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In this paper we develop a practical "hybrid" numerical representation of the nucleon-nucleon T ma-

trix. Part of the expression contains nonseparable terms which are easily calculated, and the rest con-
sists of a separable representation of small rank in terms of Weinberg states. The method rests on the
observation that when a set of positive-energy %'einberg states is used to obtain a separable representa-
tion of the potential V then the residue 6 V, due to the basis-set truncation, has very special properties:
(1) The contribution 6T to the T matrix due to AVis identical to the undistorted T matrix for 6 V alone,

T&, i.e., the usual Moeller distortion factors in the two-potential formula are unity in this case. (2) A
perturbative-iterative treatment of Tz in powers of 5 V is found to be equivalent to the finite-rank repre-
sentation of operators of the type T, T —V, T —V —VGo V, and so on. This equivalence has both practi-
cal and theoretical implications. On the one hand, it provides a reliab1e method for calculating the T
matrix and for analyzing the corresponding accuracy properties. On the other hand, a connection is es-

tablished between each order of the quasiparticle method and the different variational principles which

underlie the finite-rank representation of operators such as T, T —V, T —V —VGO V, etc. Numerical ex-

amples are provided for two difterent nucleon-nucleon singlet potentials (Reid soft core and Malfliet-

Tjon). In the Malffiet-Tjon case, for instance, two Weinberg states are found to be sufhcient in order to
give an accuracy of 0.1% for the calculation of T —V —VGOV, while for T —V and T the same two

states give an accuracy of 1% and 10%, respectively, in an interval of 6 fm ' around the on-shell point.

I. INTRC)DUCTION

Positive-energy Weinberg states [1] (PEWS) are a use-
ful basis for solving scattering problems because these
functions asymptotically obey the appropriate outgoing
wave boundary condition. They have been used for the
solution of the Schrodinger wave function (coupled or un-
coupled) [1,2], for the solution of a many-particle shell-
model system with one nucleon in the continuum [3], for
obtaining a representation of the two-nucleon T matrix
[4,5], and for obtaining a nonlocal dynamic polarization
potential which expresses the e6'ect of channel coupling
[6]. Negative-energy Weinberg states (NEWS) have been
similarly used with good success for generating a separ-
able representation of the two-body T matrix for many
years [7]. Renewed activity with NEWS has more recent-
ly provided a separable representation for the T matrix
for modern potentials [8], and also for obtaining the ener-

gy dependence of the dynamic polarization potential due
to channel coupling at the threshold of the opening of a
new channel [9]. NEWS are also used in atomic scatter-
ing situations [10],or for including the efFects of breakup
in deuteron-nucleus transfer reactions [11].

Many applications, however, require good accuracy
with low rank, while the convergence with the number of
Weinberg basis states can be rather slow, especially if a
tensor interaction is present. Moreover, for strong in-
teractions the T matrix may be several orders of magni-
tude smaller than the potential, in which case the T ma-
trix expansion requires higher precision than the corre-
sponding expansion of the potential [12]. For cases in
which a strict separable expansion of the T matrix is re-

quired, other representations have become popular, such
as the one based on the Ernst, Shakin, and Thaler (EST)
method [13]or the 8'-matrix method [14].

When a purely separable expansion is not required, a
two-potential approach was advocated [12], in which the
high-rank terms of the representation are replaced by
nonseparable expressions. This procedure is particularly
simple when PEWS are used for a basis of the separable
representation. The procedure is as follows. The poten™
tial is first expressed by a separable representation in
terms of the PEWS. This representation is then truncat-
ed at any rank S, giving rise to the separable potential Vz
and to the remainder AV= V —Vz. Under these condi-
tions [12] the total T matrix is the sum of the separate T
matrices which correspond to Vs (called Ts), and to b, V
(called Tt, ), respectively, all distortion factors which usu-

ally occur in the two-potential formula [15] being
rigorously equal to unity in this case.

In this article we illustrate this method for the particu-
lar case in which AV is sufficiently small so that T~ can
be obtained perturbatively. This method is a form of the
quasiparticle method [1],also called the Hilbert-Schmidt
[1] method. From a theoretical point of view this ap-
proach is more adequate than the fully separable repre-
sentation of T since it is known [16] that one cannot
rigorously express a local potential as a sum over a finite
number of separable terms. We give a numerical illustra-
tion of the method for the Malfliet-Tjon (MT-I) and the
Reid soft core (RSC) nucleon-nucleon potentials. For
simplicity, we restrict ourselves to the singlet case So.
For each of these potentials we compare the numerical
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convergence properties of three different expressions for
T, containing, respectively, the zero-, the first-, and
second-order quasiparticle contributions. We find that
the accuracy properties and convergence rate of these
different expressions are dramatically different, and we
show how this can be understood within the Weinberg
state formalism.

In Sec. II we review the properties of the Weinberg
states which are relevant to the present study; in Sec. III
we present the connection between the perturbative treat-
ment of Tz and the high-rank part of a %'einberg expan-
sion; Sec. IV contains the numerical results for the MT-I
and the RSC potentials; and Sec. V contains the con-
clusions.

II. THE WEINBERG STATE REPRESENTATION

T=(1—VGO) 'V= VQi, , (2.1)

where A v is the distortion operator associated to the po-
tential V,

Qv=1+ Gv V=1+Go T (2.2)

In the above Go and Gv are, respectively, the undistorted
and the V-distorted Green's functions calculated at the
energy E. When the potential V is decomposed into two
parts Vs and 6 V= V —Vs, then the two-potential formu-
la for the T matrix can be written [12,15] as

The T matrix which corresponds to a given potential V
obeys the Lippmann-Schwinger equation T(F)= V
+ VGo(E)T(E), which has the solution

and in addition the distortion factors Qs have no effect
on T&. Therefore, in the case that positive-energy Wein-
berg states are used for the construction of the separable
expression for Vs or Ts, one has

TS+ T (2.5)

i.e., the correction AT to Ts is itself a T-matrix for the
potential AV. The derivation of this result is included in
the Appendix in order to clearly show why it holds for
the case of positive-energy Weinberg states (PEWS).
Below we review the properties of the PEWS which are
relevant to the connection between the expansion of AT
in terms of PEWS and the calculation of 6T through per-
turbation theory.

The PEWS
I 1,(E) & are defined by the eigenvalue equa-

tion

(2.6)

which defines also the normalization here assumed. The
eigen values y, are complex dimensionless quantities
which, for usual well-behaved potentials, have only one
accumulation point at zero [1]; i.e., Iy, I

~0 as s —& ~.
As is well known, these functions allow one to represent
both the potential V and the scattering matrix
T = V+ VGo T in the form

where Go(E) denotes the free Green's function with in-
cident energy E, orbital momentum l, and outgoing
boundary condition. The orthogonality of these states is
expressed by the equation

(2.7a)

T= Ts+( I+ TsGO)r~(1+GOTs) . (2.3) (2.7b)

Here Ts is the T matrix which corresponds to Vs and ~&
is the T matrix corresponding to 6 V in the presence of
the Green's function Qs distorted by Vs,
rz=b V+6 VQsr~, with S's=GO+Go VsQs. Since Vs is
assumed to be separable, Ts also is, but ~~ is not separ-
able.

The above equation shows that the additional term in
T due to the effect of 6 V in the presence of Vs is given by
~z modified by the distortion factors As and Qs. Since
6Vis small, ~& can be obtained as a perturbative series in
6V, but in view of the presence of the distortion factors
Qs, it is not easy to know the size of the second term in
Eq. (2.3). According to Eq. (2.1), these distortion factors
have a large effect when they act on Vs, since Ts is much
less than Vs, at least when the energy is far away from
any pole of the T matrix. However, when they act on ~&,
which to first order is equal to AV, these distortion fac-
tors may have a much smaller effect. This is shown [12]
to be the case when Vs is constructed from negative-
energy Weinberg functions for the example of the Reid
soft core singlet potential. It was also shown in Ref. 12
that when Vs is constructed with positive-energy Wein-
berg functions, then ~z is rigorously equal to the T matrix
Tz which is associated to Vz alone;

(2.7c)

where the functions lg, & are defined as

(2.8)

In view of the factor (1—y, ) ', the contribution to T
from the states whose eigenvalues are much greater than
unity is suppressed, while the contribution from the
states whose value of

I
1 —y, I

is close to zero, as in the
case of resonances and bound states, are enhanced. Of
course, the same is not the case for the potential, since
the factor (1—y, )

' is absent. Hence, if the spectrum of
the y eigenvalues contains values much larger than unity,
T can be much smaller than V, as is the case for the Reid
or the MalAeit-Tjon potentials. On the other hand, the
states whose eigenvalues are much less than unity con-
tribute nearly in the same amount to both T and V.
Thus, if the sums over s in Eqs. (2.7) are cut off' at an
upper limit S, as has to be done for practical calculations,
then the remainder 6V and the corresponding quantity
AT are

(2.9a)
T~ =6V+ 6 VGo T~, (2.4)
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TABLE I. Weinberg eigenvalues y, in the space l =0 for F. =5 MeV. These results are obtained in the model space of Ref. 5, as
described in the text. For other model spaces the numerical results can be different, as is discussed in Ref. [20].

Re

—2.60
0.68

—0.37
0.11

—0.05
0.04

MT-I
Im

—0.11
0.49

—0.00
0.03
0.00
0.01

'S,

Re

—14.91
—1.86

0.77
—0.19

0.11
0.04

RSC
Im

—0.96
—0.04

0.38
0.00
0.03
0.01

—1.90
1.09
0.18

—0.22
0.07
0.03

MT-III

—0.04
0.75
0.04
0.00
0.01
0.00

S,

Re

—20.90
—1.81

1.15
0.14
0.10

—0.10

RSC
Im

—1.44
—0.02

0.63
0.01
0.03
0.00

Ix, &,
t =S+1

(2.9b)

III. THE PKRTURBATIVE EXPRESSIONS

We shall derive now in the frame of the Weinberg rep-
resentation expressions which replace Eq. (2.9b) for hT.
These expressions are based on a perturbative-iterative

which represents the errors in V and T, respectively, and
are of the same order of magnitude. However, AT is also
the solution of Eq. (2.4), since b, T is identical to T~ for
the PEWS expansion discussed here. If the eigenvalues

y„ t =5+1,S+2, . . . , contained in 6V are sufficiently
small compared to unity, then the solution of Eq. (2.4)
can also be obtained by a rapidly converging Il] Born
series, and hence the slowly converging sum over the
many small eigenvalues in Eq. (2.9b) can be avoided.

This very simple analysis shows that the accuracy and
the convergence rapidity of the separable PEWS repre-
sentation of T are very sensitive to the properties of the
Weinberg eigenvalue spectrum. As an example the first
six eigenvalues y for the Reid soft core (RSC) and the
Malfliet-Tjon (MT) potentials are listed in Table I for a
c.m. energy of 5 MeV. The eigenvalues with negative-
(positive-) real part correspond to the repulsive (attrac-
tive) terms of the potential. The results of the RSC trip-
let state are taken from Ref. [5], where they are calculat-
ed by solving the s and d coupled equations, and then
projecting the result on the s channel. The RSC poten-
tials have two large repulsive eigenvalues, while the MT
potentials have only one, which shows that the former
has a substantially more repulsive core than the latter.
This is ofFset to some extent by a difference in the
momentum representation of the corresponding weighted
form factors (y I

k & /( 1 —y )', shown in Fig. 1, so that
the final T matrices for the two potentials are not too
difFerent. The first attractive eigenvalues are approxi-
mately the same for the two potentials, since they give
similar results for the low-energy virtual or bound states.
The convergence to zero of the eigenvalues occurs ap-
proximately at the same rate for the two potentials. Due
to the differences in the eigenvalue spectrum of the two
potentials, the rank of the PEWS separable representa-
tion required to obtain a given accuracy for T is different
for the two cases, as is shown in Sec. 4.
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FIG. 1. Momentum dependence of the absolute value of the
Weinberg form factors y,', for the 'So Malfliet-Tjon I and the
Reid soft core potentials. The numbers next to each curve are
the value of the real part of the corresponding Weinberg eigen-
value y„ listed in Table I. The form factors which correspond
to a repulsive eigenvalue (y & 0) were multiplied by —1, so as to
distinguish them clearly from the attractive ones. The form fac-
tor y,

' is equal to the quantity g„defined in Eq. (2.8), divided by
(1 y )1/2

treatment of the solution of Eq. (2.4) for b, T in terms of
6 V and lead to more accurate, although only partially se-
parable, representations for T.

We will denote the separable expression for V, truncat-
ed at the upper limit S, and the corresponding separable
representation of T as Vz and T& ', respectively. Accord-
ing to Eqs. (2.7) they are given by

l;= y Ix, &&x, , (3.1)
s=1
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(3.2)

The corresponding errors 6Vand ATS ' are given by

hV= V —Vs and ETs T Ts (3.3)

T"'=Z'"+a V,S S

SZ'"= T —T'"S S

T' '=T"'+AVG AV,

aT'"= T —Z'"S S

(3.4a)

(3.4b)

(3.5a)

(3.5b)

for the T matrix and the error, respectively. Now, using
Eqs. (3.2), (3.3), and (3.1), we have

(3.6a)

oo

x&
' &xl.

t =S+1
(3.6b)

The same manipulations, when applied to Eqs. (3.5), with
Ts" given by Eq. (3.6a), yield

S 2

z;"'=v+vG, v+ y ly, &,1 —y,
(3.7a)

(3.7b)

In a similar way, analogous equations for the general
terms Ts"' and 6Ts"' can be easily derived.

Equations (3.6) and (3.7) give the desired hybrid ex-
pression for the T matrix, one part of which is separable,
the other nonseparable. The separable part of each of the
expressions for T'"' is expected to converge more rapidly
the higher the order (n), since the corresponding error
AT'"' has a higher power of y, in the numerator, which,
in view of the smallness of the absolute values of yt for
t & S, is correspondingly reduced. Indeed, the numerical
results described in the next section show differences in
accuracy of orders of magnitude between Eqs. (3.2), (3.6),
and (3.7). By contrast, the denominators are the same in
all the expressions for T'"'. Since the denominators con-
tain the bound-state poles and resonances, the singularity
properties of T are contained equally well in each of the
expressions for T.

These errors are also given by Eqs. (2.7), but we will
avoid using them for numerical purposes, since the con-
tribution to the sums in Eq. (2.7) from the large values of
s requires an accurate numerical knowledge of many
small eigenvalues, which is difficult to achieve with the
presently available numerical diagonalization subrou-
tines.

The basis of the quasiparticle method consists in solv-
ing Eq. (2.4) by iterations, which converge since b, V con-
tains only eigenvalues smaller than unity. The first itera-
tion for AT = Tz is 6 V, the second one is 6 VGoh V, and
so on. If we add these corrections to Ts ', given by Eq.
(3.2), we obtain

It is worthwhile to note that one can look at the ex-
pressions Ts ', Ts", and Ts ' from quite a different point
of view: These expressions are indeed separable represen-
tations for the operators T, T —V, and T —V —VGOV,
respectively. The different accuracy which one obtains
for the separable representation of T and T —V has al-
ready been emphasized in the literature [17], which in
turn depends on the difference between the various varia-
tional principles [17,18] which underlie the separable rep-
resentations. Indeed, a variational principle of the
Schwinger type has to be considered for the separable
representation of T, a variational principle of the
Hulthen-Kohn type for T —V, and yet another different
variational principle [19] for T —V —VGO V. It must,
however, be emphasized that, while the variational prin-
ciples hold for any basis set, the equivalence between the
perturbative treatment of the correlation 6 V and the se-
parable representations of T, T —V, and T —V —VGOV,
given by Eqs. (3.2), (3.6), and (3.7), hold only with the use
of the PEWS, since in this case the distortion terms 0 are
unity. For other basis states, one has to analyze in detail
the e6'ect of the II's on the perturbation expressions [19].

IV. NUMERICAL RESULTS

In the previous section two hybrid expressions for the
T matrix were presented in which the contributions
which ordinarily arise from the high-rank parts of the se-
parable representation are replaced by nonseparable
terms. The purely separable representation T' ' is given
by Eq. (3.2), while the hybrid expressions T'" and T' ~

and their respective errors are given by Eqs. (3.6) and
(3.7), respectively.

The expressions T' ', T'", and T' ' for Tare evaluated
numerically for the Reid soft core and the MalAiet-Tjon
nucleon-nucleon potentials, and the nature of the conver-
gence of the result as a function of the rank S of the se-
parable part is examined below. Since the Weinberg ei-
genvalue spectrum of these potentials is different, insight
on the connection between the nature of the spectrum
and the convergence properties can thereby be obtained.
The c.m. energy is 5 MeV, the corresponding on-shell
momentum is =0.35 fm

The numerical calculations are performed by the
method described in Ref. 5; however, the functions I
defined in the present paper differ from the ones in Ref. 5

by a normalization factor (y) '~ . In this method the
Weinberg eigenfunctions I, are expanded in a basis of
"primitive" Sturmian functions P, which are given in
terms of spherical Bessel functions of complex wave num-
bers. The size M of this basis, 75 in this case, and the
value of the matching radius R =15 fm are chosen large
enough so that the resulting T matrix is stable to three
significant figures, as is discussed in connection to Table I
of that reference. This method is approximately
equivalent to a calculation in complex momentum space
with an upper momentum limit of 15 fm ' and momen-
tum steps which are approximately equally spaced and
are of size 0.2 fm '. In this model space the eigenvalues
are not as stable as the resulting value of the T matrix. A
new method is being developed to obtain the Weinberg
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eigenstates entirely in real momentum space [20], which
avoids the need to introduce a primitive basis or a match-
ing radius. The T matrices for the two methods agree to
better than 0.5%%uo for momenta below 6 fm ', but there
are differences between the two eigenvalue spectra. The
attractive eigenvalues in the two methods agree very well,
and the repulsive ones are more stable in the new
method. In addition, a few of the old repulsive eigenval-
ues are split into two different new ones. This is under-
standable, since the repulsive form factors extend out to
larger momenta than the attractive ones, as is illustrated
in Fig. 1. Since the new method encompasses a larger
momentum space, it is expected that the repulsive eigen-
quantities also differ from those in the old, more restrict-
ed, method. These differences and similarities are dis-
cussed further in Ref. [20].

The first six eigenvalues for the two potentials, ob-
tained in the model space of Ref. [5] described above, are
listed in Table I, and the momentum representation of
the corresponding form factors is illustrated in Fig. 1.
The absolute values of the form factors for the repulsive
eigenvalues were multiplied by —1, so as to separate
them clearly from the attractive form factors. The figure
shows that the repulsive form factors have much larger-
momentum components than the attractive ones, and fur-
ther, the MT form factors are smaller than the RSC ones.
These differences reQect the fact that the RSC potential
has a stronger repulsive core, and has a more complicat-
ed spatial dependence than the MT potential. This be-
havior of the form factors affects the convergence proper-
ties of Tz ', Tz'", and Tz ' as a function of the rank S, as
will now be examined. The values of the {k~ T'"'~k') are
calculated numerically using Eqs. (3.2), (3.6a), and (3.7a),
respectively. The sums over s are carried out using the
form factors {k ~y, ) and eigenvalues y, discussed above.
The order of the states is such that the ones with the
highest absolute value of y, occur first. The matrix ele-
ments involving the Green's function are evaluated mak-
ing use of the identity Go =Q~PJ ){P.~, where the P's are
the primitives mentioned above, and the sum over j is cut
off at the same upper limit M as the upper limit which is
used for the calculation of the Weinberg states in terms of
the primitives.

The errors {k~ATz'"'Ilk'), n =0, 1,2, are obtained from
the numerical difference T —T&"'. The "exact" value of
T is calculated from Eq. (3.6a) in which the sum over s is
taken to the maximum value M. The results for the er-
rors are illustrated in Figs. 2 and 3. It is clear that the
fastest convergence is achieved for T' ', as was expected
since the expression in Eq. (3.7b) has the highest power of
y, in the numerator. Convergence for the RSC case sets
in only after the first two states are included in the sums
over s, because their respective eigenvalues y, are larger
than unity. For the MT case only one eigenvalue lies out-
side the unit circle (it also is repulsive), and hence conver-
gence sets in already after one state. Also, the larger the
momenta k or k', the slower is the convergence of T& to-
wards T. The repulsive form factors slow down the con-
vergence more than the attractive ones because the form-
er have stronger momentum components.

The nonseparable component T& of the T matrix,

1Q3,
102 MT1

&0.5ITI0.5&10'
t: 1OO'. ''

T(0)" 10
o 10

103 I I I I 4-

10' MT1
101 "'. &0.5ITI7.0&

C)
1QO

10 r

V

8 102:
~ 10' .-

104

T(o)
" T{1)

T(2) '".--"- ..

I I I I
'I-

I
-

I12345678910
Rank S

defined in Eqs. (2.4) and (2.5), will be discussed next.
This term is small, and is of interest because it can be in-
cluded in three-body calculations by a perturbative
method [21]. If T' ', given by Eq. (3.7a), is assumed to be
a suitable approximation to T, then the separable part of
T is given by Tz' ', Eq. (3.2), and the nonseparable part
T& is approximated by

V-~,2) =~V+~VG, ~ V (4.1)

los .
p sa %U lj

10' .'-

10O:-

~ 10'
~ 1O-'

103,
102,—....

10'
100

-.

~g 10 r

"102
o". 'o'-

IO-'

RSC
&0.5ITI0.5&

I I I I

T(0)
""-"- T(1)

T(2)

RSC
0.5ITI7.0&

T(0)
T(1) ---..
T(2)

I I I I I I ~J I12345678910
Rank S

FICi. 3. Same as Fig. 2, for the Reid soft core potential.

FIG. 2. Absolute value of the error for three approximations
to the T matrix as a function of the rank S of the separable part
V& of the Malfliet-Tjon potential. For T~ ', defined in Eq. (3.2),
the correction dT due to the remainder dV is completely
neglected, and T&

' is purely separable of rank S, while T'" and
T' ' are obtained by approximating d T by d V and by
d V+d VGod V, respectively, and adding the result to T' '. The
values of the momenta k and k', in fm ', are given in the figure.
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E,„=5MeV, (0.5ITlk), S=3
A2

~ I ~ \
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I
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I
I ~ \ 'I

I
I

I
I 1 I

I
I I I \

I
I l I ~

The decomposition of T is then given by

Ts Ts +Ta'+ATs ~ (4.3)

10o /' ', ,' ~ MT-I
/ /

/
% /-i

102
102

Error,
I I I I ~ ~ I ~ ~ I, I I ~ ~ I I I I ~ ~

RSC

/-2

1 0-3
Error,

0 2 4 6 8 10 12 14 16
k (fm')

to second order in AV. It is useful to note that T&' can
also be expressed in terms of the same form factors which
enter into the expression for Ts ' as

s
T~ ~= V+VGoV g ~X, )(1+7', )(X, l

.
s=1

(4.2)

10'
10~

1

10o

E =5 MeV, (3.5ITlk), S=3

r
c

/

10-2
3

10'
10'

—10o
-1

10 2

1

Error,

~ I ~ I I ~ I I I I I I ~ I I
I I

I
~ I

I
I ~ I ~

I
~ I ~

//
/
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Error,

I ~ I I ~ I I I I I I I I
I 'I

I
f I

I
1 \

I
I
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k (fm')

FIG. 5. Same as Fig. 4 for a value of k' =3.5 fm

FIG. 4. Various approximations to the T matrix, as a func-
tion of the momentum k, for the MT and the RSC potentials.
Only the absolute values are shown. The solid curve represents
the exact value of T. The dotted curve represents the purely se-
parable approximation, T~ '. The second-order approximation
T&' to AT, given by Eq. (4.2), is shown by the dashed curves.
When the latter is added to the former, the error ET' ', illus-
trated by the dash-dotted curve remains. The rank of the separ-
able part of the potential is equal to 3 in both cases. The
momentum k' is equal to 0.5 fm

where the error b T,' ' is given by Eq. (3.7b). The condi-
tion that T& ' is small compared to Ts ' and that the error
hT' ' be negligible can both be achieved by choosing the
value of the rank S of the separable part sufficiently large,
as will be illustrated in what follows.

The values of Tz ', and the corresponding error AT& ',

are illustrated in Figs. 4 and 5 for the MT-I and the RSC
potentials. The solid lines show the absolute value of the
exact T matrix,

~ ( k '
~
T

~
k ), as a function of k, while the

dotted lines show the rank-3 approximation Ts ' 3. It can
be noted that for A, "=0.5 cm ' the RSC value of T has a
zero near k =8.5 fm ', which is not present for the MT
case. The larger the value of k or k', the larger is the
corresponding error in the approximation of T by Ts —3.
As S is increased from 3 to 4 the error decreases, espe-
cially at the high momenta. The perturbative term T& ' is
shown by the dashed lines in Figs. 4 and 5, where it is
denoted as T&. The error left over after T& ' is added to
Ts ' is shown by the dash-dotted lines. It is equal to
ETs '. With a rank-3 approximation to V and T, the
figures show that the perturbative term is approximately
1 order of magnitude smaller than T, for both the RSC
and the MT cases.

V. SUMMARY AND CONCLUSIONS

A hybrid representation for the nucleon-nucleon T ma-
trix in terms of a separable and a nonseparable piece has
been presented in this study, following a quasiparticle
method [I]. The separable piece is given in terms of
positive-energy Weinberg eigenstates defined for the full
potential and the corresponding nonseparable remainder
is rigorously equal to the T matrix Tz for the potential
hV. (The latter represents the difFerence between the full
potential and the separable part. ) This unique property
that hT = Tz is rigorously valid only when the form fac-
tors for the separable part are defined in terms of
positive-energy Weinberg states. In the present applica-
tion we define AV to be sufficiently small so that the
Lippmann-Schwinger equation for Tz can be solved by
perturbative iterations in AV. The iterations converge
rapidly because b V is such that the eigenvalues of Goh V
are well inside the unit circle.

The numerical behavior of the method is examined for
the Reid soft core and the MalAiet-Tjon potentials for the
'So nucleon-nucleon state, for a c.m. energy of 5 MeV.
As long as rank of the separable part is large enough so
as to include the states for which the Weinberg eigenval-
ues lie outside the unit circle, then for each additional or-
der included in the perturbative expansion the accuracy
of the result increases by an order of magnitude, as is il-
lustrated in Figs. 2 and 3. This property permits one to
restrict the rank of the separable part to a low value, and
yet achieve high accuracy for the overall result. For the
RSC and the MT-I potentials the number of such Wein-
berg states is 3 and 2, respectively. With only one addi-
tional term included in the separable representation, the
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second-order perturbative term is more than 1 order of
magnitude smaller than the full value of the T matrix,
and the remaining error is 3 orders of magnitude smaller
than T, for momenta less than 6 fm ', as is illustrated in
Figs. 4 and 5.

We expect that our study will have a number of useful
applications for those cases where an expansion in terms
of Weinberg states is desirable, especially if one takes into
consideration that a simple way has been found [20] for
calculating the Weinberg states entirely in momentum
space, which avoids the complications due to the Green's
function singularity.
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APPENDIX

It will now be shown that if the separable part V~ of
the potential Vis defined in terms of PEWS form factors,
and if Ts is the corresponding separable T matrix, then

&y, lGoIX, ) =),&„. (A2)

Therefore, 6Vis orthogonal to GDT& and hence the third
term in Eq. (Al) vanishes. The fourth term also vanishes
because b, T, in view of Eq. (2.9b) is orthogonal to VsGo.
Thus, AT obeys the same equation as Ta, Eq. (2.4), and
hence AT= Tz.

Because T+Go is also orthogonal to AV, and hence to
~&, the considerations above also show that the distortion
factor (1+TsGc) has no effect when acting from the left
on b, V, and hence on r&. Similarly for (I+Go Ts) acting
on 6 V or ~& from the right.

the difference AT between the full T matrix and Ts is it-
self the T matrix which corresponds to 6 V.

If one starts with the Lippmann-Schwinger equation
for the full T matrix, T = V+ VGD T, replaces T by
Ts+6 nd V by Vs+~V and m kes use of
Ts Vs+ VsGQTS one obtains

b T =6 V+ & VGob T+ b VGo Ts+ Vs Gob T . (Al)

According to Eq. (3.2), Ts is formed from Weinberg
states g which lie in the space s =1 . S, while AV is
contained in the complementary space t =S+1,
as can be seen from Eq. (2.9). Further, in view of Eqs.
(2.6) and (2.7), one has
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