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This paper comments on the arguments of the paper by P. Halse [Phys. Rev. C 39, 1104 (1989)].

Recently, Halse published a paper entitled “Compar-
ison of Realistic and Symmetry-Determined S and D
Pairs for 1°Gd [1]. The main points of this paper are (1)
the S and D pair wave functions for *°Gd were extracted
from a Hartree-Fock-Bogoliubov (HFB) type calculation
[2]; in his opinion, these pairs are realistic; (2) overlaps of
these pair of wave functions with the various symmetry-
dictated fermion S and D pairs were computed. From
the overlaps and the “realistic” nature of the HFB-type S
and D pairs, the author concluded that “there is evidence
for the validity of a pseudospin 1 decomposition (i.e.,
pseudo-SU(3) scheme [3])” and that *“... the realistic
pairs are not well described by the other symmetries dis-
cussed.”

By ““the other symmetries,” the author meant primari-
ly those obtained from the fermion dynamical symmetry
model (FDSM) [4]. The author concluded from his com-
puted pair overlaps that the symmetry-dictated S and D
pairs of the FDSM for heavy nuclei (rare earths and
beyond) are woefully inadequate, thereby casting serious
doubt on the validity of the model.

We suggest that Halse’s paper is flawed at a fundamen-
tal level, thus rendering the conclusions essentially ir-
relevant to the important discussion of the microscopic
validity of these theories. The following are our specific
comments.

(1) The overlap for differently truncated many-body
wave functions is not a meaningful quantity to assess the
validity of a microscopic model. According to many-body
theory, it is well known that for two different model
spaces, the wave functions may be quite different. Yet,
by properly choosing effective operators for the various
physical quantities in the respective spaces, two trunca-

tion schemes can meaningfully describe the same system
irrespective of how little their wave functions overlap (ex-
cept for states which are completely out of the model
space). Thus, it is our opinion that little useful informa-
tion can be extracted from the overlap of wave functions
in different model spaces. After all, for the FDSM, the
chosen model space is a severely truncated valence (k-i)
space, while the 156G4 HFB calculation utilizes a mean-
field approximation within the valence shells. These are
two quite different spaces, and therefore one should not
be surprised if the wave function overlap is small.

(2) To calculate a pair overlap is even less meaningful.
In Ref. [1], the author has computed the overlap between
the S (or D) pair as defined in Ref. [2], and the
symmetry-dictated S (or D) pair of the FDSM. For fer-
mions, having a large pair overlap by no means implies
that the corresponding many-body wave function overlap
must also be large (as we have previously stressed the
many-body wave function overlap itself is already not a
meaningful quantity if the two wave functions belong to
different model spaces). In fact, the many-body wave
function overlap may even vanish since one can construct
orthogonal many-body wave functions from the same S
and D pairs. Likewise, it is not inconceivable that while
the many-body wave function overlap is unity, the pair
overlap may be zero. This is because one is always free to
recouple the fermion pairs by a unitary transformation in
a many-body wave function. This point can be transpar-
ently illustrated by the following “‘trivial” example. Con-
sider a wave function for four identical particles
F,=|(j1,j1)Ly(jsjs)Lp;J ), in the standard angular
momentum coupling notation. By a unitary transforma-
tion, this can be rewritten as

F,=-3 ((jl?jz)Ll(jl’jZ)LZ;J|(jl’jl)La(erjZ)Lb;J>|(jl’j2)Ll(j1’j2)L2;J> > (1)

where the
CGod2) Ly Grsda )Ly I Grsd )L Ugsda )Ly d )

are 9j coefficients. Obviously, the many-body wave func-
tion overlap is { F,|F,) =1, and yet the pair overlaps of
F, and F, are zero since |(j,,j,)L )’s are orthogonal to

4

[(j1,41)L )’s and |(j,,j,)L )’s. This simple example vi-
vidly illustrates that the pair overlap has little or no physi-
cal significance and cannot be the guiding principle for
validating a many-body wave function. This misconcep-
tion is based on a failure to appreciate the difference be-
tween a system approximated by (structureless) bosons
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and the realistic nuclear many-body problem evaluated in
a basis of fermion pairs.

(3) Is there a realistic S or D pair? As was discussed in
(2), fermion wave functions can be expressed in terms of
different pair structures. Hence, there is no inherent ad-
vantage in a many-body fermionic system to seek a realis-
tic pair structure since they lack definite meaning. For
example, the wave function for a state with two S pairs
|SS); the overlaps with two D pairs, two G pairs
((SS|DD), (SS|GG)) etc., are generally nonvanishing.
This means that, to a certain extent, higher angular
momentum correlations for a fermionic many-body wave
function are always present, even though the wave func-
tion is constructed purely from the S (fermion) pairs.
This is a very important difference between a fermion
pair and a boson: when the fermion pairs are replaced
directly by bosons, the overlaps between two s bosons and
two higher angular momentum bosons (e.g., {ss|dd ),
(ss|gg)) must vanish. Therefore, the higher angular
momentum correlations for fermions associated with the
exchange effect are lost by such a simple replacement.

(4) What is a realistic interaction? It was argued in Ref.
[1] that the surface delta interaction plus the quadruple
n-p interaction is a ‘‘realistic interaction.” This state-
ment requires close scrutiny. To be precise, as far as bare
nucleon-nucleon interaction is concerned, this statement
is certainly untrue; potentials on the market like the Paris
potential is far more realistic. On the other hand, for
effective interactions, it is well known that different trun-
cation schemes require different effective interactions and
therefore any interaction which matches a given model
space can be considered as effective or ‘“realistic.”” In this
sense, even the bare nucleon-nucleon interaction, which
should only be used for the exact, and therefore, infinite
Hilbert space, is unrealistic if the space has been truncat-
ed. Thus, it is simply a misconception to claim that one
effective interaction is more realistic than another
without careful study of the corresponding model spaces.
In this context, although the pairing plus quadruple in-
teraction  has been extensively used for many studies in
the heavy-mass region, it is at best a reasonable effective
interaction for some limited regions (say vibrational) or
for other approaches (say RPA or various mean-field ap-
proximations in which the Hilbert space is different from
the spherical shell model). It should not, and cannot, be
regarded as the only “realistic interaction” to be used
everywhere in nuclear structure.

(5) What constitutes a realistic nuclear structure calcu-
lation? One of the central themes of Ref. [1] is that the
HFB calculation (in this case for °°Gd) is a “realistic cal-
culation.” With this criteria, Halse proceeded to ascer-
tain the correctness of other theories by comparing with
the “truth” (via the pair overlap). Hence, it may be ap-
propriate at this point to examine what one means by a
“realistic” calculation in nuclear structure physics. From
the outset, it should be stressed that we find the results of
Ref. [2] reasonable as far as HFB calculations are con-
cerned. These authors did not employ the term “realis-
tic” to describe their results.

Presently, there are two main microscopic approaches
in nuclear structure physics which may be considered as

realistic: one is the spherical shell model, the other the
HFB method. The shell model simplifies the many-body
problem by truncating the (infinite) Hilbert space to a
tractable model space, and then attempts to establish the
appropriate effective operators and interactions within
this space. This approach requires one to abandon the
bare nucleon-nucleon interaction, and is now a standard
approach for light systems [5]. For heavy nuclei, the
large dimensionality of the model space renders intract-
able the straightforward application of this approach.
The HFB approach avoids the large dimensionality prob-
lem by a mean-field approximation. However, to obtain a
self-consistent mean field without any space truncation is
also nontrivial, therefore some form of effective interac-
tion is still a necessity in practical work. In spite of the
fact that two-body or many-body correlations may not be
fully taken into account, the success of the HFB method
in studying deformed nuclei are significant. Recently,
great strides have been made in carrying out such calcu-
lations [6]. Hence, these two approaches, shell model and
HFB, are quite complementary in nature.

The main difficulty of the HFB approach is how to
project the states with good particle number and angular
momentum. Although in principle such projections can
be carried out, in practice this is complicated and time
consuming. Hence, for many practical calculations, addi-
tional approximations were introduced. Typical approxi-
mations include the following:

(i) use a phenomenological deformed potential with
average pairing, like the pairing plus Nilsson, or pairing
plus Woods-Saxon potential, to replace the self-consistent
mean field (which, in principle, should only be obtained
by solving self-consistently the HFB equation, starting
from an effective nucleon-nucleon interaction without a
priori deformation;

(ii) use a cranked HFB scheme, or projection after vari-
ation instead of the exact projection before variation;

(iii) limit the Hilbert space to a shell model space.
With these additional approximations, such calculations
can no longer be viewed as realistic HFB calculations. In
particular, if the space has been truncated to the shell-
model space as in (iii), then one deals essentially with a
shell-model calculation with the diagonalization pro-
cedure replaced by a mean-field approximation. The
156Gd HFB calculation [2] mentioned by Halse belongs to
this category.

(6) What about the s-d shell? In Ref. [1], a comment
was made about an earlier test of the FDSM in the s-d
shell [7] in which the conclusion was “negative.” In Ref.
[7] the overlaps between the FDSM many-body wave
functions and Wildenthal s-d shell wave functions were
computed [5]. the FDSM wave functions were obtained
by assuming the k-active [Sp(6) symmetry], i-active
[SO(8) symmetry], and SUX(3)XSO(6) symmetry, re-
spectively, and the FDSM effective interactions were
determined by fitting the spectra of some selected s-d
shell nuclei. Since neutrons and protons are in the same
shell, isospin degrees of freedom were also taken into ac-
count. Generally speaking, the FDSM symmetry
SUX(3) X SO(6) was found to be in better accord with the
data than the FDSM SO(8) or Sp(6) symmetries. For ex-
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ample, a reasonable description of well-defined nuclei
near 2°Ne was found [8] for the former symmetry (in this
paper, Halse chose not to refer to this as an FDSM calcu-
lation; however, it had already been established in Ref.
[4] that SUX(3)XSO/(6) was a possible FDSM symmetry
in the s-d shell.) However, less attention was paid to the
fitting of data. Instead, Ref. [7] concentrated on the
overlaps of the wave functions. Since the overlaps are
small for these wave functions, Halse concluded that this
undermined the microscopic basis of the FDSM. In view
of what we have said earlier in comment (1), such a con-
clusion seems to have little justification or physical mean-
ing. The only relevant comparison between different
model spaces is between matrix elements, not wave func-
tions.

We wish to point out here that none of the FDSM
dynamical symmetries is expected to fit the data well in
the s-d shell. It is a prediction of the FDSM that both k
and i are active in the s-d shell; therefore, there may be
no reason to prefer one to the other. A logical conclusion

is to consider k and i active pairs simultaneously; this will
immediately lead to the result that the smallest closed
algebra to include both k and i active pairs is SO(24),
which is simply the entire s-d shell. Following this line of
argument, it is consistent with the FDSM to doubt that a
smaller subspace in the s-d shell is utilized by nature to
describe the physics.

Finally, we would like to point out that the
SUX(3) X SO¥(6) symmetry is the only dynamical symme-
try in the s-d shell which involves both k and i active
pairs. However, it exists only when pairing can be
neglected in the Hamiltonian, which is more likely to be
valid for the well-deformed nuclei. This would provide a
plausible physical reason for why in Halse’s FDSM calcu-
lation the SU¥(3) X SO¥(6) dynamical symmetry limit pro-
duces a reasonable fit for the deformed nuclei.

This work was supported in part by the United States
National Science Foundation and the United States
Department of Energy.

[1] P. Halse, Phys. Rev. C 39, 1104 (1989).

[2] L. C. deWinters, N. R. Walet, P. J. Brussard, K. Allert,
and A. E. L. Dieperink, Phys. Lett. B 179, 322 (1986).

[3] K. T. Hecht and A. Adler, Nucl. Phys. A137, 129 (1969);
A. Arima, K. Shimizu, and M. Harvey, Phys. Lett. 30B,
517 (1969).

[4] C.-L. Wu, D. H. Feng, X.-G. Chen, J.-Q. Chen, and M. W.
Guidry, Phys. Lett. 168B, 313 (1986); ibid. Phys. Rev. C
36, 1157 (1987).

[5] See, for example, B. H. Wildenthal, in Nuclear Shell Mod-
el, edited by M. Vallieres and B. H. Wildenthal (World

Scientific, Singapore, 1985).

[6] A. Faessler, R. Hitlin, and K. Devi, Phys. Lett. 61B, 133
(1976); J. L. Egido, P. Ring, and H. Mang, Nucl. Phys.
A451, 77 (1986); A. Goodman, Phys. Rev. C 33, 2212
(1986); K. W. Schmid and F. Grummer, Rep. Prog. Phys.
50, 731 (1987); K. W. Schmid, F. Grummer, M. Kyotoku,
and A. Faessler, Nucl. Phys. A452, 493 (1986).

[7] P. Halse, Phys. Lett. B 189, 119 (1987).

[8] P. Halse and J. N. Ginocchio, Phys. Rev. C 36, 2611
(1987).



