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Faddeev-type configuration-space three-body scattering equations are solved for selected two-body-
and two-body-plus-three-body-potential model Hamiltonians to obtain absolute predictions for the
nucleon-deuteron scattering lengths %a,;, *a,qs, 2a,s, and ‘a,. Convergence for these zero-energy
scattering parameters as a function of the number of NN-potential partial waves included in the calcula-
tion is attained for the first time. Kohn variational estimates provide a measure of the precision of our
numerical results. The nd predictions agree well with the measured values. The pd predictions differ
substantially from accepted experimental values which are extrapolated from measurements made above

400 keV.

I. INTRODUCTION

The elastic scattering of nucleons by deuterons at zero
incident energy is the simplest three-body scattering
problem which nuclear physicists can investigate. Solv-
ing the exact few-body equations which describe the
three-nucleon system enables one to test our understand-
ing of nuclear forces by direct comparison of model cal-
culations with experimental data [1-7] and to probe for
novel features of physical observables [8,9]. Although
trinucleon bound-state investigations have yielded in-
teresting examples in each category, it is the scattering
problem which provides the better opportunity to explore
in depth the accuracy of our knowledge of the nucleon-
nucleon (NN) interactions. Nonetheless, it was some time
after Faddeev’s innovative formulation!® of the three-
body scattering problem that the correct set of experi-
mental neutron-deuteron (nd) spin-doublet (*a,,;) and
spin-quartet (*a,,;) scattering lengths were discerned from
the competing possibilities [11-13] and shown to agree
qualitatively with Faddeev calculations using schematic
nuclear potentials. It is now clear that the value of the
nd doublet scattering length is closely correlated with the
triton binding energy (Ej), as first suggested by Phillips
[14], and that the nd quartet scattering length is deter-
mined primarily by the properties of the deuteron [15,16].
The situation in the case of proton-deuteron (pd) scatter-
ing has not been so clear. Phase-shift analyses of the
available low-energy pd elastic scattering data indicated
sizable Coulomb corrections, but Alt’s estimate [17] for
the pd quartet scattering length (“apd) was significantly
larger than the experimental value, as were our subse-
quent central-force model calculations [9]. Furthermore,
our doublet scattering length (Zapd) calculations [9,18] im-
plied values which are in complete disagreement with the
quoted experimental estimates [19-21], being smaller
than 2%a,; rather than larger. However, as discussed
below, we believe that this disagreement is now under-
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stood.
The generally accepted experimental values for the nd
scattering lengths are

24,,=0.65+0.04 fm ,
%a,4=6.3510.02 fm .

These were determined from elastic scattering of 130 eV
neutrons [12]. One can extrapolate to zero energy from
much higher energy using the effective-range expansion,
but there is a pole in the effective-range function which
lies just below threshold [11,22—25]. Therefore, the ra-
dius of convergence of the expansion is small, which orig-
inally led to some confusion as to proper value for %a,,.
The now-established relationship (Phillips line) between
the triton binding energy and doublet scattering length
supports the validity of the above-quoted experimental
numbers, and we demonstrate this quantitatively below
for several realistic force models.

The agreement between theory and experiment for the
pd scattering lengths is not as good. The pd scattering
data are known less precisely, because the Coulomb bar-
rier greatly suppresses the cross section (much of which is
pure Coulomb scattering and therefore uninteresting). In
addition, the data exist only for c.m. energies above 400
keV. The (zero-energy) pd scattering lengths were ob-
tained by extrapolation from the available (not-so-low-
energy) data [19—21]. The reported doublet scattering
lengths are

1.340.2 fm (Ref. [19])
%a,y 12.7340.10 fm (Ref. [20]) .
4.0075% fm (Ref.[21])

The agreement among the experimental groups is

much better for the quartet scattering length. The values
4

cluster around “g,;=11.5 fm. However, Alt’s early
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separable-potential estimate [17] for 4apd of 13.3 fm using
the (AGS) equations [26] was in clear disagreement. Our
own local-potential, central-force estimate [9] of
4apd( =14 fm) appeared to confirm qualitatively the valid-
ity of Alt’s estimate. Furthermore, we found Zapd ~0, in
obvious disagreement with the above-quoted experimen-
tal values and with the established relationship between
2a,; and B(*H). (Model calculations employing short-
range two-body forces show that %a,; increases as the
magnitude of the triton binding decreases.) The zero-
energy extrapolation of finite-energy results from a
central-force Faddeev calculation by Kvitsinsky [27]
disagreed with our zero-energy result and agreed with the
experimental data, although additional calculations by
other groups [28,29] agreed with our findings. After our
Jj =1 tensor-force calculations confirmed our earlier result
(4apd lies in the range 13.5-14.0 fm and 2apd is very small)
[18], we examined carefully the extrapolation of pd
scattering to zero energy in a central-force model calcula-
tion [30]. Although our calculated phases fell within the
existing errors of the data, we found it necessary to have
data below 300 keV in order to extrapolate reliably to
zero energy. The pole in the pd effective range expansion
produces such enormous curvature for c.m. energies
300 keV that extrapolation from energies above that
value is completely unreliable. Based on this, we believe
that we agree with the finite-energy results of Kvitsinsky
and Merkuriev [27,31].

The somewhat confused pd scattering length situation
and the limited scope and validity of the published model
results for the nd scattering lengths is the motivation for
this work. In the latter case three-body forces have only
been included in 5-channel (%a,;) and 7-channel (*a,,;) cal-
culations (see Sec. II for a discussion of three-body chan-
nels), or in perturbation theory. It is now known that
three-body-force effects in the triton are nonperturbative
and are significant only when higher partial waves are in-
cluded (i.e., 18- and 34-channel triton models) [3,6].
Furthermore, Efimov [32] as well as Adhikari and co-
workers [29,33] have undertaken simple neutron-
deuteron effective-interaction representations of the
long-range forces that result from the nucleon-exchange
mechanism in the three-body scattering process. Valid
tests of such effective Nd interactions clearly require
benchmark calculations in terms of the fundamental
short-range NN forces in a Faddeev-type formalism.

We report here “complete” nd and pd scattering length
results from calculations carried out within the Faddeev
framework which include for the first time all potential
partial waves with j <4, for several nuclear Hamiltonians
that are comprised of contemporary two-body-force and
two-body-plus-three-body-force models. Kohn variational
estimates [34] are obtained from our configuration-space
Faddeev continuum wave functions as a check. The Fad-
deev partial-wave series converges rapidly. We believe
that our estimates of the nd and pd scattering lengths are
converged to within 0.1 fm. Our results therefore pro-
vide a benchmark for other calculational techniques.
Furthermore, plotting our doublet scattering lengths as a
function of the corresponding trinucleon binding energy
results in a smooth polynomial fit that permits interpola-

tion of accurate best estimates for %a,;, and Zapd at the
physical trinucleon binding energies.

In the following section we review the three-body
scattering equations in configuration space and the re-
quired boundary conditions, and we outline the numeri-
cal methods employed to solve them. In Sec. III we
present numerical results for the potential models that we
investigate along with our best estimates of the nd and pd
scattering lengths extrapolated from these studies [35].
Our conclusions are summarized in Sec. IV.

II. CONFIGURATION-SPACE EQUATIONS

Faddeev’s innovative work on the three-body continu-
um problem was inspired by the fact that the Lippmann-
Schwinger equation formulation of the three-body
scattering problem does not uniquely define the solution
[36]. The Faddeev decomposition (or its equivalent) of
the scattering amplitude provides a convenient means of
enforcing the boundary conditions required to obtain a
unique solution. Noyes outlined the configuration-space
boundary-condition problem for nd scattering [37], and
the Grenoble group then developed this approach to the
point of obtaining numerical solutions [38]. Including
the Coulomb interaction in configuration space for ener-
gies below the threshold for breakup of the deuteron is
straightforward but nontrivial. Redish [39], Sasakawa
and Sawada [40], and Merkuriev [41] have all contributed
to solving the Coulomb problem. We utilize the ap-
proach adopted in our asymptotic normalization calcula-
tions [42]. Our formalism for this problem has been ex-
plicated previously for both the bound-state and scatter-
ing problems [3,9,18]. We review briefly the essentials.

The three-body equations are solved by making a
partial-wave expansion of the NN potential and the Fad-
deev amplitude. Faddeev calculations are traditionally
characterized by the number of three-body angular
momentum states or channels, where each channel is
specified by the quantum numbers of an interacting pair
of nucleons and the corresponding quantum numbers of
the remaining spectator nucleon. For a total angular
momentum equal to 1/2 there are two such channels for
each NN interacting pair partial wave, except for the case
in which the NN total angular momentum (j) is O (where
the number of channels is restricted to 1). A common ap-
proximation is to solve the doublet Faddeev equations
when only five channels are included, which corresponds
to retaining only the dominant ('S,,3S;—>3D;) NN-
potential partial waves or, alternatively, all even-parity
NN partial waves with j <1. The 9-channel truncation
corresponds to retaining only the even-parity NN partial
waves with j <2. When all NN partial waves with j <2
are retained, one has the 18-channel solution. The 34-
channel solution corresponds to retaining all NN partial
waves with j =4. In our bound-state investigations, we
demonstrated that 34-channel solutions had converged to
within ~ 10 keV of the full model answer [43]. That is,
the higher (4 <j < 8) partial waves of two contemporary
force models were shown to contribute 10 keV to the tri-
ton binding energy (out of roughly 8 MeV), and the con-
vergence of the binding energy with respect to the num-
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ber of NN partial waves was shown to be roughly geome-
trical due to the angular momentum barrier. For total
trinucleon angular momentum equal to 3/2, the number
of three-body channels is considerably larger than for
1/2. Solutions for all even-parity NN partial waves with
Jj =1 correspond to seven channels. Retaining all even-
parity NN partial waves with j =2 implies 15 channels.
The solution for all NN partial waves with j <2 requires
30 channels, and the solution retaining all NN partial
waves with j <4 has 62 channels.

To find the Nd scattering lengths we solve the
configuration-space Faddeev equations for the case of
zero-energy incident nucleons, and then we read the
scattering length from the asymptotic solution for the
Faddeev amplitude. The Faddeev amplitudes are defined
by decomposing the total wave function V¥ into a sum of
the three Faddeev amplitudes

V=W, (x,y)+ V(x5 y,) +¥3(x3y3) , oy
where x; and y; are the Jacobi coordinates

X;=TI;—I (2a)
and

y,-:%(rj-f-rk)—ri (2b)

for three nucleons with coordinates r,, r,, and r;. The
values of i, j, and k are cyclic. The Schrodinger equation

T+3I V(x)+3Vclx)—E |[¥=0 (3)
can be decomposed into the three coupled Faddeev equa-
tions
[T+V(x)+Velx )+ Velxy)+Velx;)—E]V(x;,y;)

=-—V(xl)[\I’J(xJ,yJ)+\I/k(xk,yk)] 5 4)

where T is the kinetic-energy operator, V(x;) is the
short-range nuclear interaction, and

e? [1+7(D][1+7,(k)]

x; 4

Velx)= (5)

is the two-body Coulomb potential. We have retained the
entire Coulomb potential on the left-hand side of Eq. (4)
so that the long-range Coulomb distortion is present in
each Faddeev amplitude. This greatly facilitates the im-
plementation of the boundary conditions [41,42]. In ad-
dition, we have found that this procedure is more stable
for our numerical calculations.

For three identical nucleons all three Faddeev ampli-
tudes will have the same functional form, and it is only
necessary to solve one of the three Faddeev equations.

To solve the first Faddeev equation we use the j-J cou-
pling scheme and write ¥, in the form

Yolx1,¥1)
Yi(x,y)=3y ————
narIt % X1 )1

la) , (6)

where

la) =[(1s5)jar (LopS W o1dM; (2o, T)TMy) , (D)

1, is the relative orbital angular momentum of particles 2
and 3, s, is the spin angular momentum of particles 2
and 3, j, is the total angular momentum of particles 2
and 3, L, is the orbital angular momentum of particle 1
relative to the center of mass of particles 2 and 3, S, is
the spin of particle 1(S,=1), J, is the total angular
momentum of particle 1, & is the total angular momen-
tum (F£=1,2), ¢, is the isospin of particles 2 and 3, T, is
the isospin of particle 1, and 7 is the total isospin
(T,=T=1), which we will assume to be conserved. The
tiny isospin impurity in pd scattering is known to be
unimportant [9].

We obtain a set of coupled partial differential equations
for the reduced channel amplitudes ¥,(x,,y,;) by substi-
tuting the expansion of W¥,, into the first Faddeev equa-
tion and then projecting the equation on each channel by
taking the inner product with each of the |a). Multiply-
ing each equation by —x,y,M /#%, and transforming to
the hyperspherical variables defined by

x,=pcos6 (8a)
and
y1=(V3/2)psin6 , (8b)

we obtain the set of equations
(Aa_K2)¢a(p70)— 2 (Uaa‘ +Uga’ )¢a’(p70)
p”

6+
=S v S f9~ dOK 40 (60,6 0,(p,0), (9

where we have defined

VU, (10a)

a,=%42—(a}V(x,)la’) ,

C,=—11;:I;(a|VC(x,)+Vc(x2)+VC(x3)|a'>, (10b)

vaa

9+
3 fo_ dO'K (6,0 1 (p,0')

=xy,[a"|¥,)+{a"|¥;)], (10c)

2.2
E=_ﬁ1\; ’ (10d)
and
_ 9 13 1 3 LU+l LyL,+1)
“ 9> pop p' 3" ploos  pPsin’6
(10e)

The integration limits 6~ and 6" are the same as for the
bound-state calculations [3], and for zero-energy scatter-
ing « is the two-body bound-state (deuteron) wave num-
ber.

Next we express the channel function as the sum of the
known incident partial wave and the unknown scattered
wave Q,(x,y,):

d’a(xl’yl)=¢a(xl’y1)+ﬂa(xhyl) > (11)
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where ¢, is the incident reduced wave. For the incident s
wave, we have

O x 1,y )=y I (2uy(xy) . (12)

Here u,(x,) is the reduced deuteron bound-state wave
function and J(z) can be expressed in terms of a modified
Bessel function of order 1:

J(z)=z"121,(2VZ) . (13)

The quantity z=2auy, in the argument depends upon
the fine structure constant a and the reduced mass u of
the nucleon-deuteron system.

Inserting Eq. (11) into Eq. (9) one obtains the following
equation for the reduced scattering function € ,:

+
(Aa_Kz)Qa(p’e)— 2 (Uaa' +vga’ )Qa’(p’e)_ Evaa” 2 f:_ dG,Ka"a’(e’ 9')ﬂa.(p,6')
a” o

’

a

+
= E (Uga: —a)ﬁaa:)qﬁa’(p,e)—i- zvaa" 2 feo_ de,Kﬂ"a'(676’)¢av(p,6’) , (14)

where
2
co=Mze— (15)
#i° Y

For large values of y; the outgoing wave {}, has the
asymptotic form

Q(x,y1) = —a FHlyuz(xy) (16)
Yi—x
for the deuteron channels, where
(2 )Ld — —
wa(z>=—(§Lf~‘T<2vz Kyp +1(2VZ) (17)

and Kyp 4, is the modified Bessel function. The quantity

a, in Eq. (16) is the scattering length extracted from our
numerical solution.

For the closed channels the function Q, approaches
zero in the asymptotic region. In order to simplify the
numerical calculations we express (), in terms of the
smoother auxiliary function F,, which is defined by

L ug(xy)
Qo(x1,y1)=F(p,0)[y“H (y1)] (18a)
1
for the deuteron channels and
Q x,y1)=F,(p,0)e " (18b)

for the remaining channels. In Eq. (18a) we have includ-
ed the factor yll“a to remove the singular behavior of
Hy,) at y;=0. In addition, we have included the fac-
tor of 1/x,; in Eq. (18a) to simplify the boundary condi-
tions at x; =0.

Because (1, is the reduced wave function, the boundary
conditions for F,(p,0) are

F(0,0)=F ,(p,0)=F ,(p,m/2)=0 (19)

for all channels,

X _
Folp,6) — a,—=4(0)p' " (20a)
Yy ® yla

for the deuteron channels, and

F,(p,0) — constant (20b)

p—®

for the nondeuteron channels. These boundary condi-
tions are implemented by requiring that at p=p_,.,

9F, (1—L,)
_——= F

(21a)
9p P ’
for the deuteron channels, and
F
o, =0 21b)
dp

for the nondeuteron channels.

Substituting the expression for Q, given in Eq. (18)
into Eq. (14) yields a set of coupled differential equations
for the F,(p,0). To solve these equations we use a bicu-
bic spline expansion

Fo(p,0)= 3 afs;(p)s;(0) , (22)
ij

where the spline functions were chosen to be the cubic
Hermite splines [44]. We use the orthogonal collocation
method to solve for the unknown coefficients a;. This
method consists of writing each of the channel equations
in Eq. (14) at N collocation points (p;,0,,), where N is
equal to the number of unknowns, ai‘}‘. For the cubic
Hermite splines the collocation points are chosen to be
the two Gauss quadrature points in each interval for the
p splines and in each interval for the 8 splines. If we
choose 15 intervals for the p variable (i.e., N,=16) and
15 intervals for the 6 variable (N,=16), then we get
30X 30=900 equations for each channel. Each equation
will contain all of the unknown a for all of the channels
used in the expansion in Eq. (6). Thus, if we have N,
channels and each channel has N unknown spline
coeflicients a,-;‘, we have a set of N, XN simultaneous
linear equations to solve. These equations can be written
as the matrix equation

(A—B)x=b, (23)
where the matrix 4 comes from the first two terms in Eq.

(14) and the matrix B is the third term on the left-hand
side of Eq. (14). The column matrix x contains the un-
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known aj and the column matrix b is the right-hand side
of Eq. (14).

In our previous scattering calculations [9,18] which
were limited to at most seven channels, we simply solved
this matrix equation. For the calculations presented in
this paper we have used up to 62 channels, and the direct
solution of Eq. (22) becomes prohibitive in terms of the
computer time. Thus we have used an iterative method
to solve the matrix equation. The matrix A is a block di-
agonal matrix while the matrix B is a full matrix. One
procedure that generates an iterative solution for Eq. (22)
is to rewrite the matrix equation in the form

Ax =b +Bx (24a)

or

x=A47'"b+4 'Bx . (24b)
However, we found that iterating this equation was nu-
merically unstable for some cases. Hence, we used a
different procedure which consists of rewriting Eq. (22) in
the form

(1—BA YH4x=b . (25)
Now, if we let

BA '=H (26)
and

Ax =y , (27)

then we get the equation

y=b+Hy, (28)

which can be solved by an iterative technique for y. Once
we have found y, we can solve Eq. (27) for x.

One means of solving Eq. (28) is to use the Padé
method [see Ref. (45)]. In this approach one introduces
the parameter A in Eq. (28)

y=b+AHy , 29)
which is then iterated to give the series

y=b+AHb+A*H*»»+ -+, (30)

and this series is summed by using Padé approximants.
We found that this method could be used for the Ar-
gonne potential but was numerically unstable for
configuration-space calculations with the Reid potential,
which has a stronger repulsive core. Consequently, we
had to employ a different method of solution. We found
that the Lanczos method [46], which we have used for
our bound-state calculation, could be used to obtain
stable accurate results. However, this requires solving
both the matrix equation and its transpose equation,
which doubles the computer time required. Therefore we
finally solved Eq. (28) by generating a series of basis vec-
tors using a Gram-Schmidt procedure instead of the
Lanczos method.

I®

We start with the vector
yo=b, 31
and generate the vector
yi=Hb . (32)
Then the vector y, is written as
=coyoteyy, (33)

where the constants ¢, and ¢, are determined by the con-
ditions

»6y1=0 (34a)
and

yIy,=1. (34b)

In general, given the vectors y,,y,,...
¥, +1 1s generated by

» V., the vector

.Vn +1:Hyn ’ (35)
and then the vector y, ., is expressed as
n
Yn+1= 2 Vit e Pnsrs (36)
i=0

where the constants ¢;, i =1,2,...,n +1, are determined

from the conditions

Yy, 1=0i=12...,n (37a)

and

YasWns1=1. (37b)

Given the set of basis vectors y;, the approximate solu-
tion to Eq. (28) can be written as

n

y=2X ay; . (38)

i=1

The constants a; are determined by substituting the ex-
pansion in Eq. (38) into Eq. (28) and rewriting it as

(1—H) S a,y;=b . (39)

Taking the inner product with y > WE have

n

a;+ 3 y/Hy,a;=y]b , (40)
i=1

and this set of n equations can be solved for a;,. The num-
ber of basis vectors y; is increased until a stable result is
obtained.

Some care was required in choosing the collocation
points. Although we are dealing with short-range forces,
we must still integrate the differential equations to large
distances (~ 60 fm), where the influence of the permuted
elastic terms [the right-hand side of Eq. (4)] is negligible.
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In addition, care is required to make the density of points
high along the strip where the outgoing deuteron resides.

To check the accuracy of our solution, we used the nu-
merical wave function in a Kohn [34] variational pro-
cedure for the scattering length. When the Kohn result
agreed with the asymptotic value of the scattering length
to the desired accuracy, then the solution was judged to
be converged. Both a channel-projected result, in which
the Coulomb potential was projected so that the Kohn es-
timate corresponded directly to that of the Faddeev solu-
tion, and a full-(Coulomb) potential result were calculat-
ed. These differed when the Coulomb potential was in-
cluded in the pd case and served as a measure of the miss-
ing Coulomb strength due to our truncation of the two-
body interacting-pair partial waves. For the doublet cal-
culation, the difference occurred in the third significant
figure of the scattering length.

III. NUMERICAL RESULTS

The parameters which we vary to ensure an accurate
solution are the numbers and distribution of the p; and
0,, points and the value of p.,,, beyond which we assume
that the wave function has achieved its asymptotic form.
The p breakpoints can be distributed uniformly between
the origin and a small radius of 0.5-1.0 fm (p{,) if the in-
teraction is strongly repulsive. From that breakpoint out
to 12—14 fm (p}) they are distributed with a nonuniform
spacing using a scale factor, S,: p,+1—p,=S,(p,
—p.—1. Between that point and p,,, the breakpoints
are again distributed uniformly. If the scale factor is
chosen so that the p breakpoints are not too closely
spaced, then the first region can be omitted. The 6 break-
points were distributed uniformly between O and 7/6
(N%) and between 7/6 and mw/3(NY), and they were
scaled by S, between 7/3 and 7/2 (N§) in order to en-
sure that a sufficient number was concentrated in the re-
gion where the wave function has the most structure.
Selected cases are listed in Table I.

Kohn variational checks were invaluable in determin-
ing an optimum mesh. We quote below values of the
scattering lengths a,; and a,; along with the Kohn varia-
tional estimates aX; and a;f, based upon the Faddeev am-
plitude and the channel-projected interaction (short

range and Coulomb). Comparison of these results pro-
vides the correct consistency check. In the pd case we
also quote results for a[fg’F , Kohn variational results
without the channel projection of the Coulomb interac-
tion. That is, a5* includes all the higher partial waves of
the long-range Coulomb potential. It is ap'fJF which pro-
vides the best estimate of the physical pd scattering
length.

We have limited our investigation to two different NNV
potential modes and two different two-pion-exchange
three-body-force models. Specifically, we have used the
Reid soft-core (RSC) two-body force [47] (having a very
stiff repulsive core) alone and in combination with the
somewhat = singular Tucson-Melbourne (TM) three-
nucleon force [48]. For comparison we have also used
the Argonne ¥V, (AV14) two-body force [49] (having a
relatively soft repulsive core) alone and in combination
with the less singular Brazilian (BR) three-nucleon force
[50]. The RSC spin-singlet force was fitted to pp scatter-
ing data while that of the AV 14 was fitted to np scatter-
ing data. This largely accounts for their 300 keV
difference in binding energy [3-7,51,52]. In both cases
we know that the two-body-force model underbinds the
triton while the two-body-plus-three-body-force model
overbinds the triton (for a wN cutoff A in the two-pion-
exchange three-nucleon force of 5.8m ;m _ =139.6 MeV).

In Table II we list results for the RSC model for nd
and pd doublet (quartet) scattering lengths in the 3-
channel (2-channel) approximation for selected mesh pa-
rameters shown in Table I. Because three-body-force
effects are small for these limited numbers of three-body
channels, we restrict this comparison to a two-body
force. The Kohn variational estimates provide a feel for
the accuracy of each solution when compared to the re-
sults obtained from the Faddeev wave function. It is
clear from this initial study that p_ ., =64.0 fm is a
reasonable cutoff. Also, Sp and Sy~ 1.5 are reasonable
choices. For S P 1.5, one need not divide the p variable
into three regions; indeed, in most of the calculations dis-
cussed below we scaled the region (0,14.0) fm. A 6 distri-
bution of (12,2,1) provides satisfactory results, but we
use (12,3,2) below for the three-body-force models, be-
cause they induce more structure in the wave function.

In Tables III and IV we list results for all four model

TABLE I. Selected sets of mesh parameters used to test accuracy and convergence of the RSC and

RSC/TM model calculations.

Case (ol P, Prmax) (NL,N¥,ND S, (NL,NY,NB) Se
1 (0.5,12.0,50.0) (5,10,6) 1.2 (12,4,2) 1.35
2 (0.5,12.0,50.0) (5,10,6) 1.5 (12,4,2) 1.5
3 (0.5,12.0,50.0) (5,10,6) 1.6 (12,4,2) 1.6
4 (0.0,14.0,54.0) (0,13,4) 1.5 (12,3,2) 1.5
5 (0.0,14.0,64.0) (0,13,5) 1.5 (12,3,2) 1.5
6 (0.0,14.0,74.0) (0,13,6) 1.5 (12,3,2) 1.5
7 (0.0,14.0,84.0) (0,13,7) 1.5 (12,3,2) 1.5
8 (0,0,14.0,94.0) (0,13,8) 1.5 (12,3,2) 1.5
9 (0.0,14.0,54.0) (0,13,4) 1.6 (12,3,2) 1.5

10 (0.0,14.0,64.0) (0,12,5) 1.5 (12,3,2) 1.5
11 (0.0,14.0,64.0) (0,13,5) 1.5 (12,2,1) 1.5
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TABLE II. RSC Nd 3-channel (doublet) and 2-channel (quartet) scattering length results for mesh

parameters listed in Table I. Units are fm.

2 2 2

4 4 K

Case Guq aX, Ay a 4,4 ‘ak @y ay
1 1.819 2.363
2 2.360 2.346
3 2.378 2.355
4 2.356 2.346
5 2.353 2.350 3.442 3.449
6 2.353 2.349 3.437 3.446
7 2.353 2.349 3.437 3.446
8 2.353 2.349 3.437 3.446
9 2.359 2.354 3.455 3.457
10 2.351 2.351 3.472 3.466 6.309 6.305 13.375 13.337
11 2.350 2.351 3.461 3.465 6.304 6.305 13.362 13.338

Hamiltonians based upon the following mesh parameters:
Pp =(0.0,14.0,64.0) and N,=(0,13,5) with S,=1.5;
No=(12,2,1) with Sg=1.5 for the NN force alone and
N,=(12,3,2) otherwise. The column N, defines the
number of three-body channels in the calculation. The
variation of a,, and *a,, with N, corresponds to similar
variations seen for the trinucleon binding energies—
neither are monotonic functions of N,. The fact that af,
does not bound a,, reflects the fact that the Kohn varia-
tional principle produces a stationary value, not a bound
as variational principles produce for the ground state.
The significant variation of 2ay,; with N, reflects the
strong correlation of scattering length with trinucleon
binding energy—the Phillips line for %a,; and B(H).
The lack of variation in ay, with N, reflects the fact that
the quartet scattering length is determined principally by
the properties of the deuteron, which are fully present in

the N, =2 calculations. Note that %a,,, 2a5 —%a "

pd —> @

pd

, and

Yap, e —*a" as N, increases. That is, the Coulomb
interaction is included more completely as N, is in-
creased. Finally, the spread in the last digits of the quar-
tet calculations is an indication of the precision in our
calculations. That is, we do not believe the final digits
are significant, but we include them in the tables so that
one can understand the convergence of our computa-
tions.

In the case of the doublet scattering lengths, it is possi-
ble to plot %ay,; vs Ep and interpolate by means of a
smooth curve to determine the values of the scattering
lengths which correspond to the physical binding energy.
Alternatively, one can adjust the three-body-force cutoff
A so that the trinucleon binding energies have their ex-
perimental values (8.48 and 7.72 MeV) and then ask for
the values of scattering lengths for those Hamiltonians.
We collect the results of such calculations in Table V.

We summarize our spin-doublet results in Fig. 1.

TABLE III. Nd doublet scattering length results along with Kohn variational estimates and full
Kohn pd estimates as a function of the number of three-body channels. Units are fm.

N. Model 2,4 2o K %a,y a; 2ay "
5 RSC 1.778 1.774 2.244 2.250 2.102
9 1.610 1.601 1.929 1.931 1.756

18 1.612 1.609 1.741 1.755 1.764

34 1.520 1.519 1.569 1.581 1.582
5 RSC/T™M 1.357 1.349 1.402 1.381 1.225
9 0.704 0.691 0.243 0.236 0.043

18 0.309 0.293 —0.655 —0.663 —0.649

34 0.393 0.383 —0.509 —0.505 —0.504
5 AVi4 1.364 1.359 1.434 1.432 1.276
9 1.240 1.235 1.231 1.229 1.044

18 1.274 1.275 1.096 1.093 1.105

34 1.200 1.204 0.967 0.965 0.965
5 AV14/BR 0.635 0.648 0.118 0.140 0.031
9 —0.196 —0.191 —1.198 —1.191 —1.408

18 0.092 0.093 —0.994 —0.992 —0.977

34 0.001 —0.001 —1.133 —1.136 —1.136
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TABLE IV. Nd quartet scattering length results along with Kohn variational estimates and full
Kohn pd estimates as a function of the number of three-body channels. Units are fm.

N, Model ‘ana ‘ak “apd “ap’f, 4ap’f,/F
2 RSC 6.304 6.303 13.362 13.338 13.529
7 6.303 6.303 13.341 13.314 13.528

15 6.299 6.300 13.296 13.264 13.517

30 6.302 6.301 13.563 13.549 13.520

62 6.302 6.304 13.550 13.527 13.521
2 RSC/TM 6.310 6.306 13.376 13.338 13.529
7 6.309 6.305 13.353 13.315 13.528

15 6.305 6.301 13.306 13.265 13.516

30 6.308 6.304 13.588 13.550 13.521

62 6.308 6.304 13.568 13.529 13.522
2 AV14 6.374 6.380 13.563 13.570 13.673
7 6.373 6.378 13.540 13.546 13.762

15 6.370 6.375 13.489 13.496 13.751

30 6.370 6.381 13.782 13.791 13.762

62 6.372 6.380 13.764 13.771 13.764
2 AV14/BR 6.377 6.380 13.565 13.572 13.764
7 6.377 6.378 13.558 13.565 13.759

15 6.720 6.376 13.491 13.498 13.752

30 6.380 6.380 13.785 13.792 13.763

62 6.378 6.381 13.764 13.771 13.765

Scattering lengths are plotted as a function of the binding
energy of the corresponding trinucleon bound state for
both the nd and pd systems. In each case we include re-
sults from all four models. We emphasize that, by includ-
ing a three-body force and more than five channels in the
doublet calculation or more than seven channels in the
quartet calculation, we do not have to artificially increase
the strength of the NN singlet interaction to obtain triton
binding energies greater than the experimental datum, in
order to extend our Phillips line (for %a,; vs Ej) into the
region of overbinding as was done in Refs. [9] and [18].
Our three-body-force calculations here are also much
more realistic, because the three-body force becomes
much more effective once p waves are allowed in the sys-
tem (18 and 34 channels).

The 2a,,; results fall essentially on a straight line (the
Phillips line) for all four model calculations. Circles
specify RSC values and squares specify AV14 values.
The solid symbols indicate 34-channel results. The nd
datum falls squarely on the line and agrees with the mod-
el results for which we adjusted the three-nucleon-force
cutoff parameter A to give the physical triton binding en-

TABLE V. Nd scattering length results for two-body-plus-
three-body-force models adjusted to yield the correct trinucleon
binding energies. Units are fm. N, =34 for doublet results and
N, =30 for quartet results.

Model 20X %a X, ‘ak ‘a X/
RSC/TM 0.657 0.080 6.304 13.521
AV14/BR 0.567 0.068 6.380 13.763

ergy (8.48 MeV). Our best estimates for the nd doublet
scattering length for the models considered are (with the
quoted uncertainties being subjective estimates)

’a,;=0.57+0.01 fm (AV14—AV14/BR) ,
’a,;=0.66+0.01 fm (RSC—RSC/TM) .

a, (fm)

Nd doublet scattering lengths

T

T T T

roo# nd datum nd Phillips line fit
4} pddatum e pd Phillips line fit
.6 L A S B P BTSRRI RS
5 6 7 8 9 10
Eg (MeV)

FIG. 1. Neutron-deuteron and proton-deuteron scattering
lengths plotted as a function of the corresponding trinucleon
binding energy. The circles specify RSC results and the squares
specify AV14 results; solid symbols denote 34-channel results.
The %a,,; datum coincides with the RSC/TM model result for
which the three-body force was adjusted to yield the experimen-
tal *H binding. The %a,, datum falls well off the theoretical
curve; see text for explanation.
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The RSC model nominally agrees better with the data,
but the difference between these two numbers best reflects
the model dependence of the calculation.

The pd calculations map out a parabolic curve,
reflecting the effect of an additional scale parameter
which is purely Coulombic. The RSC and RSC/TM
model results fall slightly above the corresponding AV14
and AV14/BR results. This reflects the slightly greater

effect of Coulomb repulsion in the latter models, which
exhibit less short-range repulsion—the two protons can
come closer to one another. Here the datum lies far off
the theoretical curve and far from the two points
(Zapd ~0) for which the three-nucleon-force parameter
was adjusted to obtain the physical *He binding energy
(7.72 MeV). However, as indicated above and in Ref.
[30], we believe that this disagreement is the result of
one’s inability to extrapolate to zero energy from incident
energies above 400 keV due to the strong curvature in the
effective-range function below 300 keV.

Our spin-quartet results are displayed in Fig. 2. We
plot nd results versus pd results. Again circles specify
RSC and squares specify AV14; solid symbols indicate
62-channel results. We obtain two clusters of predic-
tions, one for the RSC model calculations and one for the
AV14 model calculations. Because the Pauli repulsion
for three nucleons in the same spin state keeps the nu-
cleons apart, three-body-force effects and the influence of
higher NN partial waves are minimal. We find for the
AV14-AV14/BR model

%a,;=6.38+0.01 fm ,
*a,; =13.76+0.05 fm ,
while for the RSC-RSC/TM model we find
*a,,=6.301+0.01 fm ,
%,y =13.52+0.05 fm .

The quoted theoretical errors are subjective and merely
reflect the spread of points as a function of the number of
channels. The RSC value again normally agrees better
with the experimental value of ‘a,;. However, we believe
that the difference is best construed as a measure of the
NN-force model dependence for such calculations. The
4apd values differ substantially from the experimental
value, but Zapd and 4apd are strongly correlated and the
cross sections are difficult to separate. A reduction in the
estimate for Zan (as indicated by our calculations) would

likely produce an increase in *a,,.

IV. CONCLUSIONS

In summary, we have produced the first absolute pre-
dictions for the nd and pd zero-energy scattering lengths

S

Nd quartet scattering lengths

Y- R — ey S
| ———— Nd quartet fit
137 |
E o
= L
Be
©
136 - N
N T R

136 Lo b

6.300 6.375

6325
a, (fm)

6.260 6.275 6.350 6.400

FIG. 2. Neutron-deuteron quartet scattering length plotted
vs proton-deuteron quartet scattering lengths. The circles speci-
fy RSC results and the squares specify AV 14 results; solid sym-
bols denote 62-channel results.

in a Faddeev-type, configuration-space calculation which
is converged as a function of the number of NN-potential
partial waves that are included. Three-body-force effects
do not move the doublet scattering length results off the
previously deduced (nd) Phillips line or pd doublet curve.
Our nd scattering lengths agree well with the published
experimental values. Our 2apd estimate (approximately
zero) is smaller than 2am],, contrary to intuition based
upon our experience with short-range forces and to what
the Phillips line would therefore naively indicate (an in-
crease in repulsion produces a lower triton binding ener-
gy and therefore a larger doublet scattering length). Our
2apd prediction disagrees strongly with experimental
values quoted in the literature, but this is likely due to
one’s inability to extrapolate to zero energy from above
300 keV (c.m.). Our ‘a,, estimate (13.5-13.8 fm) also
disagrees with published experimental results, but this is
correlated with the a,, disagreement. Although low-
energy pd elastic scattering experiments are difficult, one
would hope that these absolute predictions might inspire
further efforts in this area.
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