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Microscopic calculation for Ne on NaF at 45 MeV per nucleon
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We present theoretical calculations for data pertaining to Ne on NaF collisions at 45 MeV per
nucleon. The calculations use the Boltzmann-Uehling-Uhlenbeck model, modified to incorporate
fluctuations. The recent numerical technique developed by Lenk and Pandharipande is applied to
test particle propagation in the nuclear mean field. We find that the agreement with experimental
data ranges from good to very good.

I. INTRODUCTION

The experimental study of near central collisions of
heavy ions at beam energy 30—100 MeV/nucleon is of
much current interest. Based on the knowledge acquired
so far, one expects to see a transition from a decay
predominantly by evaporation to the phenomenon of
multifragmentation. Consequently, there is a strong need
to use theoretical models to these reactions so as to assess
their applicability for describing such phenomena. In
this paper we will present theoretical calculations for one
such experiment. Details of the experiment are available
from other sources. ' Here we will summarize the
salient features of this experiment that are needed to un-
derstand the theoretical work presented here.

We chose to concentrate on a specific reaction which
was Ne on NaF at 45 MeV/nucleon, at the National
Superconducting Cyclotron Laboratory in Michigan
State University (MSU). The experimental setup consist-
ed of two main detectors; a forward charge detector, built
at the Chalk River Laboratories, which measured the to-
tal charge Z of particles emerging in a forward cone
spanning 2.5' to 17'. The energy threshold for particle
detection there was 15 MeV/nucleon. The other princi-
pal detector was the MSU 4~ array. The polar angle cov-
erage for this detector is 19' to 161' with particle detec-
tion threshold at 17 MeV/nucleon. The 4m detector was
primarily used to tag the multiplicity M (=number of
charged particles) on an event-by-event basis. On the
basis of similar experiments at higher energies, one might
expect an anticorrelation between the readings at the for-
ward detector and the 4m detector. A large total charge
at the forward detector could signify a peripheral col-
lision; one would then expect M to be small. By exten-
sion, a small number of charges in the forward detector
accompanied by a large M value in the 4m detector could
be the signal of a central-like collision. Inclusive cross
sections of Z =1 particles (protons, deuterons, and tri-
tons) integrated over a large angular range as well as over
a limited angular range are available. These data are also
available as a function of M, the multiplicity in the 4a
detector. In the sections to follow we will present these

data along with our calculated results. In order to test
the validity of the scenarios described above, we have
submitted our calculations to the same cuts as the experi-
mental data.

II. THE MICROSCOPIC MODEL

The microscopic model we use is the Boltzmann-
Uehling-Uhlenbeck (BUU) model modified so as to en-
able us to attempt an event-by-event description. This is
necessary in order to connect with data. As is well
known, the standard BUU model will not produce clus-
ters for equal ion central collisions. This approach solves
for the time evolution of the one-body phase-space distri-
bution. Rather than a single event, the BUU model de-
scribes an average over many events. The basics of the
extended BUU model that we will use here have been de-
scribed before; nonetheless, a few technical yet impor-
tant points are different for this calculation. We now
proceed to explain these details.

There are two inputs to such calculations: the mean
field and the hard collisions. We characterize the nuclear
mean field by a potential-energy density:

2 Bv(r) = p'(r)+ p '(r)
2 o. +1

+ p(r) f—d r'v (r, r')p(r'),

where v (r, r') is a finite range force and the rest is a
Skyrme-type parametrization. Equation (1) implies that
the nuclear mean field felt by a nucleon is

u(r)=Ap(r)+Bp (r)+ f d r'v(r, r')p(r') .

For the finite range force v (r, r') we use a Yukawa:

exp( —~r
—r'~ /a)

v(r, r')= Vo

The parameters of this force are taken from Ref. 7.
These are 3 = —1563.6 MeV fm, B =2805. 5
MeVfm, o.=—'„Vo= —668.65 MeV, and a =0.45979
fm. With these parameters the binding energy per nu-
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cleon in nuclear matter is 15.77 MeV. The value of "a" is
the same as used by Bonche, Koonin, and Negele. In ad-
dition to the nuclear force, we also include the Coulomb
interaction.

The parameters of the mean field, aside from having
important effects on the dynamics of heavy-ion collisions,
also determine the ground states of colliding nuclei in a
self-consistent procedure. Our heavy-ion collision calcu-
lations begin with two such ground states approaching
each other. These ground states are those obtained in the
Thomas-Fermi approximation with the force of Eqs. (1)
and (2). The ground-state density of Ne in the
Thomas-Fermi approximation is shown in Fig. 1. The
calculated binding energy per nucleon for Ne is 8.48
MeV; for the deuteron and the alpha the corresponding
numbers are 4.85 and 6.10 MeV. Note that in the
Thomas-Fermi approximation more realistic surfaces for
finite nuclei can be obtained with force parameters that
give a higher binding energy in nuclear matter (ours give
15.77 MeV) and a higher surface energy in semi-infinite
nuclear matter. The numerical recipe used to obtain
Thomas-Fermi solutions in finite nuclei is given in Ref. 7.

Given the Thomas-Fermi solution, the phase-space
density is mapped by test particles. Usually this needs a
Monte Carlo simulation as well as choosing a form factor
or else an averaging prescription. Recently, Lenk and
Pandharipande' have developed a technique for mean-
field propagation which gives very accurate conservation
of the total energy and the total momentum. This has
been incorporated in our own calculation. The available
configuration space is partitioned into a lattice of cubic
cells of volume (5l) . The density at a lattice site a cen-
tered at r is

(5l) QS(r —r)= 1

a

independent of r. Here we use

with b; =(r r; ) /—b, setting N, = 100, (51) = 1 fm, and
b = 1 fm. Given the lattice density one can then calculate
the total interaction energy as a sum over sites of the in-
teraction energy density e,

Vq=N, (51) pe~, (7)

from which one can derive the equations of motion:

BS(r —r;)= —N;(51)'g VP
a

being the potential acting on isospin species q. In the
calculations discussed in this work, we define

q denoting the isospin of the nucleon species under con-
sideration. The lattice Hamiltonian is written as

N, A 2

+N, (5l) g (e"+e"),

X,. A

p
—=p(r )= g S(r —r, ), (4)

(10)

where X, is the number of test nucleons per real nucleon.
The form factor S(r —r, ) must satisfy at all times the
constraint

with

'O'= Ap +Bp
exp(~r —r .(/a)

VP = Vo(5l) g, p ~,
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Calculating VP and Vl' as written is very time-
consuming, and thus we instead solve the associated
differential equations
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FIG. 1. The density distributions obtained self-consistently in
the Thomas-Fermi approximation are shown separately for pro-
tons and neutrons, in the case of ground-state Ne. The param-
eters of the interactions are given in the text.

by a relaxation method with Gauss' accelerators. "'

Given that the lattice densities are slowly varying func-
tions of time, if one starts with the known potentials at
time t, the new solutions at time t+5t converge after
only 3 iterations of the method.

Inclusion of the finite-range force for the nuclear part
allows us to have a more reasonable surface for the self-
consistent nuclear ground states of the Thomas-Fermi ap-
proximation. Given that in the form factor of Eq. (5), the



MICROSCOPIC CALCULATION FOR Ne ON Nap AT 45 McV. . .

width b, for numerical reasons, cannot be taken to the
zero, a faithful mapping of density through test particles
can only be done if the density does not have a sharp sur-
face, like one would have in the Thomas-Fermi approxi-
mation if the nuclear interaction was entirely zero range.
We wish to also re-emphasize' that the semiclassical
model used here suffers from the lack of shell effects; thus
the extra binding of the alpha particle is missing in our
approximation. Some other approaches to multifragmen-
tation do not suffer from such limitations ' on the
other hand, these approaches do not incorporate dynam-
ics.

We now turn towards hard collisions, the other in-
gredient in the calculation. We have taken the nucleon-
nucleon cross section to be 55 mb and isotropic. The col-
lision cross section between test particles is then o.&&/X, .
We further suppress collisions by a factor 1/X, but when
two test particles collide, 2X, test particles are moved
simultaneously. The prescription used is exactly as in
Ref. 4. Collisions are thus treated stochastically and are
the sources of fluctuation in our model. Recall that X, is
the number of test particles to a physical nucleon.

Other models for fluctuation have been proposed' but
practical applications to experiments are not available
yet. Some model calculations exist which use global Auc-
tuation' to get deviation from one time step to another.
To study cluster production one in fact needs to create
fluctuations which are local in configuration and momen-
tum space. We understand that work towards this goal is
in progress. '

In calculations like ours one asymptotically observes
local pockets of significant density separated from one
another against a diffuse background. A composite is ob-
tained when the number of nucleons in a pocket is greater
than unity. Thus the number of emerging particles can
be found on an event-by-event basis. While this is the
general idea, actual answers will somewhat depend upon
the precise algorithm used.

The observables we were interested in required that the
clusters we produced have an integer number of "real"
protons and neutrons. To achieve this we proceeded in
two steps. The first of these steps is a coarse-graining
sweep where "preliminary clusters" were identified; test
nucleons were assigned to a preliminary cluster if their
distance to any of the test nucleons already in it was less
than a certain value y in coordinate space. In such an
approach, one readily sees that setting y equal to a very
small number is equivalent to scanning for large values of
density. In the second step, once all preliminary clusters
were identified, the ones whose nucleon number (the
number of physical neutrons plus physical protons) was
less than 0.5 were rejected, and their constituents tem-
porarily assigned to the background. We then complete
the nucleon numbers of the retained clusters as follows:
for each cluster, the background test nucleons were ar-
ranged according to their phase-space distance to the
cluster center of mass. Then as many of the closest back-
ground test nucleons as was necessary to get integer pro-
ton and neutron numbers were selected. Since a "prelim-
inary cluster" has some neutron and proton content and
since the neutron and proton numbers are completed in-

dependently, the smallest cluster emerging from a "pre-
liminary cluster" will be A =2. All test nucleons still as-
signed to the background were considered to be free nu-
cleons. We note that the average density of the clusters
thus obtained was one third of equilibrium nuclear
matter density. Note that the obtained cluster distribu-
tion is not a linear function of y: there is a "critical"
value of this parameter beyond which the cluster distri-
bution rapidly saturates to the asymptotic form we com-
pare with experiment. We choose y=0. 225 fm (this ac-
tually corresponds to twice the test nucleon radius if one
assumes that the volume it occupies is X, times smaller
than the "real" nucleon volume). Doubling this value
changes the number of unbound nucleons by less than
10%%uo.

Fluctuations are automatically included in the one
Gaussian per particle approach as used by the Frankfurt
group or Boal and associates. ' Our calculation would
have closer resemblance to these models if we used a
Gaussian form factor and a single test particle per nu-
cleon.

III. RESULTS

As explained in Sec. II, each simulation in our model
corresponds to a single event at an impact parameter of
our choice. With the Coulomb and finite-range nuclear
forces, following each event up to 200 fmc ' in order to
predict clusters requires a computing time of about 16
hours on Vax 750-11. In all, 750 runs were taken, span-
ning an impact parameter range from 0 to 6 fm. This
statistics is adequate for high cross-section events.

Data analysis for this experiment has been done for in-
clusive spectra of Z =1 particles (a) integrated over the
whole angular range 19'—161', (b) integrated over smaller
angular ranges, and (c) with specific charge multiplicity
in the 4~ detector. We compare these results with our
calculations. The theoretical differential distributions
have been normalized to their experimental counterparts.
It should be pointed out that total cross sections have not
been a problem in BUU type calculations.

The agreement between experiment and theory is quite
reasonable in Fig. 2, where we plot dX/dE, integrated
over the whole plastic ball angular coverage. Figure 3
gives more details, separating inclusive distributions into
different angular bins. We find when the cross sections
are large, theory and experiments agree but there are
discrepancies at backward angles where the cross sections
are small. Figure 4 presents more exclusive data where
inclusive cross sections are shown for fixed multiplicity in
the 4m detector; of the cases displayed, M = 5 represents
the most central collisions. We find that the calculations
reproduce these very well. For brevity M =1 data and
calculations are not shown in Fig. 4 although the agree-
ment was just of a similar quality.

An important question at these beam energies is the re-
lationship between charge multiplicity and the impact pa-
rameter. Figure 5 shows the results from our calcula-
tions. The set of histograms depicts the relative impor-
tance in our model of different impact parameter ranges
for a given charged-particle multiplicity M. The number



466 J. GALLEGO et al.

—f
10

19&8& 161
-1

10

I ' ' ' ' I
' ' ' '

I:

M ball = 2:: M ball = 3

10
10

—3
10

10

-4
10

0

—5
10

—f
10

M ball =4 M ball = 5

10

—7
10

—3
10

10

—8
10

0
I

25
I

50 75
I

100 125

—5'
10 I ~ ~ I ~ ~ ~ I. . . I ~ ~ ~ ~ ~ ~ ~ I . ~ I ~ ~ . ~ I ~ ~ I

25 50 75 100 0 25 50 75 100 125

Energy (MeV) Energy (MeV)

FIG. 2. Inclusive distribution over energy of Z =1 particles,
integrated over the whole plastic ba11 polar angle coverage. The
data are the solid dots and the calculation is the histogram.

FIG. 4. Inclusive distribution over the energy of Z = 1 parti-
cles, for events contributing to a specific plastic ba11 multiplici-
ty. The data are the solid dots and the calculation is the histo-
gram.

in parentheses gives the relative probabilities of charge
multiplicities in the ball provided the two nuclei hit.
While there is no direct comparison of these with experi-
mental data, detailed analyses like this one highlight the
impact parameter-multiplicity relationship. Figure 6
shows a plot of ball multiplicity against average charge Z
in the forward detector. The error bars on the theoretical

points are of a statistical nature. This plot suggests that
our connection between multiplicity and the impact pa-
rameter may in fact be quite reasonable. The trend of the
calculation follows that of the experimental data, with no
overlap of the theoretical results with the data in one
multiplicity bin only. The anticorrelation discussed in
the introduction is in fact observed, both in theory and in
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FIG. 3. As in Fig. 2, but for smaller angular ranges.

FIG. 5. The individual relative contribution of each impact
parameter to a single charged-particle multiplicity in the plastic
ball is show. Each histogram corresponds to a fixed multiplicity
M. The number in parentheses gives the relative probability of
a given charge multiplicity. Note that the maximum impact pa-
rameter used in the calculation was b =6 fm.
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FIG. 6. For a given ball multiplicity, the average total charge

in the forward array is shown. For clarity, the different symbols

have been slightly offset in the vertical direction. However, they

correspond to M =0, 1,2, 3,4 from bottom to top.

stringent requirements than are usually imposed on cal-
culations of single-particle distributions. The BUU mod-
el is not appropriate for describing sequential decay
chains. It has a good chance of being successful when
sequential decays are a small part of the cross section.
Thus the agreement we find in our calculations, especially
those displayed in Fig. 4, lends credence to the belief that
multifragmentation is an important mode of deexcitation
at this energy. Of course, the possibility exists that the
particular observables we have calculated do not distin-
guish between predictions from sequential decays or mul-
tifragmentation even though they are diFerent models
based on rather diFerent physics. More studies are need-
ed to elucidate this point.

No less important to us was the improvement of the
Vlasov propagation that has become possible since the
work of Ref. 10. The incorporation of this method has
not made it possible to arrive at the results of an extended
BUU model with presumably very little contamination
from numerical inaccuracies. This point is crucial for
calculations done for such low energies, where the associ-
ated time scales are longer. The present calculation
shows that the results from the model continue to be
reasonable. In the future we hope to do more detailed
simulations for diFerent systems in the appropriate ener-
gy range.

experiment. For comparison purposes only, we also show
results from FREESCO simulations.

IV. DISCUSSION

This calculation served several purposes. One was to
ascertain how well the extended BUU model works in ex-
plaining observables in this low-energy range, under more
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