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Microscopic description of alpha decay of deformed nuclei
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The alpha decay of deformed nuclei is studied in the framework of the shell model. It is found
that the model is able to describe the clustering of the four nucleons that eventually constitute the
alpha particle. The clustering process occurs on the deformed nuclear surface and it is induced by
high-lying configurations. The absolute decay width of Rn is calculated and good agreement with
experimental data is obtained.

Alpha-decay processes are among the oldest branches
of microscopic physics. Their analysis, the study, and in-
terpretation of the rich amount of data provided by them,
has been fundamental since the beginning of this century
to build up modern physics. Yet, many questions still
remain unanswered in the understanding of the mecha-
nisms that induce the decay of the o, cluster. Thus, it is
not clear whether the Pauli principle acting between the
constituent nucleons in the a particle and those in the
daughter nucleons has any importance. ' Another
question which has been only recently partially clarified,
and one which is relevant for this paper, is the role
played by high-lying configurations in a decay. The
absolute values of o.-decay widths increase by many or-
ders of magnitude by including a large enough number of
configurations in the calculation of the mother nucleus
wave function. This is necessary because on the surface
of the nucleus, where the o; particle is formed, the contin-
uum part of the single-particle representation (or very
high-lying shells in a bound representation) is important.
But even including up to 16 major harmonic-oscillator
(h.o.) shells, the absolute decay width is smaller than the
experimental one in some spherical nuclei. ' This
deficiency was ascribed to a deficient treatment of the
continuum. " All these studies have mainly been restrict-
ed to spherical nuclei. In deformed nuclei, microscopic
treatments have been hindered by the formidable task of
computing the mother nucleus wave function (including
high-lying configurations) in terms of a realistic (e.g. ,
Woods-Saxon) single-particle representation. But, with
the experience gained in the study of spherical nuclei and
by using modern computers, it may be time to realize
such a treatment. In this Brief Report we will describe
the alpha-decay process in two steps. In the first step we
study, within the framework of the shell model, the be-
havior of the four nucleons that eventually constitute the
alpha particle. This includes their clustering on the nu-
clear surface. In the second step we describe the penetra-

tion of the already formed a particle through the
Coulomb barrier by using the Wentzel-Kramers-Brillouin
(WKB) approximation. The alpha formation amplitude
is

+L«)= J dkadk~INa(4)0~((4)~1(&)jJ st

xy
where g indicates internal coordinates, 8 (A) labels the
mother (daughter) nucleus, and r; is the coordinate of the
nucleon i measured from the center of the nucleus B. For
the intrinsic wave function of the a particle we use the
standard Gaussian form with size parameter b=0.574
fm . We write the wave function of the mother nucleus
as

X+(~v B)~4'2 +2(4)PA+2(k. ) ja0~ (0g»

where m (v) labels the proton (neutron) degrees of free-
dom and pA (gz ) is the BCS vacuum. We assume axially
symmetric nuclei. Therefore, the BCS vacuum can be la-
beled by K„. For simplicity in all our derivations we will
also assume K=O bands, i.e., K~ =%~=0 and ground-
state transitions (i.e., I, =I&=0). The two-quasiparticle
wave function in Eq. (2) is

where Q; labels the single-quasiparticle states and A. is
the antisymmetrization operator We use v

"+ instead of
v in the hope that it represents an improvement of the
pure 8CS treatment. The potential that defines our
single-particle representation IynI has an axially sym-
metric deformed Woods-Saxon plus spin-orbit form.
Within the BCS approximation that we will use here, the
sum in Eq. (2) contains only one term, namely, vr (v) la-
bels the proton (neutron) two-quasiparticle state and
X (harv; 8 ) = l. Expanding the single-particle deformed
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wave functions in terms of spherical harmonic-oscillator
wave functions, the formation amplitude becomes

Fo(R) = g g G (OON L;L )G (OON L;L )

x (L.OL.O~L.O)

x (N.L.N.L.;r..~OON. r..;r..)

x0x I. o(R)

where a labels the quantum numbers of the a particle, G
is the transformation coefficient from the individual nu-
cleon coordinates to the center of mass and relative coor-
dinates [it includes the occupation amplitudes of Eq. (3)
and the corresponding coefficients of the expansion in the
spherical basis], and P is the harmonic-oscillator wave
function. The rest of the notation is standard. A11 the
quantum numbers in Eq. (4) are determined by the set of
single-particle states. Within the WKB formalism ' one
readily finds the absolute value of the decay width to be

T~y2(R )

R
Go(E, R)
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where GL is the asymptotic relative wave function (Gamow function), k is the wave number, Iiv=279 05&E/.p, E is the
a-particle kinetic energy in MeV, and p is the reduced mass. The dimensionless quantity y is g=5.76(Z —2)/fiv. In
this formalism the quadrupole deformation is separated from the rest. The quadrupole contribution is given by the ma-
trix K, i.e.,

KP(, (B)= OIn(8)e ' 8I (B)sin6d8,

where Sin(6) is the normalized 8-dependent function in the spherical harmonic Y'&n and P2 is the quadrupole Legendre
polynomial, while

1/2

B =yp2 0.39789 1—
x x
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x

The contribution of the other values of /3 (Pz with A, &2) is given by the matrix a&n in Eq. (5). It is

a~n(R)= I dp j sin4'dBY&n(gy)%', (R8y)

with

(7a)

'P)(RBq&)=Fo(RBcp)exp y g P~.
A. &0
A,W2

R R
I"0 l'0

f~ .Y~o(» (7b)

where ro =2.88(Z 2)/E and—
1.5 Rf'= 2m+I

(k —1)!
m=0 m!(A, —1 —m )!

1 )m +1/2

(m +1/2) (7c)

The expression for the partial decay width I (R) thus ob-
tained may be strongly dependent upon the distance R.
This actually provides a test of the reliability of the for-
malism. If I is indeed strongly dependent upon R on the
nuclear surface (where we assumed the validity of the
shell model as well as of the semiclassical description),
then the theory is incorrect.

The angular distribution of alpha emission is also given
by (5) but without integrating on the angle 6 in Eq. (7a).

We applied this formalism to the alpha decay of Ra.
The deformed Woods-Saxon potential was diagonalized
with the so-called "universal choice" of parameters.
For the deformation parameters we used the values

I

p2=O 119 and 133=0.O95. We expanded the correspond-
ing single-particle wave functions in terms of a h.o. basis
with size parameter b as the one corresponding to the o:
particle. This allows one to perform all integrals analyti-
cally. With such a value of b, one may think that the
convergence of the expansion of the Ra wave function
would be very poor. This is indeed the case for r ) 12 fm.
But, in the region around the nuclear surface the number
of h.o. basis states needed is manageable. This is illus-
trated in Table I, where we present the alpha-particle for-
mation probability calculated using up to %=18 shells.
The important feature of Table I is the strong increase of
the formation probability u as a function of the number
of configurations included in the calculation. The very
large interference of levels, especially those with different
parity, is responsible for this enhancement. ' Just out-
side the touching point of the nuclear surfaces of the al-
pha particle and the daughter nucleus, i.e., around 9.2
fm, the value of u for %=18 is more than 4 orders of
magnitude larger than the corresponding value for N=8.
This is a manifestation of clustering. That is, the more
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TABLE I. Formation probability u(R)= f dR ~FO(R)~ (in

units of 10 fm ') as a function of the number N of shells.

1 0 I I I I

14 16 18

7
8
9

10
11

5.7
9.0x 10
3.3 x10-'
4.1 x 10
2.4x10-"

7.5
1.1

0. 11
5.9x 10
1.0x 10

7.9
1.2

0. 16
2.3 x10-'
9.ox 10-4

7.9
1.2

0. 17
3.6x10-'
7.6x 10-'

4]

C

l

0

the clustering features are pronounced in the mother nu-
cleus wave function, the larger the value of F0, will be as
can be seen from Eq. (1), and the better the assumptions
of our formulation will be fulfilled. This requirement is
satisfied by our calculation, but it is not enough. As men-
tioned above (and as it can be suspected from the values
of the formation probability of Table I), the calculated
alpha-decay width I (R) can be strongly dependent on
the distance R. But we found that, using N=18 h.o. ma-
jor shells in the single-particle representation, depen-
dence is weak on a wide region surrounding the touching
point distance. Moreover, the calculated value of I in
that region agrees with the corresponding experimental
data within a factor of 3, as seen in Fig. 1. This is a rath-
er good agreement if one considers that, at its maximum
value, the ratio %=I'""/I '" is A =33 461 for X=8,
%=357 for %=14, and it converges to the value %=3
for N=18.

We also analyzed the infiuence of deformations on al-
pha decay by performing the calculations with and
without the octupole deformation. We thus found that
the effect of the octupole deformation is to increase the

8 9 10 11 12 13
Radius (fm)

FIG. 1. The ratio I '"/I'"I' as a function of R.

formation probability (and the corresponding absolute
alpha-decay width) by 30%.

In conclusion, we have presented in this paper a micro-
scopic formalism to calculate the absolute alpha-decay
width of deformed nuclei. The formalism was applied to
the decay of Ra. The calculation describes well the
clustering process if a large number of shells, rejecting
the infIuence of the continuum on alpha decay, is used in
the deformed (Woods-Saxon) single-particle representa-
tion. A reasonable agreement with the corresponding ex-
perimental data was obtained.
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