the strength function is larger and the R ®*' more negative
for p,,, that for p;,,; that is, because the bound 2p,
state is closer to the resonance region than the more
deeply bound 2p; , state.

To examine these predictions more closely and to study
the roles of the imaginary and dispersive components, we
follow a procedure similar to that described for the
bound states in Sec. IIC. We temporarily ignore the
dispersion constraint and adjust the real and imaginary
surface potentials for each partial wave to force very
good agreement with the averaged scattering functions.
Our criteria for R*(E) is that the model function on the
right-hand side Eq. (3.8) give the best least-squares fit to
the points in Fig. 5. Our criteria for the sum of reduced
widths is that, when the integral on the right-hand side of
Eq. (3.9) is extended over the full domain, it agrees well
with the empirical sum for the full domain. (We choose
the full domain to minimize the uncertainty that is in-
herent in a small sample of reduced widths.) For p-
waves, we can satisfy the two criteria by making indepen-
dent adjustments in the real and imaginary surface poten-
tials because there is little correlation in their effects on
the real and imaginary parts of the complex R function.
This lack of correlation is related to the fact that the
single-particle 2p,,, and 2p;,, states lie well below the
resonance domain. The same independence does not hold
for s,,, waves because the 3s,,, state is only slightly un-
bound. For that case we must adjust the real and imagi-
nary surface potentials together to achieve the best
overall fulfillment of the two criteria.

The resulting surface depths are represented at the
center of the domain in Fig. 4 by a circle for s waves and
by solid points for p waves. The heights of the symbols
represent the uncertainties estimated from those shown
in Figs. 5 and 6. We see that the model curves in both
Figs. 4(a) and 4(b) pass about midway between the solid
and open circles such that the empirical average for the
two parities agrees well with the prediction. The agree-
ment in Fig. 4(a) for the imaginary potential confirms
that the strength of the potential decreases rapidly as the
energy is reduced towards the Fermi energy, and the
agreement in Fig. 4(b) supports the prediction that real
dispersive term rises to near its maximum in the reso-
nance region. The good agreement for the average over
parities is related to the fact that the model curve and
empirical cross sections in Fig. 3 agree well for E <1.5
MeV. In Sec. IV we examine the separate s- and p-wave
values more closely.
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C. Neutron total cross sections
for E <11 MeV

In Fig. 3 the predicted total cross sections for
2<E <11 MeV show poor agreement with those ob-
served. Figure 1 shows that a similar discrepancy was
found for E <9.5 MeV from the DOMA analysis for
“0Ca. Furthermore, the analysis [10] of the differential
cross sections for “°Ca for E <9.5 MeV showed an anom-
alous behavior in that the empirical HF and dispersive
potential depths deviated from the curves from the mod-
el. (See Figs. 4 and 5 of Ref. [10].)

IV. PARITY-DEPENDENT MODEL

Even though the averages for the empirical s-wave and
p-wave values in Fig. 4 agree well with the model curves,
the individual s-wave and p-wave symbols do deviate
from the curves by more than the experimental uncer-
tainties. We now examine the possibility that these small
deviations result from a parity dependence in the imagi-
nary potential and that the same parity dependence may
account for the deviations in the total cross sections from
the predictions for 2 <E <11 MeV.

Obviously, the circle and points for the imaginary po-
tential in Fig. 4(a) could be fit at once by introducing a
parity dependence such that the even-parity imaginary
curves is raised up to go through the s, ,, circle and the
odd-parity curve is lowered to pass close to the p,,, and
D3, points. An infinity of curves could be drawn; howev-
er, the only ones allowed by the dispersive constraint are
those for which the corresponding real dispersive curves
pass through the points or circle in Fig. 4(b). The general
shape imposed on the imaginary curve by the constraint
can be understood from the dispersion integral, Eq.
(2.10), by noting that the contributions from regions
above and below an energy & contribute with opposite
signs to the integral. For s,,, waves, both the requested
increase in the imaginary depth and the decrease in the
dispersive depth can be achieved if the imaginary curve
rises slowly below the resonance region and decreases
fairly rapidly above the region. The reverse holds for p
waves.

Our procedure is to allow four free energy parameters
to define the rise and fall of the even- and odd-parity
imaginary depths. All other parameters are held fixed as
given in Sec. IIC. Then there are altogether three more
parameters than for our original parity-independent mod-
el. For the even-parity depth we take the difference be-
tween two BR forms [23], as in Eq. (2.7), with rising and
falling energy parameters, G,; and & ,,:

& &
&+6% 62+ 62,

W, (6)=W> 4.1)

For the odd-parity depth, we define the rising and falling
parameters &,, and &,,. However, since we need a rapid
rise, we replace the rising BR form by the more rapidly
rising Jeukenne-Mahaux [32] form

&t &
&+ 64 62+ 62,

Wo(E)=W> (4.2)

S

Ws (MeV)
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FIG. 7. (a) Parity-dependent imaginary and (b) real surface
potentials. Depths for even and odd parities are represented by
long- and short-dashed curves, respectively. The solid curve
and the data points are from Fig. 4.

We adjust the four energy parameters, much as discussed
in Sec. III B, to fit by least squares the R °*' points in Fig.
5 and the sums of reduced widths in Fig. 6. This yields

6,,=10 MeV, &,=30 MeV , (4.3a)
6,,=12.7 MeV, &,,=100 MeV . (4.3b)

The corresponding well depths are represented in Figs.
7(a) and 7(b) by short-dashed and long-dashed curves for
odd and even parities, respectively. Here the solid curves

— T

40Ar +n

PRI RS

)
.
5

E (MeV)

FIG. 8. Neutron total cross section for “°Ar predicted from
the model with parity-dependent imaginary surface potentials.
The solid curve is predicted from the parity-dependent model of
Sec. IV and the dashed curve is for a model with the parities re-
versed for the real and imaginary curves in Fig. 7. The data
points are the same as in Fig. 3.
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and the data points are reproduced from Fig. 4. We see
that the solid and open points agree well with the odd
and even curves, respectively. This is as expected be-
cause, essentially, we have used four free parameters to fit
four empirical data. Also, the new dashed curves main-
tain agreement with the bound-state symbols for the
251 ,5,2p 2, and 2p; 5, levels.

The somewhat surprising result is that this parity-
dependent model, which has been parametrized from
data only for the energy region 0 < E < 1.5 MeV, gives a
much improved prediction to the total cross section for
2<E <11 MeV. This improvement is demonstrated in
Fig. 8, where the points are reproduced from Fig. 3 and
the solid curve represents the total cross section predict-
ed from the new model. One might suspect that the im-
provement results from an average change for the various
partial waves, rather than from a specific parity depen-
dence. To address this question, we reversed the parities
of the two imaginary curves (also the dispersive curves)
and repeated the calculations of total cross sections. The
resulting prediction is represented by the dashed curve in
Fig. 8; it gives a poor fit to the data. We tried other com-
binations of partial waves and concluded that the as-
sumption of a parity dependence is most reasonable.

V. DISCUSSION

The fixed-geometry, l-independent, dispersive optical
model potential which was previously developed [10] for
the n-**Ca system from extensive data for a broad neu-
tron energy region was modified here to describe a limit-
ed set of data for the n-““Ar system. The Fermi energy
E; was taken to bc —8 MeV and the parametrization
was done by adjusting only the depth of the Hartree-Fock
component while keeping all other parameters the same
as for n-*°Ca. Essentially, this parametrization was ac-
complished in two steps: firstly, the central depth of the
HF potential at E, was adjusted to achieve a good fit to
the centroid of the bound particle and hole states of the
valence shells and, secondly, the energy coefficient for the
depth was adjusted to fit the neutron total cross sections
for 11 < E <40 MeV.

The resulting central HF potential for n-*Ar is —53.2
MeV at the system’s Fermi energy, Ep= —8 MeV. This
is compared to —58.8 MeV for n-*°Ca at its Fermi ener-
gy, Ep=—12 MeV. The energy coefficient for n-*‘Ar is
0.39; it was 0.55 for n-**Ca. Qualitatively, both changes
were expected from the influence of the symmetry poten-
tial. The “°Ar nucleus has an excess of neutrons relative
to “°Ca and the symmetry potential takes care of the fact
that the n-n interaction is weaker than the n-p interac-
tion. Also, the energy coefficient decreases for AT be-
cause the symmetry potential decreases with increasing
energy [33].

As discussed in Sec. IITA, the good description
achieved in Fig. 2 for the bound-state spectrum demon-
strates the need for the dispersive terms. It also demon-
strates the need for the reduced HF energy coefficient or
equivalently, for an increased central effective mass such
that the predicted energy spectrum is adequately
“compressed” relative to the n-**Ca spectrum.

In Sec. IIIB, we compared empirical [22] energy-
averaged s-wave and p-wave scattering functions for
E <1.5 MeV to predictions from the model. Several
trends in the empirical functions are correctly predicted.
The comparison confirms that the surface imaginary po-
tential is much shallower for E <1.5 MeV than it is at
several MeV and shows, as predicted by the dispersion re-
lation, that the real surface dispersive term has nearly its
maximum depth in the low-energy resonance region.

In Sec. III C we found that the only clear inadequacy
in the model is that it predicts too high neutron total
cross sections for 2 <E <11 MeV, as shown in Fig. 3. A
similar failure for the original model [10] for n-*°Ca is
seen in Fig. 1 for 1<E <9.5 MeV. For the case of n-
40Ca, a search [10] of parameter space revealed no way to
fit this region using the fixed-geometry, /-independent
model.

In Sec. IV, we investigated this discrepancy in total
cross sections for n-*°Ar in relation to the data in the res-
onance region. We noted that, even though the empirical
s-wave and p-wave scattering functions for 0<E <1.5
MeV agree on the average with the predictions from the
model, there is a hint of parity dependence. We then
found that the introduction of a parity dependence into
the imaginary potential to fit the individual s-wave and
p-wave scattering functions substantially reduces the
discrepancy in total cross section for 2 < E <11 MeV.

There are at least two reasons for caution regarding the
proposed parity dependence. One is that it comes from
empirical scattering functions that have fairly large un-
certainties. Another is that, even if the averaged scatter-
ing functions were known precisely, it may be unreason-
able to require the mean field to describe such details. On
the other hand, the fact that the total cross sections for
both “°Ar and “°Ca show very similar discrepancies from
the predictions of the parity-independent model suggests
that the phenomena might be described by a mean field.
A related curious fact is that the divergences of the total
cross sections from the model curves in Figs. 1 and 3 for
4Ar and *°Ca occur at different neutron energies near 10
MeV but at nearly identical energies relative to the aver-
age for the bound 2p,,, and 2p; ,, states for the two sys-
tems. In this connection it has been pointed out recently
[11] that the p,,, and p;,, imaginary components should
go to zero at the binding energies for the 2p, ,, and 2p; ),
states.

In any case, if the surface real and imaginary com-
ponents of the mean field do depend on orbital angular
momentum in the resonance region, then the integral na-
ture of the dispersive constraint requires that the effects
be experienced over a rather broad region. It is a conse-
quence of the constraint that our fitting in the resonance
region 0 < E < 1.5 MeV, makes a significant change in the
total cross section all the way to about 10 MeV.

Of course, more data and analysis are desired, not only
for this mass region but for other nuclei. New high-
resolution resonance measurements with R-matrix
analysis for neutrons on “°Ca would be of particular in-
terest. If a parity dependence were indicated, it would be
incorporated into a new DOMA for the n-**Ca system,
for which there are much more data than for n-“°Ar.
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Studies in the region of the 126-neutron shell continue
to be of interest. The detailed analysis [19] for n-*%Pb
that followed the original DOMA [12] led to the con-
clusion that the surface imaginary depth has an / depen-
dence, similar to a parity dependence, and that the
diffuseness decreases slowly below 10 MeV. It has been
suggested [16] in connection with the DOMA for n-2%Bi
that the apparent need for an I dependence for n-**Pb
might be removed if an improved form for the energy
dependence for the imaginary strength were used; howev-
er, the use of an improved form for the variational mo-
ment approach [13] for #-2Pb did not remove that need.
In fact, both n-2®Pb and n-”Bi may need an [ depen-
dence because the dispersive potentials required experi-
mentally for 0<E <10 MeV generally fall below the pre-
dicted dispersive curves for both systems. In the case of
n-2%Pb, high-resolution resonance data and analyses
should help. Such data and analyses were published [34]
independently of the DOMA [12]; extensive new data are
now available [35].

Studies have also been made for the 50-neutron shell.
The nuclei Kr, Y, and °°Zr each have 50 neutrons.
An extensive DOMA [15] for n-°Zr revealed little evi-
dence for a low-energy anomaly; the predicted total cross
section was too high at low energies, but only below
about 3 MeV. A more limited n-3Kr analysis [21], which
parallels the present n-“°Ar analysis, showed no evidence
of a parity dependence and little problems with the total
cross section. On the other hand, the n-%Y analysis [4]
showed a low-energy behavior which suggests [20] a pari-
ty or state dependence.

There is active theoretical interest in a parity depen-

dence. For example, a recent inversion analysis [36] of
the empirical phase shifts for nucleon-*He scattering
showed a parity dependence in the real potential. Anoth-
er recent paper [37] is devoted to the angular momentum
dependence resulting from antisymmetrization for the
nucleus-nucleus potential. It is well known [38,39] that,
in principle, the imaginary optical potential is nonlocal,
and microscopic calculations [40] using the nuclear struc-
ture approach [41] specifically for 30-meV neutrons on
“0Ca produced an imaginary potential with an angular-
momentum dependence closely related to the spatial non-
locality. Those calculations gave well depths that varied
[40] somewhat erratically with increasing ! values, in
qualitative agreement with the empirical grouping of /
values found from the DOMA [12] for #-2%Pb. There is
very little theoretical guidance for a detailed dependence
of the imaginary potential at low energies. Reference
[19] includes a qualitative discussion of the possible ori-
gin of the / dependence in relation to the n-2Pb system.
As stated above, the surface imaginary well depth
W,,;(6) is expected [11] to have a different threshold for
each /j, depending on the position of the corresponding
bound single-particle states. In the case of the n-2°%Pb,
system, there is empirical evidence [20] that quasibound
states should be grouped with the bound states. For the
lower partial waves, the resulting state dependence is ap-
proximately a parity dependence.

We are grateful to Prof. C. Mahaux and Dr. J. B.
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ments and discussions.
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