Structure of ¹¹⁶Sb nucleus

Z. Gácsi, Zs. Dombrádi, and T. Fényes
Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, Hungary

S. Brant and V. Paar

Prirodoslovno-Matematički Fakultet, University of Zagreb, 41000 Zagreb, Croatia, Yugoslavia (Received 23 October 1990)

The γ -ray and internal conversion electron spectra of the $^{113}{\rm In}(\alpha,n\gamma)^{116}{\rm Sb}$ reaction have been measured at 14.5 and 16.0 MeV bombarding α -particle energies with Ge(HP) γ and superconducting magnetic lens plus Si(Li) electron spectrometers. The energies and relative intensities of 189 $^{116}{\rm Sb}$ γ rays (including 117 new ones), as well as internal conversion coefficients of 59 $^{116}{\rm Sb}$ transitions, have been determined. $\gamma\gamma$ coincidences have also been measured at E_{α} =16 MeV. Both low-spin and high-spin level schemes have been deduced and 32 new levels have been identified. Multipolarities of transitions and γ -ray branching ratios have been determined. The energy spectrum and electromagnetic properties have been calculated in the interacting-boson-fermion model (IBFFM), and satisfactory agreement between the experimental and theoretical results has been obtained.

I. INTRODUCTION

The level scheme of ¹¹⁶Sb was previously studied by several groups [1–12]. Nevertheless, the spins and parities of many low-lying levels were missing or ambiguous. The ¹¹⁶Sb level structure was not investigated earlier from $(\alpha, n\gamma)$ reaction.

The aims of the present work are a detailed γ and electron spectroscopic study of the $^{113}{\rm In}(\alpha,n\gamma)^{116}{\rm Sb}$ reaction, a deduction of a more complete level scheme, and an interpretation of the nuclear structure of $^{116}{\rm Sb}$ by the interacting-boson-fermion-fermion model (IBFFM) calculation.

II. EXPERIMENTAL TECHNIQUES

For the γ - and e^- -spectroscopic measurements we used 1.5-3.0- and \sim 0.5-mg/cm²-thick self-supporting targets, respectively, which were prepared by an evaporation technique from isotopically enriched (to 93.1%) 113 In. For the sake of reliable γ -ray identification we have also studied the 115 In+ α reaction; in these experiments an enriched (to 99.99%) 115 In target was used.

The targets were bombarded with $I_{\alpha} = 1$ –200 nA intensity α -beams of the Debrecen cyclotron at $E_{\alpha} = 14.5$ and 16 MeV energies, which are several MeV higher than the corresponding (α, n) reaction Q values. The energies of γ rays were measured with a 20% Ge(HP) detector at 90° angle with respect to the beam direction. For the γ -ray intensity measurements the detector was placed at 125° angle. The energy resolution of the detector was ~ 2 keV at 1332 keV. The spectrometer was calibrated with 133 Ba and 152 Eu sources. The energies of the strong 135.52(3), 407.351(20), 542.872(20), 931.80(5), 1293.54(4) keV 116 Sn [7] internal calibration lines were reproduced within experimental errors.

Internal conversion electron spectra were measured with a superconducting magnetic lens spectrometer

(SMLS) with Si(Li) detectors [13], in a similar way as in the case of the $(p,n\gamma)$ reaction [14]. In the $(\alpha,n\gamma)$ studies, the theoretical internal conversion coefficient (ICC) of the 307.8-keV E2 ¹¹⁶Sb transition was used for normalization, because the K/L ratio of this transition indicated E2 multipolarity. With this normalization, all the ICC values determined in (p,n) reaction [and seen also in the (α,n) reaction] were reproduced within experimental uncertainties.

The $\gamma\gamma$ -coincidence data were acquired in a two-dimensional mode at 16-MeV bombarding α -particle energy, with a fixed τ =50 ns resolving time. The 20% and 25% Ge(HP) detectors were placed at 125° and 235° angles to the beam direction. [The efficiency values are relative to that of a 7.5 cm×7.5 cm NaI(Tl) detector.] Approximately 56 million $\gamma\gamma$ -coincidence events were recorded on magnetic tapes in event-by-event mode for subsequent analysis. After creating the symmetrized, two-parameter coincidence matrices a standard gating procedure was used. In the case of close-lying peaks a novel method was applied, using the computer code LINGAT [15], which enabled us to obtain spectra without "leak-through" in the window.

All measurements were performed with CAMAC units connected to a TPA 11/440 computer. In the data reduction we have used a γ -spectrum analysis program [16].

III. EXPERIMENTAL RESULTS

Typical γ -ray and internal conversion electron spectra are shown in Fig. 1. The internal conversion coefficients of ¹¹⁶Sb transitions and typical $\gamma\gamma$ -coincidence spectra are shown in Figs. 2 and 3, respectively.

The energies and relative intensities of γ rays assigned to ¹¹⁶Sb, the ICC's and multipolarities of transitions, as well as the $\gamma\gamma$ -coincidence relations, are given in Table I.

FIG. 1. Typical γ -ray and internal conversion electron spectra of the 113 In($\alpha, n\gamma$) 116 Sb reaction. The energies of γ rays are given only at the strongest 116 Sb lines. Corresponding conversion electron lines are also indicated.

IV. LEVEL SCHEME OF 116Sb

The level schemes (Figs. 4 and 5) obtained from $(\alpha, n\gamma)$ reaction were constructed mainly on the basis of our $\gamma\gamma$ -coincidence results, but the energy and intensity balance of transitions was also taken into account.

The level spin and parity assignments are based on the

measured internal conversion coefficients of transitions as well as on $(p,n\gamma)$ results [14].

The low-spin level spectra obtained from $(p,n\gamma)$ (Fig. 4. of Ref. 14) and $(\alpha,n\gamma)$ reactions (Fig. 4) are similar; there are 33 levels which were observed in both reactions. On the other hand, the 731.71-keV 1⁺, 1127.4-keV 2⁺, 1158.48-keV 1⁺, 1425.5-keV (1-3), 1481.1-keV (1-4)

FIG. 2. Experimental internal conversion coefficients of ¹¹⁶Sb transitions (symbols with error bars) as a function of γ -ray energy (E_{γ}) . The curves show theoretical results [17].

states were not excited in the $(\alpha, n\gamma)$ reaction, and the 1037.68-keV $(4^+, 5^+)$, 1122.26-keV 1^+-5^+ , 1200.00-keV, 1208.10-keV (4^--5^-) , 1212.04-keV $(4,3)^+$, 1312.36-keV, 1386.76-keV $(5,6)^+$, 1436.2-keV states were seen only in the $(\alpha, n\gamma)$ reaction. Owing to the higher angular momentum transfer in the latter reaction, additional high-spin (≥ 6) states also appeared (Fig. 5). All of them decay directly (or through other high-spin states) to the 8⁻, 60.3-min isomeric state. The energy of this state is not well established (Van Nes et al. [5] give 490 \pm 56 keV, Blachot and Marguier [7] give 383 \pm 40 keV). No γ -spectroscopic evidence was found up to now that would

enable a contradiction-free connection between the lowand high-spin parts of the level scheme.

V. IBFFM/OTQM DESCRIPTION OF THE 116Sb NUCLEUS

In order to get a deeper insight into the structure of the low-lying states of ¹¹⁶Sb, we have calculated the energies and electromagnetic properties of the states on the basis of the interacting-boson-fermion-fermion/truncated-quadrupole-phonon model for odd-odd nuclei (OTOM) [18].

FIG. 3. Typical $\gamma\gamma$ -coincidence spectra. The background was subtracted. R denotes random coincidences.

TABLE I. The energy $(E_{\hat{\gamma}})$ and relative intensity $(I_{\hat{\gamma}})$ of γ rays observed in $^{113}\text{In}(\alpha,n\gamma)^{116}\text{Sb}$ reaction at $E\hat{\alpha}=14.5$ MeV. Coincident γ rays were detected at $E\hat{\alpha}=16.0$ MeV. Ndenotes a new γ ray; S and S' denote placement into the level schemes of Figs. 4 and 5, respectively; and d denotes double placement.

			ICC measurements	nte								
E_{γ} (keV)	I_{γ} (relative)	$\alpha_k \times 10^3$	Multipolarity of γ ray	Previous results				Coincident γ rays (keV)	γ rays			
92.23(4)	178(10) S				224,	307,	338,	410,	534,	545,	562,	
93.88(3)	48(5) S weak N				298							
100.3(4)	26(2) S'			M1,E2 [5]	192,	215,	298,	317,	330,	349,	426,	
103.01(2)	529(17) S	499(15)	M1		157,	208,	294,	307,	338,	352,	363,	
					379, 590.	387,	432,	471, 712.	551, 753.	572, 778.	581,	
108.47(3)	S. 7(9) S				,	,	,	í.	,	Ś		
127.3(2)	5.3(12) S', N $2.9(7)$ N	N			298							
157.60(3)		150.2(45)	M1		103, 455,	208, 491,	224, 595,	352, 753,	379, 823,	387, 870,	432, 897,	
162 6(1)	V (1) N				942							
189.2(4)		7			546							
192.50(3)	36.5(12) S'	27.0(27)	E1	$M1,E2$ [5] $\Delta I = 0, \ E1 + M2$ [6]	100, 700,	215, 775	317,	349,	(352),	411,	560,	
208.09(2)	172.6(48) S	90(20)	M1, E2		103, 612.	157, 753.	224.5, 791.	352, 858.	379, 1153	387,	455,	491,
215.02(2)	38.0(12) S'	83.3(31)	M1+E2	M1,E2 [5]	100,	192,	298,	317,	335,	349,	382,	426,
[(6)	0000	i c		M1(+E2) [6]	542,	642,	669,	775,	968,	1068		
224.14(2) 224.5(5)	50.8(18) S S,N	58.1(27)	$M_1 \ (M1)$		93, 157,	307, 208,	321, 352	338,	410,	(503)		
274.5(4)	weak S',N	Ν			192,	324,	365,	542,	775,	896		
287.8(1)	6.5(9) N		171 60		410,	426						
293.93(9) 298.53(2)	_	32.2(9)	M 1, E 2 E 2	E2 [5]	95,	127.	192.	215.	317.	(349).	352.	378.
				1	473,	482,	586,	628,	,699	783,	848,	885,
(4)	weak S.N	<i>t</i>			976,	1022,	1377					
307.79(3)	4	28.6(22)	E2,(M1)		92,	103,	224,	338,	(470),	(545),	(562),	979
317.04(5)	15.7(21)			M1,E2 [5]	100,	192,	215,	298,	321,	352,	382,	426,
(4)	100/10		27.	M1(+E2) [6]	542,	642,	775,	968,	1283			
321.41(3)	10.0(10) 3,14	21.3(39)	M 1, E 2		, 77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	338,	410,	(302),	(834)	767	ţ	į
324.23(3)	18.8(14) 1V		M_1, E_2		2/4, 1167	349,	303,	3/4,	411,	470,	, 40/,	,(),

TABLE I. (Continued).

E.f. (relative) Inchibity planting in the product of the				ICC measurements	otuc.								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E_{γ} (keV)	I_{γ} (relative)	$\alpha_k \times 10^3$	Multipolarity of γ ray					Coincident (ke	t γ rays /)			
Markey	330.9(1)					100							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	338.01(1)	weak <i>N</i> 232.2(43) S	21.4(5)	M1.(E2)		215 92.	103.	224.1.	307.	321.	(365).	410.	503.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						545,	771,	813,	854,	980,	1039	Î	
	341.34(3)	70.3(15) S	18.2(10)	M1,E2		735,	950,	886					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	346.1(2)	8(1) S',N				426							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	349.66(8)	66.8(15) S'	5.1(10)	E1	M1,E2 [5]	(95),	100,	(127),	192,	215,	298,	317,	324,
History Hist	(1)0000	00,			M1+E2 [6]	365,	391,	405,	411,	426,	467,	802	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	352.0(4)	> 100			M1, E2[5] M1(+E2)[6]	197,	712,	31/,	382,	347,	,77,	908	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	352.16(2)		5.45(51)	E1		103,	157,	208,	224,	365.5,	379,	387,	432,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						491,	529,	590,	595,	753,	823,	831,	870,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			į		,768	939,	942,	,727,	1011	;		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	363.06(2)		15.3(18)	M1,E2		103, 324	482, 374	621, 426	630, 467	(672), 775	919		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	365.1(4)					(226)	257	,07	,)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.3(1) 374.56(5)	7.8(16) N				(338), 324.	352 365						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(2)22::(2					, 203	50	710	537				
weak weak weak $M1,E2$ [5] 215 , 317 , 352 , 968 , 455 weak $M1,E2$ [5] 215 , 317 , 352 , 968 455 411 weak $M1(+E2)$ [6] 157 , 208 , 352 , (365) 455 411 , 426 , (700) , 775 $15.9(8)$ $5.N$ $15.9(8)$ $5.N$ $11.7(10)$ $M1,E2$ M	378.9(2)					293, 298	4 0 2 ,	,	150				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	379.09(5)					157.	208,	352,	(365),	455			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	382.3(3)				M1, E2 [5]	215,	317,	352,	896				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					M1(+E2) [6]								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	387.18(5)					157,	208,	352,	(365)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	391.60(5)					349,	405,	411,	426,	(100),	775		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	401.9(2)					377,	546						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	404.27(3)					411							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	405.3(3)					349,	391,	411,	426,	775,	807		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	410.91(3)		11.7(10)	M1,E2		92,	224,	321,	338,	377,	404,	411,	470,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						534,	537,	545,	562,	(621),	626,	654,	700,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						771,	801,	813,	926,	944,	979,	1136,	1147,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1167,	1173,	1238,	1317,	1328,	1352,	1470	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	411.2(2)	,'S				192,	324,	349,	410,	426,	700,	775	
369.8(83) S' $10.58(46)$ $M1,E2$ $M1,E2$ $[5]$ 100 , 192 , 215 , 317 , 324 , 346 , 349 , 349 , $M1(+E2)$ $[6]$ 391 , 411 , 458 , 467 , 479 , 498 , 542 , 467 , 479 , 498 , 542 , 479 , 489 ,	424.20(3)					479,	(816),	(867),	1012				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	426.13(2)		10.58(46)	M1,E2	M1,E2 [5]	100,	192,	215,	317,	324,	346,	349,	365,
24(2) S 642, 663, 684, 758, 860, 875, 978, 24(2) S 103, 157, 352, 455, 551 4.3(6) S 9.7(51) M1,E2 115.1(20) S 2.95(46) E1 157, 208, 432, 590, 595, 791, 939					M1(+E2) [6]	391,	411,	458,	467,	479,	498,	542,	560,
24(2) S 103, 157, 352, 455, 551 4.3(6) S 9.7(51) M1,E2 115.1(20) S 2.95(46) E1 15.1(20) S 2.95(46) E1						642,	663,	684,	758,	860,	875,	978,	1224,
4.3(6) S 9.7(51) M1,E2 115.1(20) S 2.95(46) E1 157, 208, 432, 590, 595, 791,	432.51(4)					103,	157,	352,	455,	551			
115.1(20) S 2.95(46) E1 151, 208, 432, 590, 595, 791,	447.83(6)		9.7(51)	M1,E2					i		i	,	
	455.19(7)		2.95(46)	E1		157,	208,	432,	590,	595,	791,	939	

TABLE I. (Continued).

				426,																																		
				(410),										1	725																							
				374,										į	546,																							
γ rays				365,											365,								(845)	1010		633									612			
Coincident γ rays (keV)				349,					654						352,								410,	,599		571,			410					529	455,			
				324,					518,						208,		;	(1012)				426	338,	491,		484,	,	896	321,					455,	352,			(410)
				298, 775					426,				363		157,	480	;	654,	290	410	410	317,	307,	402,	950	293,	;	426,	307,	551				352,	157,		(432)	363,
		426		(127), (700),	410	103	298	735	424,	498	Š	762	298,	551	103,	426,		480,	352,	92,	377,	215,	95,	189,	330,	103,		192,	92,	103,	(292)	298	(410)	103,	103,		208,	103,
ents Previous results				$E2 [5]$ $\Delta I = 0, 2 [6]$						M1,E2 [5]	$\Delta I = 1$ [6]																											
ICC measurements Multipolarity of γ ray		M1,E2	M1,E2		M1,E2		M1, E2	M1, E2			(M1, E2)				(M1,E2)	M1, E2		E1		M1,E2				M1, (E2)	(M1, E2)				M1, E2					M1, (E2)	(M1,E2)		E1	M1
$a_k \times 10^3$		8.1(15)	7.9(15)		8.5(16)		8.5(9)	7.2(15)			7.8(12)				6.99(74)	8.7(43)		1.81(54)		6.0(33)				6.6(10)	5.4(61)				5.33(70)					4.84(43)	5.02(60)		1.47(89)	5.4(11)
I_{γ} (relative)	2 (6)61	_		15.0(13) S'	21.0(8) S	weak S	_		$78.1(71) S', d_1$	45.8(62)			b',S (1)8.6	S,N	42.6(12) S,N,d	5.6(10) S',N	6.9(10) S,N	_	10.3(9) N			15.2(43) S'	S,N	215.9(52) S	98(13) S					15.7(24) S,N				17)	< 29 S,N		28.8(10) S,N	20.1(9) S
E_{γ} (keV)	457 ()1(2)	458.64(6)	466.11(5)	467.24(5)	470.79(4)	471.62(6)	473.63(3)	476.59(5)	479.9(2)	480.2(4)		480.8(4)	482.3(1)	484.6(1)	491.45(7)	498.2(2)	503.2(1)	518.04(3)	529.4(1)	534.49(6)	537.43(5)	542.4(2)	545.4(2)	546.33(6)	550.83(7)	551.4(1)	558.4(1)	560.9(1)	562.27(5)	571.80(6)	574.5(1)	586.0(4)	587.7(2)	590.22(3)	595.5(3)	602.8(2)	612.89(5)	621.47(5)

TABLE I. (Continued).

64.3(4) week N 772 772 773<	$E_{ au}$ (keV)	I_{γ} (relative)	$\alpha_k \times 10^3$	ICC measurements Multipolarity of γ ray	nts Previous results				Coincident γ rays (keV)	t γ rays /)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	624.3(4) 626.8(1) 628.66(3) 630.0(1) 633.5(1)	weak N 45.5(13) S,N 20.9(10) S,N 9.9(9) N				752 103, 298 103, 551	307, 365	410,	725				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	635.5(1) 642.59(7) 646.4(4)	3	3.7(10)	M1, E2	M1,E2 [5] M2 [5] M2 [6]	215, (752)	317,	349,	(3520),	426,	775		
19.3(10) S', N	654.60(5) 663.86(5) 665.8(1)		4.3(9) 2.89(30)	(M1,E2) $E2$		410, 426 546	424,	480,	518,	(587)			
154100 S, N	669.86(5) 672.6(2) 676.1(2) 681.5(3)		2.59(67)	E2,(M1)		100,	215,	298,	317,	(352),	(382)		
1,5,6(81) N	684.11(6) 700.73(9) 705.2 712.07(4)		4.1(11) 2.22(88) 2.31(40)	M1, (E2) (M1,)E2 E2, (M1)		426 192, (424), 103	(391), (518)	410,	467,	803			
weak N 6.8(10) S,N 6.8(10) S,N 10.2(10) N 127.1(50) S' 0.93(23) E1 M1,E2 [5] (100), 192, 215, 274, 317, 467, (642), 103 9.2(15) N E1 [6] 391, 405, 411, 467, (642), 103 9.2(15) N weak N 8.3(14) N S.6(10) S 8.7(11) N 8.9(14) S,N 8.9(14) S,N 338, 410 6.6(11) N 338, 410	735.2(2) 735.42(3) 752.78(3) 753.9(5)		2.58(33)	M1,E2 $M1$	M1,E2 [5] $M1+E2$ [6]	491, 302, 624,	626 341, 646,	476, 1021, 208	988, 1248 352	1180			
9.2(15) N weak N 5.3(14) N 5.6(10) S 8.7(11) N 8.9(14) S,N 5.9(14) N 6.6(11) N 6.6(11) N 103 298 298 410 410 410 410 426, (700),	758.0(4) 762.0(1) 771.0(4) 775.87(2)		0.93(23)	E1	M1,E2 [5] $E1$ [6]	426 481 338 (100),	192, 405,	206, 215, 411,	274, 467,	317, (642),	324, (802)	352,	(365),
8.9(14) S,N 5.9(14) N 6.6(11) N 410 349, 405, 426, (700), 338, 410	778.59(3) 782.6(1) 783.6(4) 784.1(3) 785.7(2)	22.1(14) S 9.2(15) N weak N 5.3(14) N 5.6(10) S				103							
	801.2(2) 802.9(4) 813.8(2)	8.9(14) S,N 5.9(14) N 6.6(11) N				410 349, 338,	405, 410	426,	(700),	775			

TABLE I. (Continued).

		095	
		382,	
It γ rays V	(612)	352,	
Coincident γ rays (keV)	455	317,	
	č.	352 455 455	352
	352 (410) 208	157, 352, 352, 352 735 352 215,	410 735 518 410 317,
	157, 352 (410) 338, 298 157, 426 (424)	426 298 103, 103, 410 103, 157, 410 (103), 100,	298 426 338, 341, 546 424, 752 298 338,
nts Previous results		M1,E2 [5]	M1(+E2) [6]
ICC measurements Multipolarity of γ ray	M 57	M1, E2 $M1, E2$ $M1, E2$ $E2, (M1)$	
$\alpha_k \times 10^3$	(20)	1.45(53) 1.45(53) 1.84(73) 1.13(38)	
I_{γ} (relative)	8.5(11) S 15.4(16) S,N 3.7(12) N 10.7(31) N weak N 9.2(16) N 5.7(11) N weak N 10.3(11) S		15.6(14) S', N weak N 6.8(13) N weak N 7.5(12) N 15.7(16) N weak 11.4(14) S', N 13.6(20) N weak S' 19.2(38) S, N
E_{γ} (keV)	815.3 823.4(1) 831.4(3) 836.6(1) 845.0(4) 848.5(3) 858.2(3) 860.5(2)	874.7(1) 874.7(1) 875.8(1) 885.3(4) 893.2(2) 897.3(1) 908.9(2) 917.82(8) 919.4(2) 926.9(4) 939.3(2) 942.2(1) 942.2(1) 948.28(6) 952.7(1)	976.47(7) 978.3(4) 978.6(1) 988.6(4) 1010.1(2) 1012.7(1) 1021.3(4) 1022.1(1) 1038.8(2) 1068.4(4)

TABLE I. (Continued).

1		ICC measurements	nts Previous				Coincident v rave
(relative)	$\alpha_k \times 10^3$	of γ ray					(keV)
N							
N (1.02(35)	M1,E2					
50.8(26) S,N	0.97(13)	E2,(M1)					
Ø							
				410			
	0.83(17)	E2,(M1)					
9.0(12) N	1.11(62)	M1,E2		307,	410		
				208,	352		
weak N				307,	324,	410	
weak N				410			
N				735			
13.7(13) S,N	0.70(32)	(M1,E2)					
22) N				298,	426		
weak N				410			
				752			
9.9(12) N				410			
weak S'			$\Delta I = 1$ [6]				
12.1(16) N			1	92,	307,	410	
weak N							
5.2(28) N				410			
				298			
N				103			
12.4(13) S'			E3 [5]				
			E3 [6]				
N				410			
×				95.	410		

The Hamiltonian of the interacting-boson-fermion-fermion model is [18]

$$H_{\mathrm{IBFFM}}\!=\!H_{\mathrm{IBFM}}(\pi)\!+\!H_{\mathrm{IBFM}}(\nu)\!-\!H_{\mathrm{IBM}}\!+\!H_{\mathrm{eff}}$$
 ,

where $H_{\rm IBFM}(\pi)$ and $H_{\rm IBFM}(\nu)$ denote the IBFM Hamiltonians for the neighboring odd-even nuclei with an odd proton and odd neutron, respectively [19]. H_{IBM} denotes the IBM Hamiltonian [20] for the even-even core nucleus. H_{eff} denotes the residual proton-neutron interaction. Depending on whether one uses the Schwinger or the Holstein-Primakoff representation of the SU(6) boson distinguish Hamiltonian, one can between interacting-boson-fermion-fermion and the odd-odd truncated-quadrupole-phonon representations, respectively [21]. The two representations are equivalent on the phenomenological level.

The IBFFM Hamiltonian was diagonalized in the proton-neutron-boson basis:

$$|(j_{\pi},j_{\nu})I_{\pi\nu},n_{d}R;J\rangle$$
,

where j_{π} and j_{ν} stand for the proton and neutron angular momenta coupled to $I_{\pi\nu}$, n_d is the number of d bosons, R is their total angular momentum, and J is the spin of the state. The computer code IBFFM, used for the calculations, was written by Brant, Paar, and Vretenar [22].

The boson core has been treated in the SU(5) limit of IBM (corresponding to the harmonic vibrations). This is an acceptable approach in the case of spherical nuclei like even-even Sn isotopes, if we want to describe only low-energy states, because the contribution of two- (and higher-) d-boson components is small. We used $\hbar\omega_2=1.3$ MeV effective phonon energy, which is the energy of the 2_1^+ state of $^{114}\mathrm{Sn}$.

Since we are considering the low-lying states in a nearly spherical nucleus, we use the reduced total boson number $N_{\rm max}$ =2. This strongly reduces the scope of computations, without sizable effect on the properties of the

FIG. 4. Proposed low-spin (\lesssim 6) level scheme of ¹¹⁶Sb (based on the 3⁺ ground state) from ¹¹³In(α , $n\gamma$)¹¹⁶Sb reaction. Solid circles at the ends of arrows indicate $\gamma\gamma$ -coincidence relations. γ -ray branching ratios and multipolarities are also given. d denotes double placement.

low-lying states. Even the two-d-boson components had little effect on the wave functions of the states below 1200 keV (see Table III).

The calculations were performed for the low-lying positive parity states. The shell-model space consisted of the $2d_{5/2}$, $1g_{7/2}$, $3s_{1/2}$, $2d_{3/2}$ subshells for the proton particle and neutron quasiparticles.

The occupation probabilities for neutrons were taken from the systematics of the available data (for citations see Ref. [21]): $V^2(vd_{5/2})=0.88$, $V^2(vg_{7/2})=0.72$, $V^2(vs_{1/2})=0.23$, $V^2(vd_{3/2})=0.20$. The calculations were performed with two sets of the proton single-particle and neutron quasiparticle energies, strength parameters of the fermion-boson interaction, and parameters of the residual interaction and effective charges. They are given in Table II.

In the set 1 calculation, the single-proton and the quasineutron energies were adjusted to the energy spectrum of ¹¹⁶Sb. The single-proton energies obtained in this way are close to the values used by Pinho *et al.* [23] and

FIG. 5. Proposed high-spin (\gtrsim 6) level scheme of ¹¹⁶Sb (based on the 60.3-min 8⁻ isomeric state) from ¹¹³In(α , $n\gamma$)¹¹⁶Sb reaction. Solid circles at the ends of arrows indicate $\gamma\gamma$ -coincidence relations. γ -ray branching ratios and multipolarities are also given. Former results (Refs. [5] and [6]) are shown on the left side. d denotes double placement.

Goldstein *et al.* [24] for the description of the ¹¹⁵Sb levels. The neutron quasiparticle energies are close to the energies of the corresponding ¹¹⁵Sn states.

The strength parameters of the boson-fermion dynamical and exchange interactions were as follows: $\Gamma_0^p = 1.0$ MeV, $\Lambda_0^p = 0$ MeV, respectively. These values are close to the values which correspond to the IBFM [19] description of the energy levels and electromagnetic moments of 115 Sb. $\Lambda_0^p = 0$ MeV is a reasonable value, taking into account that the phonon consists mainly of neutron excitations. We note that the values of Γ_0^p and Λ_0^p used here for 116 Sb are similar to those which have been employed previously for the IBFFM description of the odd-odd In energy spectra [25].

The strength parameters of the boson-fermion interaction were Γ_0^n =0.7 MeV and Λ_0^n =2.3 MeV. These values have been adjusted in IBFM to the energy spectrum and electromagnetic moments of ¹¹⁵Sn.

In the set 1 calculations, the residual interaction has the following form: $H_{\rm eff} = 4\pi\delta(\mathbf{r}_p - = \mathbf{r}_n) \times [v_D + v_S \sigma_p \cdot \sigma_n] + V_{\sigma\sigma}(\sigma_p \cdot \sigma_n)$. Here v_D and v_S are the parameters of the Wigner and Bartlett forces, δ is the Dirac symbol, \mathbf{r}_p and \mathbf{r}_n are the position vectors of the proton and neutron, respectively, σ 's are the Pauli spin matrices, and $V_{\sigma\sigma}$ is the parameter of spin-spin interaction

The strength of the residual force were adjusted to the energy spectrum and electromagnetic properties of ¹¹⁶Sb. $V_{\sigma\sigma}$ is close to the standard estimate: $\approx 15/A \approx 0.13$. The v_D/v_S ratio is the same as in the case of odd-odd In nuclei [25].

In the set 2 calculations, the proton single-particle and neutron quasiparticle energies were first fitted to the 115Sb and ¹¹⁵Sn nuclei, respectively, and then adjusted to ¹¹⁶Sb by allowing up to 100 keV deviations from these values. The strength parameters of the boson-fermion interaction together with the single (quasi)particle energies were adjusted to the energies and electromagnetic properties of the 115Sb and 115Sn using the IBFM calculations. The residual interaction has the following form in the set 2 calculations: $H_{\text{eff}} = V_0 \delta(\mathbf{r}_p - \mathbf{r}_n) (1 + \alpha \sigma_p \sigma_n)$. The strength of the δ force was fitted to the energy spectrum of ¹¹⁶Sb. The $V_0 = 360 \text{ MeV fm}^3$ value is about $\frac{3}{4}$ of the value characteristic for the double magic region. The radial matrix elements of the interaction were calculated using harmonic oscillator wave functions with the oscillator parameter b = 2.253 fm. The $\alpha = 0.2$ value, used in the calculations, is in agreement with the corresponding one in the double magic region.

Using the wave functions obtained by diagonalization, we have calculated the electromagnetic properties. The effective charges and gyromagnetic ratios were close to the standard values in both sets of calculations:

$$e^p = 1.5e$$
, $e^n = 0.5e$, $g_1^p = 1$, $g_1^n = 0$, $g_s^p = 0.65g_s^p$ (free), $g_s^n = 0.5g_s^n$ (free), $g_R = Z/A \approx 0.4397$.

The experimental and theoretical level energies of the low-lying positive-parity states of ¹¹⁶Sb are shown in Fig. 6.

TABLE II. Parameters of the IBFFM calculations.

Parameters		Set I	Set II
Proton single-particle	$\epsilon(\pi g \frac{7}{2}) - \epsilon(\pi d \frac{5}{2})$	0.85	0.68
energies (MeV)	$\epsilon(\pi d\frac{3}{2}) - \epsilon(\pi d\frac{5}{2})$	2.0	1.45
	$\epsilon(\pi s \frac{1}{2}) - \epsilon(\pi d \frac{5}{2})$	2.65	1.62
Quasineutron	$E(vg\frac{7}{2})-E(vs\frac{1}{2})$	0.45	0.25
energies (MeV)	$E(vd\frac{5}{2})-E(vs\frac{1}{2})$	0.80	0.60
	$E(\nu d\frac{3}{2})-E(\nu s\frac{1}{2})$	0.47	0.71
Strength parameters of	Γ g	1.0	0.53
the nucleon-core interaction (MeV)	Λβ	0	0
	Γ_0^n	0.7	1.414
	Λ_0^n	2.3	1.30
Parameters of the	v_D MeV	-0.6	
residual interaction	v_S ${f MeV}$	-0.15	
	$V_{\sigma\sigma}$ MeV	0.11	
	V_0 MeV fm ³		360
	lpha		0.2
	b fm		2.253
Effective charge of vibration	$e^{ m ^{vibr}}$	1.8e	2.0 <i>e</i>

FIG. 6. IBFFM energy spectrum of 116 Sb in comparison with experimental data. The solid lines connect the members of the given multiplet. The leading proton-neutron configurations for several multiplets were identified on the basis of the $(^{3}He,d)$ proton transfer results [4].

TABLE III. Wave functions of some low-lying states of ^{116}Sb . For the given J^{π} state the $|(j_p j_n)I;NR\rangle$ wave-function components and the corresponding amplitudes are given. Only components with larger than 10% weight are given.

J^{π}	Set 1		Set 2	
11+	$(\frac{5}{2}, \frac{3}{2})1;00$	0.802	$(\frac{5}{2},\frac{3}{2})1;00$	-0.762
			$(\frac{1}{2},\frac{1}{2})1;00$	0.37
12+	$(\frac{5}{2}, \frac{7}{2})1;00$	0.762	$(\frac{5}{2}, \frac{7}{2})1;00$	-0.84
	$(\frac{5}{2}, \frac{7}{2})3;12$	-0.423		
13+	$(\frac{1}{2},\frac{1}{2})1;00$	0.540	$(\frac{1}{2},\frac{1}{2})1;00$	-0.58
	$(\frac{5}{2},\frac{1}{2})3;12$	0.540	$(\frac{5}{2},\frac{3}{2})1;00$	-0.36
			$(\frac{5}{2},\frac{1}{2})2;12$	-0.33
			$(\frac{5}{2},\frac{7}{2})1;00$	-0.32
21+	$(\frac{5}{2},\frac{1}{2})2;00$	0.726	$(\frac{5}{2},\frac{1}{2});00$	-0.85
	$(\frac{5}{2},\frac{3}{2})2;00$	-0.329		
2_{2}^{+}	$(\frac{5}{2},\frac{3}{2})2;00$	0.581	$(\frac{5}{2},\frac{3}{2})2;00$	0.77
	$(\frac{5}{2},\frac{7}{2})2;00$	-0.499		
23+	$(\frac{5}{2}, \frac{7}{2})2;00$	-0.607	$(\frac{5}{2}, \frac{7}{2})2;00$	-0.83
	$(\frac{5}{2},\frac{3}{2})2;00$	-0.472		
	$(\frac{5}{2},\frac{1}{2})2;00$	-0.324		
31+	$(\frac{5}{2},\frac{1}{2})3;00$	-0.836	$(\frac{5}{2},\frac{1}{2})3;00$	0.88
	$(\frac{5}{2},\frac{1}{2})3;12$	0.345		
32+	$(\frac{5}{2}, \frac{7}{2})3;00$	-0.783	$(\frac{5}{2},\frac{7}{2})3;00$	-0.86
33+	$(\frac{5}{2},\frac{3}{2})3;00$	-0.716	$(\frac{7}{2},\frac{1}{2})3;00$	0.67
	$(\frac{7}{2},\frac{1}{2})3;00$	0.325	$(\frac{5}{2},\frac{3}{2})3;00$	-0.49
34+	$(\frac{5}{2},\frac{5}{2})3;00$	-0.714	$(\frac{5}{2},\frac{5}{2})3;00$	-0.79
	$(\frac{5}{2},\frac{5}{2})4;12$	-0.467	$(\frac{5}{2},\frac{5}{2})4;12$	-0.39
3 ₅ ⁺	$(\frac{7}{2},\frac{1}{2})3;00$	-0.687	$(\frac{5}{2},\frac{3}{2})3;00$	-0.67
	$(\frac{5}{2},\frac{3}{2})3;00$	-0.408	$(\frac{7}{2},\frac{1}{2})3;00$	-0.53
4 ⁺	$(\frac{5}{2},\frac{3}{2})4;00$	-0.794	$(\frac{5}{2},\frac{3}{2})4;00$	0.78
	$(\frac{5}{2},\frac{3}{2})4;12$	0.406	2 2	
4 ₂ ⁺	$(\frac{5}{2}, \frac{7}{2})4;00$	-0.818	$(\frac{5}{2}, \frac{7}{2})4;00$	0.85
	$(\frac{5}{2}, \frac{7}{2})5;12$	-0.383	$(\frac{5}{2}, \frac{7}{2})5;12$	0.33
4 ₃ ⁺	$(\frac{5}{2},\frac{5}{2})4;00$	-0.764	$(\frac{5}{2},\frac{5}{2})4;00$	-0.78
- 3	$(\frac{5}{2}, \frac{5}{2})5;12$	-0.381	(2,2,1,00	0170
4 ⁺	$(\frac{7}{2},\frac{1}{2})4;00$	-0.786	$(\frac{7}{2},\frac{1}{2})4.00$	0.84
.4	$(\frac{7}{2}, \frac{1}{2})4;12$	0.351	(2,2,1.00	0.01
5 ₁ +	$(\frac{5}{2}, \frac{7}{2})5;00$	0.825	$(\frac{5}{2}, \frac{7}{2})5;00$	-0.88
- 1	$(\frac{5}{2}, \frac{7}{2})5,00$ $(\frac{5}{2}, \frac{7}{2})6;12$	0.391	\ 2, 2 /2,00	0.00
5 ₁ +	$(\frac{5}{2}, \frac{7}{2})6;00$	0.867	(5 7)6.00	-0.91
√ 1	$(\frac{5}{2}, \frac{7}{2})5;00$	-0.355	$(\frac{5}{2}, \frac{7}{2})6;00$ $(\frac{5}{2}, \frac{7}{2})5;12$	-0.91

The wave functions of the low-lying states are shown in Table III. From dominant components in the wave functions we see that the IBFFM/OTQM calculation preserves the approximate classification of the parabolic rule [26], which is given in [14]. In set 1 calculations, the 2_1^+ , 3_1^+ states are dominated with $\pi d_{5/2} v \tilde{d}_{3/2}$, the 1_1^+ , 2_2^+ , 3_3^+ , 4_1^+ states with $\pi d_{5/2} v \tilde{d}_{3/2}$, the 1_2^+ , 1

The nearly parabolic feature of the E vs J(J+1) plot of the $\pi d_{5/2} \nu \tilde{d}_{3/2}$, $\pi d_{5/2} \nu \tilde{d}_{5/2}$, and $\pi d_{5/2} \nu \tilde{g}_{7/2}$ multiplets are approximately reproduced. The energy splittings of the $\pi d_{5/2} \nu \tilde{s}_{1/2}$ and $\pi g_{7/2} \nu \tilde{s}_{1/2}$ doublets agree well with the experimental data.

The known magnetic dipole moments of the 116 Sb states are summarized in Table IV. The experimental and the IBFFM magnetic dipole moments agree very well. The IBFFM calculations show that the contribution of the collective M1 operator to the magnetic moment is small. This can provide an explanation of why the simple additivity relation predicts the magnetic moment of the 3_1^+ ground state rather well.

The calculated electric quadrupole moment of the 3_1^+ ground state is -0.47~eb (set 1). The corresponding experimental value is not yet known, but the quadrupole moment of the $\frac{5}{2}^+$ ground state in the neighboring ¹¹⁵Sb nucleus is rather close to this result: Q = -0.36(6)~eb [27].

The E2/M1 mixing ratios and the γ branching ratios of the low-lying states in ¹¹⁶Sn are given in Table V. As seen, the experimental branching ratios are reproduced within a factor of $\lesssim 6$ (with two exceptions). In the majority of cases the theoretical E2/M1 mixing ratios agree with the experimental ones within the error limits.

TABLE IV. Magnetic dipole moments (μ in μ_N) of some ¹¹⁶Sb states. IBFFM subscript indicates the results of the present calculations.

	¹¹⁶ Sb sta	ates
Magnetic dipole moment	3 ₁ ⁺ ground 15.8 min	1 ₁ ⁺ , 94 keV > 200 ns
$\mu_{ ext{exp}}$	$ \mu_{\rm exp} = 2.715(9)^{\rm a}$	+2.47(9)b
$\mu_{ m emp}$	$+2.66(1)^{a,c}$	
μ_{IBFFM} set 1	+2.79	+2.30
$\mu_{\rm IBFFM}$ set 2	+2.88	+2.18

^aReference [9].

^bReference [10].

^cReference [9]; the empirical value was calculated supposing $[\pi d_{5/2} v_{5/2}]_{3+}$ configuration and also taking into account collective correction.

TABLE V. Transitions within the low-lying $^{116}\mathrm{Sb}$ states.

			E	perimenta	l data			IB	FFM/OT	QM calc.	
$oldsymbol{E}_i$		$oldsymbol{E}_f$		$oldsymbol{E}_{\gamma}$				Set	1	Set	2
(keV)	J_i^{π}	(keV)	$oldsymbol{J}_f^\pi$	(keV)	Multipolarity	δ	I_{γ}	δ	I_{γ}	δ	I_{γ}
103	21+	0	31+	103	M 1	-0.02(14)		0.012		0.01	
411	41+	0	31+	411	M1,E2	$+2.1^{+1.1}_{-1.3}$	100	0.6	100	1.42	100
		103	21+	308	E2		18(2)	∞	23	∞	61
466	3_{2}^{+}	103	21+	363	M1,E2	-0.02(8)	100	0	100	0.02	100
		0	31+	466	M1,E2	-0.27(20)	12(2)	0.17	16	0.18	5
546	42+	0	31+	546	M1,(E2)	+0.07(8)		0.58		1.02	
551	22+	0	31+	551	(M1, E2)	> 0.3	100	0.01	100	0.09	100
		94	1 +	457	M1,E2	$-0.16^{+0.14}_{-0.24}$	35(5)	0.11	46	0.11	80
		103	21+	448	M1,E2	$-0.28^{+0.28}_{-0.39}$	8(4)	0.04	9	0.07	4
575	23+	0	31+	575	M1,E2	$+0.25^{+0.63}_{-0.33}$	11(2)	0.01	276	0.11	53
		94	1 +	481	(M1, E2)	$-0.8^{+0.9}_{-1.1}$	100	0.11	100	0.06	100
		103	21+	472	M1,E2		11(5)	0.04	68	0.09	2
		466	32+	108		$0.00^{+0.35}_{-0.42}$	11(5)	0.003	8	0.01	45
654	3+	0	3+	654	(M1, E2)	$-0.49^{+0.19}_{-0.25}$	14(10)	0.82	3	28.2	11
		103	21+	551	(M1,E2)		100	0.18	100	0.37	100
732	12+	94	11+	638	M1,E2	$-0.45^{+0.12}_{-0.17}$	25(10)	0.75	5	4.10	4
		103	21+	629			100	0.13	100	0.16	100
		551	2_{2}^{+}	181	M1,E2		7(3)	< 0.01	18	< 0.01	16
		575	23+	157			14(10)	< 0.01	14	< 0.01	45
735	43+	0	31+	735	M1,E2	-0.22(12)		0.03		0.45	
815	3+	0	31+	815		-0.09(21)	41(8)	0.07	132	3.27	1
		103	21+	712	E2,(M1)	0.00(63)	100	0.08	100	0.03	100
		411	4 ₁ ⁺	404		-0.12(13)	54(4)	0.07	154	0.05	125
841	6(+)	503	5 ₁ ⁽⁺⁾	338	M1,(E2)	+0.09(16)		0.09		0.08	
882	35+	103	21+	779		-0.13(15)	84(15)	0.07	7000	0.12	128
		411	41+	471	M1,E2		100	0.28	100	0.02	100
		551	2_{2}^{+}	331			19(3)	0.10	50	0.02	51
918	13+	0	31+	918			100	∞	100		100
		94	1 1 +	824			81(5)	0.23	38		745
		551	2_{2}^{+}	367			93(4)	0.1	28		49

ACKNOWLEDGMENTS

We are indebted to Dr. J. Gulyás, Dr. T. Kibédi, Dr. A. Krasznahorkay, Dr. S. Mészáros, Dr. J. Timár, and

Dr. A. Valek for their help in the measurements. This work was supported in part by the Hungarian Scientific Research Foundation (OTKA). The financial help of the G. Soros Foundation is also acknowledged.

^[1] C. B. Morgan, W. H. Bentley, R. A. Warner, W. H. Kelly, and Wm. C. McHarris, Phys. Rev. C 23, 1228 (1981).

^[2] C. B. Morgan, Ph.D. thesis, Michigan State University,

^[3] R. Kamermans, H. W. Jongsma, T. J. Ketel, R. Van Der

Wey, and H. Verheul, Nucl. Phys. A266, 346 (1976).

^[4] R. Kamermans, J. Van Driel, H. P. Blok, and P. J. Blankert, Phys. Rev. C 17, 1555 (1978).

^[5] P. Van Nes, W. H. A. Hesselink, W. H. Dickhoff, J. J. Van Ruyven, M. J. A. De Voigt, and H. Verheul, Nucl. Phys.

- A379, 35 (1982).
- [6] R. Duffait, J. Van Maldeghem, A. Charvet, J. Sau, K. Heyde, A. Emsallem, M. Meyer, R. Béraud, J. Tréherne, and J. Genevey, Z. Phys. A 307, 259 (1982).
- [7] J. Blachot and G. Marguier, Nucl. Data Sheets 59, 333 (1990).
- [8] C. Ekström, W. Hogervorst, S. Ingelman, and G. Wannberg, Nucl. Phys. A226, 219 (1974).
- [9] V. R. Green, C. J. Ashworth, J. Rikovska, T. L. Shaw, N. J. Stone, P. M. Walker, and I. S. Grant, Phys. Lett. B 177, 159 (1986).
- [10] E. A. Ivanov, private communication, cited in P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989).
- [11] W. F. Van Gunsteren, K. Allaart, and E. Boeker, Nucl. Phys. A266, 365 (1976).
- [12] J. Van Maldeghem, J. Sau, and K. Heyde, Phys. Lett. B 116, 387 (1982).
- [13] Z. Árvay, T. Fényes, K. Füle, T. Kibédi, S. László, Z. Máté, Gy. Mórik, D. Novák, and F. Tárkányi, Nucl. Instrum. Methods 178, 85 (1980); T. Kibédi, Z. Gácsi, A. Krasznahorkay, and S. Nagy, ATOMKI Annual Report, Debrecen, 1986, p. 55; T. Kibédi, Z. Gácsi, and A. Krasznahorkay, ATOMKI Annual Report, Debrecen, 1987, p. 100.
- [14] Z. Gácsi, T. Fényes, and Zs. Dombrádi, Phys. Rev. C 44, 626 (1991), the preceding paper.
- [15] T. Lönnroth and P. Jauho, Nucl. Instrum. Methods A261, 549 (1987).
- [16] G. Székely, Comput. Phys. Commun. 34, 313 (1985).

- [17] R. S. Hager and E. C. Seltzer, Nucl. Data Tables A 4, 1
- [18] V. Paar, in *In-Beam Nuclear Spectroscopy*, edited by Zs. Dombrádi and T. Fényes (Akad. Kiadó, Budapest, 1984), Vol. 2, p. 675.
- [19] F. Iachello and O. Scholten, Phys. Rev. Lett. 43, 679 (1979); V. Paar, S. Brant, L. F. Canto, G. Leander, and M. Vouk, Nucl. Phys. A378, 41 (1982).
- [20] D. Janssen, R. V. Jolos, and F. Dönau, Nucl. Phys. A224, 93 (1974); A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).
- [21] T. Kibédi, Zs. Dombrádi, T. Fényes, A. Krasznahorkay, J. Tímár, Z. Gácsi, A. Passoja, V. Paar, and D. Vretenar, Phys. Rev. C 37, 2391 (1988).
- [22] S. Brant, V. Paar, and D. Vretenar, computer code IBFFM/OTQM (Institut für Kernphysik, KFA, Jülich, 1985) (unpublished).
- [23] A. G. De Pinho and J. M. F. Jeronymo, Nucl. Phys. A116, 408 (1968).
- [24] I. V. Goldstein and A. G. De Pinho, Z. Naturforsch. 26a, 1987 (1971).
- [25] T. Fényes, Zs. Dombrádi, A. Krasznahorkay, J. Gulyás, J. Tímár, T. Kibédi, and V. Paar, Fizika 22, 1 (1990).
- [26] V. Paar, Nucl. Phys. A331, 16 (1979); Z. Árvay, T. Fényes, J. Gulyás, T. Kibédi, E. Koltay, A. Krasznahorkay, S. László, V. Paar, S. Brant, and Z. Hlousek, Z. Phys. A 299, 139 (1981).
- [27] P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989).