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The cross sections for the weak proton capture reactions p +p ~d+ e++ v, and
p+ He~ He+e++v, have been calculated with realistic wave functions determined by using the Ar-
gonne v&4 nucleon-nucleon interaction. To minimize the uncertainty in the axial exchange current
operator, its matrix element has been adjusted so as to reproduce the measured Gamow-Teller matrix
element for p decay of tritium. The exchange current contribution enhances the calculated rate of the pp
capture reaction by 1.5% and decreases that of the p 'He reaction by almost a factor of 5.

I. INTRODUCTION

The continuing unsettled state of the solar-neutrino
problem [1] has stimulated repeated attempts to improve
the reliability of the calculated cross sections for those
solar-neutrino reactions that cannot be measured in the
laboratory [2—11]. We here contribute to this effort by a
simultaneous calculation of the weak proton capture re-
actions p+p~d+e++v, and p+ He~ He+e++v,
using realistic wave functions that correspond to the Ar-
gonne u&& model for the nucleon-nucleon interaction [12],
complemented by the Urbana VII model for the three-
nucleon interaction [13]. The wave functions of the pp
continuum state and the deuteron are obtained by solving
the Schrodinger equation, while variationa1 wave func-
tions are used for the p He and He states. Both the
Coulomb interaction as well as the (strong) initial-state
interactions are taken into account. Since the wave func-
tions used give very satisfactory binding energies [14],
and realistic electromagnetic form factors for all the nu-
clei involved [15—18], the calculated impulse approxima-
tion cross-section values should be reliable.

The main source of uncertainty in the cross sections
for the weak proton capture reactions on the bound few-
nucleon systems is the contribution from the axial ex-
change current operator. Although the presence of such
a term in the Gamow-Teller operator is well known from
the analysis of p decay of tritium [19—23], its form de-
pends completely on the dynamical model used to con-
struct it, and it is not even partly constrained by the
nucleon-nucleon force as is the corresponding elec-
tromagnetic exchange current operator [24]. To address
this uncertainty we adopt the phenomenological ap-
proach of adjusting the —in any case poorly known—
cutoff masses in the meson-nucleon vertices in the con-
ventional model for the exchange-current operator [21]
so as to obtain agreement with the experimental value for

the Gamow-Teller matrix element in tritium p decay.
The required adjustment is in fact very slight, as is obvi-
ous from the recent demonstration [23] that good agree-
ment with the empirical matrix element can be obtained
with three-body wave functions that correspond to realis-
tic nucleon-nucleon potentials, and the conventional
model for the meson-exchange-current operator [21].

With the strength of the exchange-current operator
determined in this way we find that the predicted cross
section for the pp capture reaction is enhanced by only
1.5% by the exchange-current contribution. This is con-
siderably less than the enhancement found in earlier stud-
ies [4,6]. The present smaller value is due to the strong
canceling effect on the main pion axial exchange-current
mechanism —the 633 excitation current —that is caused
by p-meson exchange, which was not considered in Refs.
[4,6]. Another reason for the diminished exchange
current effect is the introduction of form factors to regu-
late the high-momentum behavior of the hadronic ver-
tices in the axial exchange-current operators, which were
also not considered in Refs. [4,6].

In the case of the p He capture reaction we find that
the net effect of the exchange current operator is to
reduce the cross section predicted in the impulse approxi-
mation by almost a factor of 5. The reduction is caused
by the destructive interference between the matrix ele-
ments of the one- and two-body currents in the reaction
p+ He —+ He+e++v, . This sign difference is due to
the correlations in the initial scattering state wave func-
tion, and does not appear when schematic wave functions
are used as in Refs. [7,11]. The same sign difference is
present in the case of the electromagnetic capture reac-
tion n + He ~~He+ y [25].

This paper is divided into five sections. In Sec. II we
describe the exchange-current operator and the deter-
mination of its strength by the empirical Gamow-Teller
matrix element in p-decay of H. In Secs. III and IV we
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discuss the calculation of the pp and p He weak capture
reactions, while in Sec. V we summarize our conclusions.

II. THE AXIAL EXCHANGE CURRENT
AND TRITIUM P DECAY

For the axial exchange current operator we use a
slightly expanded version of the "conventional" pion and
p-meson exchange model first described in a systematic
way by Chemtob and Rho [21]. These are the two-body
currents associated with the axial contact ~XX and pXN
interactions [Fig. 1(a)], with excitation of virtual inter-
mediate b, 33 resonances [Figs. 1(b) and 1(c)], and the harp

exchange-current mechanism [Fig. 1(d)]. The differences
between the set of exchange-current operators considered
here and the original one [21] are (a) the inclusion of the
important p-meson exchange contribution to the 633 exci-
tation mechanism, (b) the inclusion of high-momentum
cutoff factors at the hadronic vertices in the exchange
current operators, and (c) the complete retention of the
nonlocal mom. entum-dependent terms in the exchange
current operators.

It was pointed out in Ref. [22] that contributions of
similar magnitude to those associated with the p-meson
exchange currents can arise from exchange of
mesons. In principle, the exchange-current operator as-
sociated with the A

&
meson is important in effective

chiral Lagrangian models, as the 3
&

meson is the chiral
partner of the p meson. We here do not consider the ad-
ditional exchange-current operators that arise once the
3 &-meson field is systematically taken into account, be-
cause of our phenomenological approach to the
exchange-current operator: to use the simplest possible
operator that gives a proper description of the longest-
range mechanism and which can be adjusted so as to
reproduce the empirical H P-decay Gamow-Teller ma-
trix element. Thus we also do not consider the renormal-
ization of the exchange-current correction that in effect is
caused when one takes into account the explicit 533
configurations in the wave functions [26].

As the derivation of the axial exchange-current opera-
tors can be found in the literature, e.g. , in the review of
the Towner [27], we shall here be content to list the
relevant exchange-current expressions in the Appendix,
where the numerical values for the various coupling con-
stants are also given.

The matrix element of the axial current operator for
the Gamow- Teller part of the transition
H —+ He+e +v, has been evaluated with two different

wave functions in the present work. The first one is a
34-channel Faddeev wave function of the Los
Alamos —Iowa group [28] obtained for the Argonne U, 4
nucleon-nucleon interaction [12] and a version of the Ur-
bana VII three-nucleon interaction [13], in which the
strengths of the repulsive and attractive parts have been
modified so as to yield the experimental value for the
binding energy of H. The second one is a variational
wave function for the Argonne v&&+Urbana VII interac-
tion analogous to the ones we use for the p He and He
wave functions below.

In order to obtain the empirical value 0.961+0.003
[29] for the Gamow-Teller matrix element with the 34-
channel Faddeev wave functions we have used monopole
forms for the AN and pN vertex form factors f (k) and

f (k) in the exchange-current expressions in the Appen-
t'

dix with the mass scales A =0.9 GeV/c and A =1.35
GeV/c . Furthermore, we have assumed that the Nb,
transition form factors are the same as the N1V vertex fac-
tors, i.e., f ~(k)=f (k), f ~(k)=f (k). The values for
the cutoff masses A and A fall within the conventional
range of values, but are somewhat larger than those used
in the recent similar calculation in Ref. [23] (A =0.8
GeV/c, A =1.0GeV/c ).

In Table I we quote the contributions to the Gamow-
Teller matrix elements obtained from the individual com-
ponents of the axial current operator listed in the Appen-
dix for both the Faddeev and variational calculations.
The two calculations are in good agreement. For com-
parsion, we also list the corresponding values obtained in
Ref. [23] with a similar wave function and the same mod-
el for the two-nucleon interaction, but a different three-
nucleon interaction. Note that in Ref. [23] the nonlocal
parts of the exchange-current operators were dropped as
was the p-meson exchange axial seagull current. The ma-
trix element of the single-nucleon current is in agreement
with that obtained in Ref. [23], and the total predicted
value 0.961 reproduces the empirical datum by construc-
tion.

The present results for the 6 excitation exchange-
current components are in good agreement with those ob-
tained in Ref. [23], if one takes into account the different

(c) (d)

FIG. 1. Axial exchange-current mechanisms: (a) m- and p-meson exchange seagull or pair currents, (b), (c) ~- and p-meson ex-
change 633 excitation currents, and (d) mp exchange current.
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TABLE I. Contributions to the Gamow-Teller matrix ele-
ment of the tritium P decay from the individual components of
the z projection of the axial current operator. The results quot-
ed below have been divided by g„.

10' =
(2~)'

G2 5

/(d, m
/
A /pp, m, m, ) /',

m l Pl2m

(3.1)

IA

Ap
7Tp

mS

pS
Total

Faddeev

0.923
0.054

—0.022
0.0069
0.0038

—0.0043
0.961

Variational

0.926
0.053

—0.022
0.0067
0.0034

—0.0042
0.963

Ref. [23]

0.923
0.044

—0.009
0.001'
0.003'

0.962

where Gz is the vector coupling constant
(GV=1.151X10 GeV [33]), m, the electron mass,
and v~~ the relative pp velocity. The (dimensionless) in-
tegrated Fermi function f~~ for the proton weak capture
on p is parametrized as f~~=0. 142[1+9.04E (MeV)]
[9,34], E being the pp relative energy. The deuteron and

pp wave functions are written as

'Obtained from the local part of the operator. u (r) w(r) o
011 211 IO & (3.2)

cutoff masses used in the hadronic form factors. We find,
however, that in general the nonlocal parts of the
exchange-current operators give contributions of the
same order of magnitude as the local parts, and that leav-
ing them out as was done in Ref. [23] is a poor approxi-
mation.

III. THE REACTION p+p —+d+e++v,

The theoretical description of the solar-burning reac-
tion p+p~d+e++v, was first given by Bethe and
Critchfield [30]. The calculation of the cross section re-
quires the matrix element of the axial current operator
between the pp continuum state and the deuteron, where
in the continuum state both the nuclear and the Coulomb
interactions are included. Since the main uncertainty in
the prediction is associated with the magnitude of the
exchange-current contribution, a variety of methods have
been tried in the literature to tie it to some related ob-
servable reaction rate. The most obvious is to test the
model for the axial current operator on muon capture in
deuterium, but the observed total capture rates have
large experimental uncertainties and therefore do not
provide any detailed constraints on the exchange-current
operator [6,31]. Another one is the possibility of linking
the axial exchange-current operator to the effective
operator that describes P-wave pion production in pp col-
lisions [32],but this possibility would require high-quality
experimental data on pion production near threshold, of
hitherto unattainable precision [6]. We therefore find
that determining the strength of the exchange-current
operator by means of the empirically well-known
Cxamow-Teller matrix element in tritium P decay, as done
above, should be the most reliable method at the present
time.

For the calculation of the matrix element of the axial
current operator we have slightly modified the strength of
the central S=O, T=1 component of the Argonne v, 4
potential (which was fit to np data) so as to obtain agree-
ment with the experimental pp scattering length—7.823+0.01 fm when the Coulomb potential is taken
into account. The resulting value for the effective range
2.771 fm is also in acceptable agreement with the empiri-
cal value 2.794+0.015 fm.

The spin-averaged total cross section for the reaction
p+p~d+e++v, can be written in the form

g„'+'(r)=4m —gi'[1+( —1)][Y( (k)]'—
1m(

Xu,'+'(r;k)
Y& (r)yoriI, (3.3)

where k is the relative pp momentum, and y' and g'
S f

are two-nucleon spin and isospin state vectors, respective-
ly. Because of the axial vector character of the transition
operator, only even l waves in the initial pp scattering
state contribute. The radial functions uh'+ ' with
outgoing-wave boundary conditions behave asymptotical-
ly as

ur+'(r;k ) ~„„— [h,' '(kr)+e ' h,'"(kr)] .
2k

(3.4)

S(E)=Eo (E)e (3.5)

and its derivative at zero energy [1]. In Eq. (3.5)

g =a/v~~, a being the fine-structure constant.
We obtain the values S(E=0)=4.00X10 25 MeVb

and dS(E)ldE~z o=4.67X10 b, which are close to
the values S (E =0)=4.07 (1+0.051)X 10 MeV b and
dS(E)ldE~z o=4.52X10 b quoted in Ref. [1]. The
above results include the exchange-current contribution,
which in the case of S(E =0) amounts to enhancement
of only 1.5%.

The fact that the present result for the exchange-
current contribution is considerably smaller than the
original estimates [4,6] is mainly due to the important

Here the functions hl" '(kr) are defined as
+ i o.

I (k)
e ' [F&(kr)+iGI(kr)], or being the Coulomb phase
shift, and FI and GI the regular and irregular Coulomb
functions, respectively. If only the Coulomb interaction
is included, then 5&~o. I and u&'+'~k 'e 'FI.

As the calculation of the matrix element of the axial
current A is carried out in configuration space the ex-
pressions of the different contributions to A listed in
the Appendix are Fourier transformed to r space. The
dependence upon the momentum transfer q in the result-
ing operator is neglected, which is an approximation that
is well justified in the energy range of relevance for the
solar-burning reactions under consideration.

It is conventional to express the cross section in terms
of the astrophysical S factor,
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(negative) contribution from the p-meson exchange b, 33
excitation mechanism, which was not taken into account
in Refs. [4,6]. In Table II we show the cumulative contri-
butions to the cross section from the components of the
axial current operators in the Appendix at 1.0-, 2.5-, and
5.0-keV kinetic energy in the initial pp state (center-of-
mass system). The results in the table show that the
exchange-current contribution represents at most a 1.5%
enhancement of the cross section calculated in the im-
pulse approximation over the whole low-energy range
considered.

The value we obtain for S(E =0) in the impulse ap-
proximation is about 5% smaller than that obtained in
Ref. [9]. However, in the present calculation the same
potential model is used to determine both the initial
scattering state as well as the deuteron wave function.
We find that the contributions associated with waves
l )2 in the initial scattering state are too small to be visi-
ble on the numbers in Table II in the present energy
range (few keV). Finally, we have also investigated the
numerical significance of the hadronic vertex form fac-
tors in the exchange-current operators on the calculated
cross sections. If one replaces all those form factors by
unity the net exchange current contribution would be
roughly doubled, but then of course the agreement with
the Gamow-Teller matrix element of tritium P decay
would not be maintained.

IV. THE REACTION@+ He~ He+e++v,

The single-nucleon term in the axial current operator
cannot connect the main spatially symmetric S-state
components of the initial and final bound states in the re-
action p+ He~ He+e++v, . The cross section there-
fore is due to transitions between the small mixed symme-
try S- and D-state components, which are mediated by
the one-body current, and transitions mediated by the
exchange-current operator. In this respect this reaction
is similar to the corresponding electromagnetic capture
reaction n+ He —+ He+@, although the axial and elec-
tromagnetic exchange-current operators are quite dis-
similar [25,35].

In the calculation of the matrix element of the axial
current operator in the Appendix for the weak p+ He

—ly, (2)&3„,(341)) i

+ ~p~(3)g3 (412)),
—p~(4)p3 (123)), ] . (4.1)

Here P (i) represents the asymptotic scattering state of
the proton, and is a function of the distance between nu-
cleon i and the center of mass of the remaining cluster of
nucleons. The ground-state He wave function of nu-
cleons i, j, and k is represented by g3 (ijk).

The scattering length is obtained microscopically by a
variational method. A variational calculation is per-
formed for a fixed boundary condition, in this case a
specific logarithmic derivative for P at a radius R. This
radius must be large enough so that the proton and He
do not interact except through the Coulomb interaction;
we have used 8=15 fm. By varying the logarithmic
derivative until the total energy within the volume is
equal to the ground-state energy of He, the scattering
length can be determined. The efFective range can be cal-
culated from the derivative of the total energy with
respect to the change in logarithmic derivative.

The full variational wave function for the p He system
has the general form

(1234)=S QF, (4.2)

where S represents the symmetrization operator, F, are
two-body correlation operators, and 4 is a Slater deter-
minant:

capture reaction we use He and He wave functions that
have been constructed by the variational method using
the Argonne U && potential [12] with the Urbana VII
three-nucleon interaction [13]. Because of the relatively
strong tensor component in the U&4 interaction and the
two-pion-exchange part of the three-nucleon potential,
the He and He ground states have large D-state proba-
bilities —9.2% and 17.5%, respectively.

In the asymptotic region, the initial spin-triplet p He
scattering state has the form

(p+ He)= —[~P (1)f, (234)),1

TABLE II. Cumulative total cross-section values for the re-
action p+p~d+e++v, .

(1)
1'@& 1~2)(4~3)( 1'4~4)

i 'r&z

(4.3)
Current
operator

IA
+~S
+pS
+A~
+hp
+7Tp

Total

E=1.0 keV

10 fm

9.054
9.068
9.055
9.220
9.157
9.188

9.188

2.5 keV

10
—26 fm2

1.291
1.293
1.291
1.315
1.306
1.310

1.310

5.0 keV

10 fm

4.061
4.067
4.061
4.135
4.107
4.121

4.121

In the expression for W, 3 is the antisymmetrization
operator and the long-range spatial dependence is incor-
porated through the function P(l), which is an S-wave
scattering state in the relative coordinate
r, —

—,'(r2+r3+14). The inverse product of central corre-
lations in 4 cancels, at large distances, the central corre-
lations in the symmetrized product that act between the
scattered and bound-state nucleons. Hence, the correct
asymptotic scattering wave function [Eq. (4.1)] is
recovered.

For this cancellation to occur, it is necessary that
r(r)~r at large distances. However, we must preserve
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the short-distance properties of the central correlations
in the numerator of Eq. (4.2). We choose
r =[r +roexp( —r /ro)]'~, where rn is a variational pa-
rameter with a typical value of 1.5 —2 fm. The function r,
and hence the correlations in the denominator, go to a
constant for distances much smaller than ro. This ex-
pression for the wave function is equivalent to introduc-
ing different central correlations for the bound and scat-
tered nucleons; the former go to a constant asymptotical-
ly while the latter decay as appropriate for the bound
state of three nucleons.

The full pair correlation operators F, depend upon the
spin and isospin of the pair ij, and are obtained as solu-
tions of two-body Schrodinger-like equations with
parametrized potential terms:

IA
~S
pS

Ap
WP

0.37(1)
0.001(5)
0.035(5)

—0.40(1)
0.18(1)

—0.023(5)

Total 0.17(1)

TABLE III. Contributions to the matrix element
( He 2 „~p He, lm = 1 ) in fm ~ from the individual com-
ponents of the x projection of the axial current operator. The
matrix elements have been multiplied by [(e "—1)/2nq]'
with g=2a/U 3 . The statistical errors associated with the

p He

Monte Carlo integration are given in parentheses.

(
—tri V Im+ v; +k; )F;, =0 . (4.4)

The function U," is the two-body potential in a given
spin-isospin channel, and k," is a parametrized function
used to fix the asymptotic properties of F and minimize
the Hamiltonian's expectation value. At large distances,
the noncentral parts of F are cut off; this cutoff does not
affect the ground-state energy of the three-body system
significantly.

The proton scattering state P is obtained from scatter-
ing solutions in a Woods-Saxon plus Coulomb potential
well with a given logarithmic derivative. The function P
is a linear combination of several radial excitations within
the well. The coefficients of the various states are deter-
mined by minimizing the expectation value of the full
Hamiltonian. The procedure is very similar to that used
previously for the study of the radiative neutron capture
reaction n+ He~ He+y [25].

Using this variational wave function, we obtain a
scattering length of 10.1+0.5 fm. This result agrees well
with the value 10.2+1.4 fm extracted from the p He
phase shifts [36,37] in Ref. [8]. The Monte Carlo sub-
traction techniques discussed in Ref. [38] are required in
order to obtain reasonable statistical errors. The effective
range is difficult to determine accurately with this
method, but is roughly consistent with the value of 1.3 fm
reported in Ref. [8].

The expression for the spin-averaged total cross section
is obtained from that given in Eq. (3.1) by replacing v

and f with the corresponding p He relative velocity
and integrated Fermi function, for which we use the
value f 3 =2.544 X 10 at zero energy. The numerical

p He
evaluation of the matrix element of the axial current
operator given in the Appendix was again carried out us-
ing Monte Carlo integration techniques.

In the impulse approximation we obtain for S(E=0)
the value 5.8 X 10 MeV b, which is about 20%%uo smaller
than the value 8X10 MeVb quoted in Ref. [1]. In
this case the effect of the exchange-current operator is,
however, to reduce the prediction value by almost a fac-
tor of 5 to 1.3X10 MeVb. This strong reduction is
due to the fact that the exchange-current matrix element
in this reaction has a sign opposite to that of the impulse
approximation. This result is similar to that recently
found in the case of the corresponding electromagnetic

capture reaction n+ He~ He+y [25]. Therefore the
expected solar-neutrino Aux from the p He reaction
should be about five times smaller than the value
7.6 X 10 cm s ' given in Ref. [1].

In Table III we show the cumulative contribution to
the matrix element of the axial current from its individu-
al components that are listed in the Appendix. The
present conclusion that the exchange-current contribu-
tion reduces the predicted cross section is at variance
with the earlier findings of Refs. [8,11] that it should in-
crease the cross section. The difference can be traced to
the use of schematic wave functions in Refs. [8,11] which
lead to an overprediction of the one-body contribution,
and to the neglect of the interaction effects in the initial

p He scattering state, which modify the relative wave
function strongly at intermediate range.

We find that the cross section is not as sensitive to the
scattering length as that obtained for the corresponding
radiative capture reaction [25]. Changing the scattering
length from 11 to 9 fm results in a 50% increase in the
impulse-approximation cross section, with a slightly
smaller increase (=35%) in the full cross section. We
find that the impulse and exhange contributions are of
comparable magnitude, and a large cancellation exists be-
tween the two. In the radiative-capture case, the cross
section was in contrast largely dominated by the ex-
change terms.

The fact that there is a large cancellation between the
matrix elements of the one- and two-body parts of the ax-
ial current operator implies that the predicted value of
the cross section for the p He capture reaction is excep-
tionally sensitive to the model for the axial exchange-
current operator. While the overall strength of the
exchange-current contribution in the three-nucleon sys-
tem is known from the empirical Gamow-Teller matrix
element in tritium 13 decay, there may still be an apprecia-
ble uncertainty as to the magnitude of the contributions
from the various components of the exchange-current
operator. This uncertainty would be magnified in the
case of the p He capture reaction because of the cancel-
lation between the impulse and exchange-current contri-
butions, as the relative size of the different exchange-
current contributions varies among different reactions.
Thus a 20% uncertainty in the 633 exchange-current con-



624 CARLSON, RISKA, SCHIAVILLA, AND WIRINCrA

tribution (with a compensating uncertainty in the other
exchange-current contributions that maintains the pre-
dicted value of the Gamow-Teller matrix element for tri-
tium P decay) implies an uncertainty of a factor of 2 in
the calculated cross section for the p He capture reac-
tion. An uncertainty of that size in the strength of the
contribution due to the 633 exchange-current mechanism
is by no means unrealistic, given the schematic model
that we use to describe the corresponding exchange-
current operator, we have to associate a sizable uncer-
tainty margin with our predicted value for the cross sec-
tion of the p He capture reaction.

V. DISCUSSION

well determined in this way because of the similarity be-
tween the radial matrix elements of the 'So~ S&- D&
transition in the two-nucleon system to those in tritium P
decay, the predicted exchange-current contribution to the
p He capture reaction should still have a considerable
theoretical uncertainty. This is because the radial matrix
elements in this reaction are quite different from those
appearing in the two other reactions considered, and be-
cause of the sensitivity to the initial scattering state wave
function. This sensitivity is obvious from the relatively
large p-meson exchange contributions in Table III. The
less-well-known short-range part of the wave function has
a large inAuence, and thus a considerable uncertainty
should be expected.

The present calculation of the solar-neutrino reactions
and tritium P decay with realistic wave functions ob-
tained with the same nuclear interaction model in all re-
actions shows that (a) the exchange current contribution
to the pp reaction is smaller than previously thought [4,
6] and (b) the exchange-current contribution to the weak
p He capture cross section reduces the predicted value
by almost a factor of 5. While the former result corre-
sponds to expectations from studies of the Gamow-Teller
matrix element of tritium P decay [23], the latter was less
expected. It shows that the study of a reaction as delicate
as p+ He~ He+e++v„ in which the pseudo-
orthogonality between the main components of the
bound-state wave functions prevents the one-body opera-
tor from dominating the transition rate, puts exceptional
demands on the quality of the wave-function model. In
particular, it shows that the interaction effects in the ini-
tial p He scattering state have to be treated in full.

The present result that there is a destructive interfer-
ence between the matrix elements of the one- and two-
body current operators in the p He capture reaction cor-
responds to our previous finding of a similar interference
in the corresponding radiative capture reaction
n+ He~ He+y [25]. In that reaction the exchange-
current operator does, however, completely dominate the
capture rate because of the important model-independent
exchange-current operator that is associated with the
nucleon-nucleon interaction, but which does not contrib-
ute an axial current operator. Because of the common at-
tempt to estimate the relative magnitude of the axial
exchange-current correction from the corresponding elec-
tromagnetic reaction [2,8, 11], we wish to reemphasize
that "it should be clear to everyone at this point that the
exchange currents must be basically different between P-
decay and the magnetic moments" [21]. Because of this,
and the importance of the (different) initial-state interac-
tions in the weak p He and radiative n He capture reac-
tions, attempts to infer the relative importance of the
exchange-current contribution in one from the other are
bound to be misleading.

The model for the exchange-current operator here was
constrained by fitting the matrix element ( He~ A+~ H)
to the empirical Gamow-Teller matrix element of tritium
P decay. This obviously does not altogether eliminate the
uncertainty in the exchange-current contribution. Al-
though its contribution to the pp reaction should be fairly
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APPENDIX

The axial exchange-current operators are given here.
The single-particle current is

A+ = —g„or+, ~+ = ,' ( ~ + i ~y—) . (A 1)

We use g„=1.262.
The pion exchange seagull (pair) current is

2 2+k2 m 2
7r 7r 2

X ] (r, Xr2)+o, Xk2

r2+ [q+ i o,—X ( p, +p', ) ] J + ( 1~~2 ) .

(A2)

The notation is m =pion mass and m =nucleon mass; q
total momentum transfer =k] +k2, k $(2) momentum
transfer to nucleon l(2); pi, pz and p&, pz initial and final
nucleon momenta; f zz =pseudovector vrNN coupling
constant (f zz/4n =0.79); f (k) =pion-nucleon mono-
pole vertex form factor. This expression represents the
conventional pair current operator given in the literature
[20,25]. This is obtained with pseudoscalar pion-nucleon
coupling. With pseudovector coupling the pion momen-
tum k2 in the first term in brackets would be replaced by
the external momentum q and an additional term
(p, +p', ) would appear with the isospin structure
(~'Xr )+

The p-meson exchange (pair) seagull current is
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g (I+tr) f (k2)

4m m +k
p 2

X(r2+[(o 2Xkz) Xk2 —i [o t X(o &Xkz)] X(p&+p'&)]

A+(pS) = —g„

X(r&Xr2)+[qo, (o,Xk2)+i(tT, Xk, )X(p, +p', ) —[o, X(tT, Xk, )]Xk,] )+(1~~2) . (A3)

The operator includes only those terms which are proportional to (I+tr); g is the pNN vector (g /4m =0.5), and tr the
tensor coupling constant (ted=6. 6). The pNN monopole vertex form factor is denoted f (k).

The pion exchange 533 excitation current is

2

A ( b)=—
25 ~ 2 2 p f~a( 2 )[4r2+k2 (&) X&2)+tr ) Xk2]+( 1+~2)ma —m) m +k2 (A4)

The quark model relations g„&a =(6&2/5)/g„, g ~z = (6t/2/5) f » have been used to express the Nb, transition cou-
plings in terms of nucleon parameters. The mNh mo. nopole vertex form factor is denoted f a(k).

The p-meson exchange 633 excitation current is

4 g (1+ted) f a(k2)
A+(pb ) = gq q q 2 I47p (+~CJXk )2Xk2 —(r, Xr~)+o, X [(tr2Xk2) Xk2]] +(1~~2) .

m (ma —m) m +k2
(A5)

The quark model relations have been used to express the pA coupling constants in terms of pXN coupling constants.
The pb, monopole vertex form factor is denoted f a(k).

The mp exchange current is

gp
2

A+(mp) = —2gq f (k) )f (k2)(rt Xr2)+[(I+tr)crt Xk) —i(p)+p))]+(1~~2) .
(m +k )(m +k )

(A6)
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