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Dynamic polarization potential induced by the Coulomb excitation of deformed heavy ions:
Geometric scattering approach
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The geometric scattering theory and the Wentzel-Kramers-Brillouin {WKB) approximation are
used to derive explicit expressions for the dynamic polarization potential induced by Coulomb exci-
tation in heavy-ion collisions involving strongly deformed targets. We build two phase-equivalent
potentials with very different radial and angular-momentum behaviors, which are discussed in the
context of polarization potentials obtained previously within different frameworks. This correspon-
dence provides a recipe for approximately correcting the deficiencies of the geometric scattering ap-
proach, which tends to overemphasize the effects of Coulomb coupling.

I. INTRODUCTION

In the study of heavy-ion collisions, the contribution of
the large number of channels at high excitation energy,
which are only weakly coupled to the entrance channel,
can generally be incorporated in a conventional optical
model, the parameters of which are expected to vary
smoothly and systematically with incident energy and
mass number. One of the basic questions is to identify
and estimate the components of the optical potential aris-
ing from specific inelastic modes strongly coupled to the
entrance channel, the so-called dynamic polarization po-
tential (DPP). ' These contributions can significantly
differ from one system to another since they reAect the
idiosyncrasies of the nuclei under study. A well-known
example is provided by the long-range absorption due to
Coulomb excitation, which is known to have a dramatic
impact on the elastic cross section when the target
displays strong deformation. A textbook example' is
the case of the ' O+' W system at 90 MeV, studied ex-
perimentally by Thorn et al. ,

" which displays an elastic-
scattering angular distribution differing considerably
from the standard Fresnel pattern. By performing expli-
cit coupled-channel calculations, Thorn et al. were able
to show that the deviation from the Fresnel pattern is
mainly caused by Coulomb excitation of the ' W nucleus
to its first I =2+ rotational excited state (Fig. I). Subse-
quently, Love, Terasawa, and Satchler (LTS) built the
DPP corresponding to this coupling; this was found to be
mainly imaginary, to have a very long range (it behaves
essentially as I /r ), and to be I independent. In another
study, Baltz, Kauffmann, Glendenning, and Pruess

(BKGP) presented another version of the DPP, with
seemingly quite dift'erent properties (strong angular-
momentum dependence, r dependence expressed as a
combination of r, r, and r dependences), but giv-
ing an equivalent description of the experimental data.
Despite its very different properties, this potential was
shown to be comparable to the LTS potential near the
classical turning point for each partial wave. Frobrich,
Lipperheide, and Fiedeldey (FLF) confirmed these two
calculations by explicitly constructing the DPP by an in-
version procedure starting from the results of Coulomb
excitation calculations; their DPP, which is l-
indepe~dent, was found to be very similar to the LTS po-
tential, and also to the l independent equivalent of the
BKGP potential.

In the present paper, we derive explicit expressions of
the DPP in a novel way, starting from a geometric
scattering approach to strong-coupling effects in heavy-
ion reactions. This approach, which is based on the in-
troduction of the no-Coriolis and the adiabatic approxi-
mations, makes it possible to completely decouple the ini-
tial coupled-channel equations into a set of ordinary
Schrodinger equations, where the bare potential is sup-
plemented with a term proportional to the coupling form
factor. It provides a completely different physical picture
of the departure of the experimental cross section from
the standard Fresnel pattern. Although the main results
of a complete coupled-channel calculation can be repro-
duced qualitatively in this simple approach, the model is
found to overemphasize the effects of Coulomb excita-
tion, but it was pointed out by several authors' '" that
reducing the strength of the Coulomb coupling Hamil-
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FIG. 1. Comparison of the experimental elastic-scattering
angular distribution of Thorn et al. (Ref. 4) for ' 0+ ' W at 90
MeV, with coupled-channel calculations using the parameters
of Ref. 5 and taking only Coulomb coupling into account (solid
line). The dashed line is the prediction of the bare potential.

present study.
Our paper is organized as follows. In Sec. II, we briefly

sketch the geometric scattering theory, emphasizing its
implications for the description of elastic scattering. Sec-
tion III is devoted to the derivation of general expres-
sions of the DPP in terms of the coupling form factor,
starting from the geometric scattering theory and from
the Wentzel-Kramers-Brillouin (WKB) approximation to
the S matrix. In Sec. IV, these results are applied to the
case of long-range Coulomb coupling; we show explicitly
how our approach generates DPP's in semiquantitative
agreement with those of Refs. 5 and 6, shedding light on
the link between these very different potentials. The re-
normalization of the deformation parameter needed to
bring the geometric scattering approach in quantitative
agreement with exact calculations is also discussed. Sec-
tion V presents a summary of our paper.

II. THE KI.ASTIC-SCATTERING S MATRIX
IN THE GEOMETRIC SCATTERING THEORY

tonian by about 20% makes a quantitative reproduction
of the exact calculation possible. This puzzling result, as
well as the coexistence of two phase-equivalent DPP's
with very different properties, naturally emerge from the

In the case of the excitation of members of a K =0+
ground-state rotational band of an axially symmetric de-
formed nucleus, the coupled-channel equations read, ' in
standard notations

d + l, (Ii+1)+U(r) EI fJ i (r)—
2p dr 2pr 1 1'1

1/2
I+I I +i —I I (21, +1—)(2I, +1)(2I2+1)+F(r)g( —) 'i'

2A, +1

I,
X&I,I,OO~XO&&t, zOO~i, O& I i Z f, , (r)=O, (1)

2 2 22

where I and l denote the angular momenta for the rota-
tional state excited and for the relative motion, respec-
tively. The optical potential U(r) contains an imaginary
part in order to take into account the effects on the
scattering of the other intrinsic degrees of freedom. The
multipolarity A, of the intrinsic excitation is two if we re-
strict to quadrupole deformation. In general, the cou-
pling form factor F2(r ) consists of Coulomb and nuclear
parts:

and

Rc
for r ~Rc,

fc(r)= 2

for r (Rc,
Rc'

F' '(r)= &Sl4~P,'"'Z„'" U—„(r).

(4)

F2(r)=Fz '(r)+F' '(r)

where

R (T)

F,' '(r)=&5/4~ 3P',c'Z, Z,e' -f (r),
c

with

(2)

(3)

In Eqs. (3)—(5), pz is the deformation parameter, and the
superscripts (C), (N), and ( T) stand for the Coulomb and
nuclear parts, and the target, respectively.

The geometric scattering theory makes use of two ap-
proximations. ' The first is the no-Coriolis approxima-
tion, where the change in the centrifugal potential due to
the finite multipolarity of the intrinsic excitation is
neglected, which amounts to replacing l&(it+1) in Eq.
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(1) by J(J+ 1 ), where J denotes the total angular momen-
tum in the entrance channel. The second is the adiabatic
approximation, where the finite excitation energy of the
rotational motion is ignored [EI in Eq. (1) is replaced by

1

the c.m. energy E in the entrance channel]. Subjecting
Eq. (1) to the unitary transformation which diagonalizes
the coupling matrix, one obtains a set of decoupled equa-
tions which read

d fi2+ 2 J(J+1)
2p dr 2pp.

+U(r)+A, F~(r) —E P (r)=0, (6)

where the A, denote the eigenvalues of the coupling ma-
trix, and where the wave functions P„(r)in the "pseudo-
channels" are related to the physical wave functions by
the unitary transformation which performs this diagonal-
ization. If the description of the rotational band is trun-
cated at I=I,„,the number of decoupled Schrodinger
equations (6) to be solved to calculate the physical S ma-
trix is given by a,„=I,„/2+1. For example, if we re-
strict the possible excitation to the I =2+ member of the
rotational band, the number of equations to be solved
reduces to a,„=2(whereas there were four coupled
equations in the physical channels). The eigenvalues A,

which determine the strength of the correction to the di-
agonal potential in each pseudochannel are given by

iL =Pz(cos8 ),
where cosO are the zeros of P~ +2 with 0 (m. /2. The

max

physical S matrix in the elastic channel is given in terms
of the Smatrix in each pseudochannel, S' ', by

maxs=yws",
a=1

where the w are the weight factors used in the(I,„+2)-point Gauss-Legendre quadrature formula' (in
fact, only half of these is needed by symmetry). Equation
(8) is obtained by using the boundary conditions for the
scattering problem and the properties of the unitary ma-
trix which connects the physical and the pseudochannel
wave functions. Equation (8) underlies the interpretation
of the geometric scattering approach: the scattering
process can be viewed in terms of the superposition of a
few elementary scatterings, corresponding to fixed orien-
tations of the deformed target with respect to the beam
direction. The relevant orientations are determined by
the maximum I value at which the truncation of the rota-
tional band is made; notice, however, that these orienta-
tions only determine the strength of the potential to be
used in each pseudochannel and do not correspond to an-
isotropic potentials.

III. DERIVATION OF TYCHO ALTERNATIVE DPP's
FROM THE GEOMETRIC SCATTERING THEORY

%'e will derive two possible explicit expressions for the
DPP starting from the geometric scattering theory and

the WKB expression of the phase shift. In this last ap-
proximation, the elastic S matrix is given by'

1/2

exp 2i
2

E—
V& r dr, 9

"oi

where VI(r) denotes the effective potential for angular
momentum l,

V( ) U( )+ fi 1(l+1)
2p r

(10)

2p=S exp —i

' 1/2
F(r)

"o &E —V(r)

1. 2pX exp ——i I , G(r )dr

where we have introduced

[F(r ) —aoV'(r )] lroV"(r ) 2F'(r)—
G(r ) = +2~0, , (11')

[E—V(r)] [E—V(r)]'~
F(ro)

0 Vi(

in this expression, account has been taken of the shift of
the turning point due to the perturbation. A sketch of
the derivation of Eqs. (11)can be found in the Appendix.

Use of Eq. (8) for the elastic-scattering S matrix, to-
gether with the following identities for the eigenvalues A,

and weight factors w

max

a=1

max

QWA, =O,
a=1

max

w~A, ~
=

—,
'

a=1
(12)

leads to the following expression for the elastic-scattering
S matrix:

2

S=s&exp ~ I5A' "o v E —V(r)
1/21. 2p

20
X exp 6 r dr

J

(13)

valid up to second order in the deformation parameter.
Note that the pseudochannel S matrix S' ' di6'ers from
the bare S matrix by terms of first order in the deforma-
tion parameter P2, in Eq. (13), terms linear in P2 are ab-
sent because of the second identity of Eq. (12). It is also
seen that expression (13) of the S matrix has become in-
dependent of a,„.Dependence on cx „would be
recovered if the expansions used in deriving (13) were
carried out to higher order in A, . In that case the identi-
ties of Eq. (12) would have to be supplemented with simi-

and rp& is the distance of closest approach for this wave.
Here and in the following the angular-momentum index I
will consistently be dropped, as well as the multipolarity
index A, =2. The potential renormalization A. F(r) used
in pseudochannel u will thus induce a modification of the
bare S matrix, Sp, given up to second order in A, by

S S"
p ~
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1/2
2po~~o exp

5V(r) dr
"o v'E —V(r)

(14)

of the bare S matrix, the modification of Eq. (13) predict-
ed by the geometric scattering theory is equivalent to the
introduction of a DPP satisfying

0

~
~ dy ~~ ~ lI

I

5V(r) . 1 2p
"o &E—V(r ) 10

' 1/2

F(r) dr
ro ~E V(r)

2

+ f G(r)dr .
20 &p

(15)

Since this constraint appears through an integral con-
dition, several expressions for the DPP are consistent
with Eq. (15). The most trivial one is

5V, (r ) = G(r )[E—V(r )]'=1
20

1 2p
10

F(r, )
F(r ) dr, ;

E—V ri

(16)

another obvious alternative is

lar expressions corresponding to higher powers n in A, ,
which turn out to depend on a,

„

for n ) 3 (this can be
proved easily by applying the 2a,„-point Gauss-
Legendre quadrature formula to the integral of
[P2(coso)]" over cos8).

As a modification U(r) —+ U(r )+5V(r) of the bare po-
tential iriduces to lowest order in 5V the modification

IV. APPLICATION
TO LONG-RANGE COULOMB COUPLING

We will apply Eqs. (16) and (17) to the case where
long-range Coulomb coupling dominates the scattering.
This is, e.g., the case for the system under investigation,
that is, ' 0+ ' W at 90 MeV, where taking Coulomb
coupling into account made it possible to obtain a very
satisfactory description of the spectacular departure of
the elastic-scattering cross section from the Fresnel pat-
tern, which we discussed in the Introduction. Further-
more, here we will restrict to high partial waves, where
the distance of closest approach is larger than the range
of the nuclear forces.

In this case V(r ),po= kro, and F(r ) reduce to

2q IV(r)=E +
P p

p =(L +r) )'/ +r),
(g (T))2

F(r)=&5/4m —'P' 'Z, Z e
r

(20)

where we have introduced the Lan ger replacement
L =l+ —,', the Sommerfeld parameter g, and the reduced
variable p =kr.

The integral appearing in Eqs. (16) and (17) can be
evaluated explicitly; one obtains, for r ~ ro,

5Vb(r ) = G(r )[E—V(r )]'=1
' 1/2

. 1 2p F(r, )—i — F(r) f dr, . (17)
fz QE —V(r, )

These two phase-equivalent DPP's are seen to have very
different r-dependences; this point will be discussed more
fully in the next section.

1/r, k
dr& =

QE —V(r& ) &EL
2

1/2

1
p p

L /p+g
(L 2+ 2)1/2 (21)

(L 2+ 2)1/2

For large values of L, this becomes independent of L up to third order in 1/p, and reduces to

k' 1 2~
3

dri — — 1+
r QE —V(r, ) 2v'E p~ 3p

(22)

A. Comparison with the LTS long-range absorptive potential

Equation (17) leads to the following expression of the DPP in the case of pure Coulomb excitation:

5 V~(r ) = ,', G(r )[E—V(r )]'/—
. 1 Ak 1 2
l 1 1

EL r

2 1/2
i L /kr+q

s1n sin
L, (L 2+ 2)1/2 (L 2+ 2)1/2
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to leading order in 1/r the imaginary part of the DPP
behaves as 100

T

Im5V (r)=—1 2p
b

L

1/2
1

2VE r' ' (23')

In Eqs. (23) and (23'), the constant A stands for

3 =&4~/5Z, e "(/BT(E2)f, (24)

10

where we have used the well-known relation between the
deformation parameter and the B(E2) value.

To lowest order in 1/r, the imaginary part of 5V& has
the same I/r dependence as the long-range absorptive
DPP of Ref. 5. Also, the weak, E ' energy dependence
of 6Vb is the same as that of the LTS polarization poten-
tial. In fact, to lowest order in 1/r, one has

10

rms Vb

Im5 VLTs 2
(25)

10
20 30 40

If we compare 5Vb and 6VLTs to next order in 1/r, this
result still holds to a good approximation. Indeed, one
has to this order,

5Vq(r ) ~ 1+1 271
(26)

p 3p

On the other hand, the 1/r dependence of the DPP of
LTS must be corrected for taking into account the brak-.
ing of the particles in the presence of the Coulomb field;
in the so-called local-energy approximation, and beyond
the range of nuclear forces, the r dependence of the
LTS potential becomes

~ VLTs
1 2"' p'. p

1++1

p p
(27)

Although the corrective terms in Eqs. (26) and (27)
differ by a factor of 1.5, they have the same energy and
radial behaviors and comparable magnitudes. The result
of Eq. (25) can thus be considered to still provide a
reasonable estimate. To check the accuracy of the vari-
ous approximations used, we compare in Fig. 2 the exact
DPP obtained from Eq. (21) for several / values with the
approximate expression obtained from Eq. (26), and with
the LTS polarization potential. It can be seen that the l
dependence of our exact DPP is indeed weak, and that
the result of Eq. (25) holds to a good approximation.

The absolute value of the real part of the DPP turns
out to be much smaller than that of the imaginary part.
This can be seen in Fig. 2 where we have plotted the real
part of Eq. (23) for 1=0 and 60. The real part of the
DPP can thus be neglected, as was also found to be the
case for the LTS (Ref. 5) and BKGP (Ref. 6) polarization
potentials.

Equation (25) indicates that the results of exact
coupled-channel calculations can be reproduced with
good accuracy within the geometric scattering approach
by reducing the strength of the coupling Hamiltonian.
Indeed, Eq. (25) implies that renormalizing p~z

' by a fac-
tor of about ( —', )'~ =0.82 should bring our DPP in better
agreement with that of LTS, and therefore an approxi-

FIG. 2. Comparison of the imaginary part of the exact dy-
namic polarization potential 5Vb of Eq. (23) (dotted lines) and
its approximate l-independent version of Eq. (26) (dash-dotted
line), with the LTS potential' (solid line) for the ' 0+' W sys-
tem at 90 MeV. The dashed lines represent the real part of 5Vb.
The 5V& curves have been multiplied by —, (see text).

mate compensation for the effects of the no-Coriolis ap-
proximation in geometric scattering calculations should
be obtained by use of this recipe. A comparable factor
was obtained empirically by Esbensen et al. ' in a study
of s8Ni + ' Dy at 345 MeV. In the closely related for-
malisrn of the angle-dependent phase shifts, Lipperheide
et aI." had similarly to renormalize the Coulomb radius
parameter of the target from ro&'=1.25 to 1.10 fm to get
quantitative agreement with the exact results in their
study of the ' C+Nd and ' 0+Sm systems around 70
MeV. As, in the outside region, the strength of the cou-
pling Hamiltonian is determined by the product P(RC '),
this amounts to renorrnalizing the Coulomb deformation
parameter by a factor (1.10/1. 25) =0.77, which is close
to the factor 0.82 quoted above.

In Fig. 3, we show the effect of reducing p~2
~ from its

physical value p~2 '=0.236 (used with Rz '=6.84 fm) to

P( i=0.236X0.82=0. 194

in the geometric scattering calculation of ' 0+ ' %' at 90
MeV. This figure shows that the large deviation from the
Fresnel pattern is qualitatively well accounted for by the
model using the original deformation parameter, but that
renormalizing the strength of the coupling as explained
above reproduces the results of the exact coupled-channel
calculations in a quantitative way.

To conclude this section, let us stress that the simple
recipe of renormalizing the strength of the coupling by
&2/3 is expected to hold only in the case of pure
Coulomb coupling, and provided the corrective terms ap-
pearing in Eqs. (26) and (27) are small in the region of
physical interest. Also, we have omitted in the above dis-
cussion the adiabaticity correction factor g2(g) of Ref. 5,
which for heavy-ion systems involving strong
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FIG. 3. Comparison of exact coupled-channel calculations
for ' 0+ ' W at 90 MeV (solid line), with the geometric scatter-
ing approach predictions (dashed lines) obtained using (a) the
physical value of the deformation parameter Pz '=0.236, and
(b) the renormalized value P'2 '=0. 194.
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deformations —and thus small excitation energies —is
very close to unity.

It should also be emphasized that our conclusions are
restricted to the case where multiple excitation is not im-
portant, since our DPP does not depend on the number
a,„ofstates of the rotational band included. It has been
shown by FLF (Ref. 7), that, in cases where multiple
Coulomb excitation is important, as in the Ar+ U
system, the imaginary part of the DPP is significant1y
lower than the predictions of both the LTS and BKGP
approaches, which are restricted to single-excitation pro-
cesses; whether our renormalization recipe retains some
validity in these more complicated cases is an open ques-
tion.

B. Comparison with the BKGP polarization potential

The alternative choice of Eq. (16) leads to a DPP with
very different r and I dependences. Indeed, the imaginary
part of 5V, (r ) now behaves like 1/r instead of 1/r, and
instead of being nearly I independent, 5 V, (r ) has a strong
l dependence through the lower bound of the integral,
which is nothing but the classical turning point for angu-
lar momentum l. One finds explicitly, using Eqs. (16),
(19), and (21),

Im5V, (r )

1 2p
10

tan gL (28)

Although this DPP is not identical with the BKGP po-
larization potential, one can prove the following connec-
tions:

(i) For l —+0, both potentials are identical (in particu-
lar, they both behave like 1/r ).

(ii) Both potentials decrease monotonically when l in-
creases; the BKGP potential tends to a fixed 1/r behav-
ior when I~ ao, whereas our potential behaves like 1/r
whatever I, and tends to zero when l —+ Oo. However, our
potential remains twice as large as the BKGP potential at

FICx. 4. Comparison of the exact dynamic polarization po-
tential 6V, of Eq. (28) (dashed lines) with the BKGP potential
(Ref. 6) (solid lines) for the ' 0+' W system at 90 MeV. The
arrows indicate the classical turning points for the displayed I
values.

the classical turning point when l tends to infinity.
Our polarization potential 5V, (r ) is compared, for the

' 0+' W system at 90 MeV, with the BKGP potential
for several I values in Fig. 4. As in the work of BKGP,
the arrows denote the location of the turning points for
the I values illustrated.

Although the DPP of Eq. (28) is not identical to the
BKGP potential, our calculation sheds light on the coex-
istence of phase-equivalent potentials with very different
properties. The phase equivalence of the LTS and BKGP
potentials has been proven by FLF (Ref. 7) by a direct
construction of the l-independent equivalent of the
BKGP potential, which turns out to be nearly identical
to the LTS potential.

V. SUMMARY

In this paper, we have combined the geometric scatter-
ing theory and the WKB approximation to discuss the
properties of the dynamic polarization potential (DPP) in
the case of the scattering of heavy ions from a strongly
deformed target, where the long-range Coulomb excita-
tion dominates, and where multiple excitation processes
do not dominate the scattering.

Phase equivalence with the geometric scattering ap-
proach, which imposes a constraint on the DPP through
the integral condition (15), can be satisfied by several ex-
pressions; Eqs. (16) and (17) are obvious choices for satis-
fying this constraint. We have shown that one of these
choices leads to a nearly purely imaginary DPP, showing
a 1/r behavior, with very weak I-dependence, nearly
identical to the polarization potential of Love, Terasawa,
and Satchler up to a factor of —,'. In contrast, the second
choice leads to a strongly l dependent, 1/r potential,
whose connections with the polarization potential of



DYNAMIC POLARIZATION POTENTIAL INDUCED BY THE. . . 483

Baltz, Kauffmann, Glendenning, and Pruess have been
emphasized.

As a by-product, we have obtained a prescription for
correcting the deficiencies of the no-Coriolis approxima-
tion, which underlies the geometric scattering approach,
and which tends to overemphasize the effects of Coulomb
excitation: a better quantitative agreement with exact
coupled-channel calculations can be obtained by reducing
the deformation parameter by a factor of Q —,'.
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APPENDIX: DERIVATION OF EQS. (11)

WKB approximation,

66= lim
R 2p (E—V —b V)

ro+

harp

p2

' 1/2

E—V
R 2p

rp

1/2

65= lim f +I—V(p+bpo) QV(p+5—p~)dpR~cc PO

—f Vl —V(p)dp —hp() .

To second order in the perturbation, the shift of the
turning point is given by

AP0=
Vo

b, Vob, VO 1 EVOVO'

Vlf 2 Vl3
0 0

(A2)

Each of these integrals tends to infinity with R, but the
difference of Eq. (Al) tends to a well-defined finite limit
when R goes to infinity. ET0 denotes the shift of turning
point induced by the potential change.

Writing these integrals in dimensionless form, by intro-
ducing the reduced quantities V(p) = V(r )/E, p= kr,
etc. , and rearranging the first integral, we can rewrite Eq.
(Al) as

The modification of the nuclear phase shift induced by
the change EV(r) =A,,I'(r ) of the potential reads, in the

where Vo—:V(po), etc. ; to the same order, the difference
between the integrands of Eq. (Al') reads

Q 1 —V(p+ hp()) —b V(p+ b po) —&I V(p) = ——
, , [bppV'+bV+ —,'(bpo)'V" +bpobV']

2(1 —V)'i

(bpoV'+bV)
8(1—V) i (A3)

~~(i) " ~V(p)
p ~

Pp V 1 —V(p)
(A4)

It is easily seen using Eqs. (Al'), (A2), and (A3) that the
modification of the phase shift is given, to first order in
the perturbation, by

Collecting all the second-order terms [including the
second-order contribution to bpo contained in Eq. (A2)],
one finally obtains the second-order contribution to the
modification of the phase shift as

b,6' '= —
—,
' f dp G(p), (A5)

fo

which gives the first exponential in Eq. (11).
The second-order contribution to the phase shift, cor-

responding to the (1—V) r term in (A3), could possi-
bly lead to a divergence problem at the lower bound of
the integral. However, it can easily be seen that the two
terms of the right-hand side of Eq. (A3) vanish when p
tends to p0.

where we have introduced

[AV —(b,VO/Vo)V']
G(p) =

V)3/2

b, VO (b,Vo/Vo)V" —2b, V'
+2

V; (1 —V)'" (A6)
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