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The a+ ' C system is investigated in the generator coordinate method, where the ' C nucleus is
described by three n particles located on the apexes of an equilateral triangle. The ' C wave func-
tions are projected out on the 0+ and 2+ states. By modifying the size of the triangle, we analyze
the importance of clustering effects in ' C on ' 0 bound states, and on a+' C phase shifts. These
effects are found to be reduced when the total spin of the ca+ ' C system increases. The coupling be-
tween the n+' C(0+) and a+' C(2+) channels also decreases when a clustering is introduced in
' C. %e obtain high-energy resonances in the a+' C scattering. These resonances, located be-
tween 15 and 30 MeV in the center of mass, are suggested to be Pauli resonances, analog to the
well-known forbidden states in the two-cluster model.

I. INTRODUCTION

Many experimental data have been obtained concern-
ing the n+' C system. Elastic and inelastic cross sec-
tions have been known for many years. ' In addition, the
' C(a, y)' 0 capture reaction plays a crucial role in nu-
clear astrophysics. The theoretical study of the 0.+' C
system raises several problems, essentially because the
' 0 nucleus presents simultaneously one-center states
such as the ground state or the 3, excited state and clus-
ter states such as the states of the well-known 0+ and 0
bands built on the 6.00- and 9.63-MeV states, respective-
ly. A nonmicroscopic cluster model has been used by
Buck and co-workers ' to study several ' 0 states. How-
ever, shell-model-like states, such as the ground state, are
missing. Suzuki and co-workers ' have investigated
bound-state properties of ' 0 and e+' C scattering in
the orthogonality condition model (OCM). This model
takes partly account of the Pauli principle, but contains
several adjustable parameters. Microscopic single-
channel studies of the n+' C system have been per-
formed by Horiuchi, Husken, and Baye and Heenen in
a two-cluster a+' C(0+) model. An extension has been
carried out by I.ibert-Heinemann et al. ' who include the
a+' C(0+,2+) channels. However, this study met a
problem with the ' C(2+) excitation energy, which was
underestimated. In 1987, we improved this previous
work by introducing a spin-orbit force, and by taking ac-
count of the p+' N and n +' 0 configurations. "

Until now, all the microscopic studies of the n+'C
system have a common drawback: with conventional
nucleon-nucleon forces, the binding energy of ' 0 with
respect to the a+' C threshold is much larger than the
experimental value ( —7.16 MeV). This is due to the fact
that the a and ' 0 nuclei are well described in the one-
center harmonic-oscillator model, whereas ' C is not.
Fujiwara and coworkers' have shown that the ' C wave
function can be significantly improved by using a triple-a
model. In this paper, we present a microscopic study of
the o.+' C system, where ' C is described by three a par-

ticles located on the apexes of an equilateral triangle.
This model is expected to provide a more reliable descrip-
tion for the e+ ' C system; in particular, it should reduce
the disagreement observed for the ' 0 binding energy in
two-center microscopic models. Moreover, it allows one
to analyze the influence of clustering effects in ' C on the
' 0 spectrum and on the a+ ' C phase shifts. Note, how-
ever, that a four-a model raises important numerical
problems since the ' C wave functions have to be project-
ed out on spin and parity in order to have a physical
description of the a+ ' C scattering. Our aim in the
present work is not a comparison with experiment. We
only want to investigate qualitatively the effects of the
' C deformation on the o.+ ' C system by varying the size
of the triangle.

II. THE MICROSCOPIC FOUR-a MODEL

In a microscopic model, the wave functions are an-
tisymmetrized with respect to the exchange of all the nu-
cleons. They can be projected out on the good quantum
numbers of the system. ' Let Pc"x.(Rc) be a ' C wave
function with spin I, projection v, and intrinsic projection
K. This nucleus is assumed to be described by three a
clusters located on the apexes of an equilateral triangle
with side Rc (see Fig. 1). The symmetry of the equila-
teral triangle leads to a strong reduction of computer
times. In addition, as far as we are concerned with the
ground-state band of ' C, the validity of this approxima-
tion is supported by the sharp minimum of the binding
energy around an equilateral triangle. ' With this
configuration, one has K=3n, where n is a positive in-
teger number, and the parity is given by ( —) . We have

X@~(S~)@(S3)dQ

where P, is a center-of-mass function, D,~($),) and
W(Q) are the Wigner function and the rotation operator,
depending on the Euler angles A. Owing to the symme-
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FIG. 1. Cluster structure of ' C and ' 0 in the present model.

try of the system, the integration domain can be reduced,
yielding a significant reduction of the calculation times.
In (1), @ (S; ) is a Slater determinant relative to the a
particle and defined in the harmonic-oscillator model
with parameter b; it is composed of four s orbitals cen-
tered at S, , which depends on R & and on the Euler angles
(see Fig. 1). The antisymmetrization of the wave function
is ensured by the operator A. Note that when Rc tends
towards zero in (1), one obtains the usual one-center
description of ' C. In this approximation, the ' C basis
wave functions are determined in order to have good spin
and parity, without additional projection. This descrip-
tion has been used by previous authors ' in two-center
microscopic studies of a+ ' C scattering. The originality
of the present work is to allow the Rc value to be
different from zero. As it is well known, ' this procedure
improves the ' C wave functions and, consequently, the
study of the a+ ' C scattering is expected to be more reli-
able.

In an a+' C model, an ' 0 wave function where ' C is
described by an equilateral triangle with side Rc reads

%~M (R )=Ay/ [Y,(p)y (R )] g, (p, R )
/I

where p is the relative coordinate between a and ' C, and
I

/ is the angular momentum. Up to a center-of-mass fac-
tor, the internal wave function P is equivalent to the
Slater determinant N . According to the high excitation
energy of the ' C(3 ) state, we neglect the K=3
configuration, and we restrict ourselves to K=0. There-
fore, we drop this index in the ' C wave functions. Func-
tion ger (p, Rc) is a radial wave function determined from
the ' 0 Hamiltonian. In the Generator Coordinate
Method (GCM), this function is expanded as projected
Gaussian functions'" I i(p, R ), yielding

ger (p, RC)= Jfbi(R, Rc)I i(p, R )dR (3)

X AM- * RDI~e 0
X&94 (R,Rc, Q)dR dA . (6)

The weight function fbi (R,RC) and the relative function
ging(p, Rc) can be obtained from the matrix elements of
the overlap and of the Hamiltonian between projected
Slater determinants (6). A straightforward calculation
leads to

where R is the generator coordinate associated to the
a+' C relative motion (see Fig. 1), and fbi the weight
function. Before inserting (3) in (2), let us define a four-
alpha determinant:

@4 (R,RC, Q)=A@ ( —
—,'R+S, )@ ( ——,'R+S2)

Xe.( ——,'R+S, )e.(3R) .

Now, using (1) to (4), we find

(Rc ) =g J fbi (R,RC )@ir (R,RC )dR,
lI

where

(R,Rc)=g& lIM vv~ JM )—

&C~(, (R,R, )IHI~;", (R', Rc)) =g~'y&»M vvl~M &y &&—'I'M' v'v'IJM &—
V V

X Y 00D QY * GOD * 0'

X & C&4 ( R, R c,Q )
~
H

~ 44 ( R', R A~' ) )d 0 d Q d 0',

where R is along the z axis, and R' makes an angle 0 with
respect to R, and is located in the x-z plane. Expression
(7) shows that the matrix elements depend upon seven-
dimensional integrals. This result raises tremendous nu-
merical problems and requires the access to a supercom-
puter. Most of the computer time is devoted to the ma-
trix elements of the two-body force between Slater deter-
minants (4). However, since the four clusters are here a
particles, this calculation can be efhciently optimized. In
addition, the quadrupole sums involved in these matrix
elements can be highly vectorized.

III. CONDITIONS OF THE CAI.CUI.ATION

The Hamiltonian contains the V2 nucleon-nucleon
force, ' and the exact Coulomb interaction. In an alpha-

i

cLuster model, the spin-orbit and tensor forces do not
contribute to the matrix elements. The oscillator param-
eter is chosen as b=1.36 fm, which minimizes the bind-
ing energy of the a particle. We shall consider four ap-
proaches, with difFerent Rc values (0.4, 1.6, 2.8, 4.0 fm).
The value Rc =0.4 fm nearly corresponds to a one-center
description of ' C, and R ~ =- 2.8 fm represents the
minimum of the expectation value of the Hamiltonian
with the standard Majorana parameter M=0.6. Two ad-
ditional values are selected in order to analyze the impor-
tance of a clustering in ' C(RC=1.6 and 4.0 fm). The
a+' C(0+,2+) channels are included in the calculation.
We have performed a few simplified calculations (i.e.,
with a single set of generator coordinates) involving the
G. +' C(4+) configuration. For low-lying ' 0 states, this
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channel plays a negligible role, and therefore is not taken
into account. The generator coordinates R between a and
' C are selected from 1.1 to 8.8 fm with a step of 1.1 fm.
The Majorana parameter is adjusted in order to repro-
duce the energy of the 02 and 1, states in ' 0, in positive
and negative parity, respectively, with Rc =2.8 fm. This
leads to M=0.644 in positive parity and M=0.650 in
negative parity. These values are used in the four calcu-
lations involving the different Rc generator coordinates.
They are not the best choices when Rc is different from
2.8 fm. However, in order to provide a meaningful
analysis of clustering effects, it is necessary to use the
same interaction when Rc varies.

In Fig. 2, we present the expectation value of the ' C
Hamiltonian (M=0.644) with respect to Rc. As it is well
known, ' the binding energy significantly increases when
R& is allowed to be different from zero. The minimum is
obtained here at 3.1 fm and the 2+ excitation energy is
3.11 MeV. This result is smaller than the experimental
value' (4.44 MeV) but improves the one-center excita-
tion energy (1.27 MeV). Let us notice that, with our
choice of the Majorana parameter, the absolute binding
energy of ' C, and therefore of ' 0, does not reproduce
the experimental value. The present ' C description
reduces this problem with respect to the one-center ap-
proximation, where much higher values of the Majorana
parameter are required' to reproduce the a+ ' C thresh-
old in ' 0. However, a more precise description of the
absolute ' C and ' 0 energies simultaneously remains an
open problem.

In Table I, we present different spectroscopic proper-
ties of ' C as a function of Rc. This table confirms that
using an Rc value close to 3 fm is necessary to reproduce
the experimental rms radius of the ground state, the 2+

quadrupole moment, as well as the 8 (E2,2+ ~0+ ) value.
However, the excitation energy of the 2+ state remains
somewhat underestimated, even with large R& values.

In the following, the microscopic R-matrix method
(MRM) is used to calculate the bound-state and reso-
nance energies as well as the collision matrices. The
MRM radius a is chosen as a=7.7 fm. %"e refer the
reader to Refs. 14 and 17 for details concerning the
MRM.

IV. THE u+' C SYSTEM

A. Energy curves

For each Rc value, the energy curves EII (R,RC) are
defined as

E (Me V)

—60—

FIG. 2. Binding energy of the 0+, 2+, and 4+ states of ' C as
a function of R&.

(e'„(R,R, ) ~B~C'„(R,R, ) )
EII" R,RC)=

& c &I (R,RC ) l e;;(R,R, ) )

The energy curves must not be considered as nucleus-
nucleus potentials, but they provide a qualitative infor-
mation about this interaction. ' Let us first consider the
a+' C(0+) single-channel system (I=O, I =J). The en-

ergy curves are presented in Fig. 3 for positive-parity par-
tial waves, and in Fig. 4 for negative-parity partial waves.
The minimum of the 0+ energy curves can be associated
to the ' 0 ground state. The location of this minimum
weakly depends on Rc, and the binding energy of ' 0 is
much less affected by Rc than the binding energy of ' C.
Therefore, if the ' 0 energy with respect to the a+ ' C
threshold is strongly overestimated with small R~ values,
it is expected to be reduced when Rc increases. For J
larger than 0, the positive-parity energy curves are nearly
parallel, but for J =2+, the location of the minimum is
pushed up to higher values of the generator coordinate R

TABLE I. ' C properties with diferent Rz values.

E(2 ) —E(0 } (MeV)
+& r'), (fm)

Q2~ (e fm')
B(E2,2+~0+) (e fm )

0.4 fm

1.28
1.95
2.95
1.97

1.6 fm

1.51
2.06
3.70
3.23

2.8 fm

2.75
2.34
5.71
8.23

3.52
2.88
9.67
23.7

Expt. (Ref. 16)

4.44
2.48
6+3

7.8+0.4
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FIG. 3. a+ '2C(0+} energy curves in positive parity [see Eq.
(8)]. The labels 1, 2, 3, and 4 correspond to R&=0.4, 1.6, 2.8,
and 4.0 fm, respectively.

when going from Rc =0.4 to 4.0 fm. The u+ ' C cluster-
ing in the 2,+ bound state of ' 0 is therefore expected to
be stronger with a three-cluster description of ' C than
with a one-center approximation. For J =4+ and 6+,
the repulsion at small generator coordinates increases for
large values of Rc.

Let us now discuss the negative-parity energy curves
displayed in Fig. 4. For J =1, the energy curves rela-
tive to Rc=2.8 and 4.0 fm present a striking property.
The Coulomb barrier almost disappears, and is replaced
by a bump near 2.1 and 3.2 fm. In fact, if the ' 0 nucleus
is assumed to be described by a symmetric four e
tetrahedral configuration, a 1 spin is forbidden. In the

FIG. 4. As in Fig. 3 but for negative parity.

present model, the configuration is not rigid since ' C is
projected on spin and parity, but the location of the
bumps nearly corresponds to this situation since we have
R = —,'Rc. For J ~3, the energy curves are nearly
equidistant except for the R&=4.0 frn curves which are
slightly more repulsive at small R values. Accordingly,
from the energy curves, the inhuence of clustering effects
in the ' C description is expected to decrease with in-
creasing J values. In this case, the difference between the
energy curves essentially arises from the ' C binding en-
ergies.

When the a+ ' C(2+) channel is taken into account, it
is useful to define a new basis which diagonalizes the
Hamiltonian for each set of (R,Rc) values. ' This pro-
vides the energy surfaces E "(R,RC) given by

g(Ctrl (R,Rc) H E(Rt Rc )—ltrt~II (R Rc ) )1„&,l.(R,RC) =0

where d (R,Rc) is the matrix of the transformation and
co is the level of excitation in the relative motion. The
number of co values is equal to the number of (II ) values.
The advantage of this basis is to separate the multichan-
nel problem in different single-channel approaches. ' In
Fig. 5, we present the 0+ energy surfaces for co= 1 and
~=2. The energy scale is arbitrary, and the shift be-
tween the co=1 and co=2 energy surfaces has been in-
creased for the sake of clarity. For co = 1, the minimum is
located near R=2.0 fm and R&=2.7 fm. This can be
roughly interpreted as a symmetric tetrahedral
configuration since R =—,'Rc. Figure 5 confirms that the
influence of ' C clustering is much more important at
large R values than at small R values. In the co=2 ener-

gy surface, the introduction of clustering in ' C enhances
the binding energy. The minimum is located near R =4.4
fm and Rc =3.3 fm. In the 1 energy surfaces displayed
in Fig. 6, the bump obtained in the a+' C (0+) single-
channel approximation (see Fig. 4) is no longer present,
since ' C can now be excited. There is a rninimurn near
R=4.2 fm and Rc=2.8 fm in the co=1 surface. For

I

co 2 and co 3, clustering effects are more important
(R =5 fm, R& =3.2 fm at the minimum).

B. ' O spectra

The GCM ' 0 spectra calculated with the a+' C(0+)
configuration alone are presented in Fig. 7. For the sake
of clarity, the absolute energies are displayed; we also
give in dotted lines the o.+ ' C thresholds. For the exper-
imental spectrum, we take the GCM threshold obtained
with Rc=2.8 fm. Figure 7 shows that the binding ener-
gies of ' 0 states are less affected by a clustering than the
' C states. For almost all states, the energies with respect
to the a+ ' C threshold increase with the generator coor-
dinate R&. This is especially true for the ground state.
At Rc =0.4 fm, the binding energy is —28.2 MeV, which
becomes —12.7 MeV at R& =2.8 fm. This binding ener-

gy remains larger than the experimental value ( —7.16
MeV) but the improvement is significant. For the 4+
state, on the contrary, the energy with respect to the
o.+ ' C threshold is nearly insensitive to the ' C deforma-
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FIG. 7. ' 0 spectra in the a+ ' C(0+ ) model for different Rc
values. The a+ ' C thresholds are represented by dotted lines.

FIG. 5. n+' C(0+,2+) energy surfaces for J =0+.

tion. This supports the interpretation of the energy
curves which predict that clustering effects are weaker
when J increases.

The corresponding spectra with the a+' C(0+,2+)
configurations are shown in Fig. 8. The theoretical
a+' C(2+) thresholds are also presented. The compar-
ison of Figs. 7 and 8 indicates that the coupling between
the a+ C(0+) and a+' C(2+) channels is more and
more important when Rc decreases. This is especia11y
obvious for the ground state. For Rc =0.4 fm, the order-
ing of the 02+ and 2,+ states, which are well known to be
members of a same rotational band, is even incorrect.
The physica1 order, with a reasonable spacing between
both states, is restored for Rc=2.8 fm. An other in-
teresting property is the energy difference between the 1z
and 1, states. The spacing is largely overestimated with

small R& values; with Rc=0.4 fm we obtain an energy
difference of 11.8 MeV. For R& =2.8 fm, we get a spac-
ing of 3.6 MeV, in a reasonable agreement with experi-
ment (2.47 MeV) if one keeps in mind that the lz reso-
nance has most likely an important component in the
p+' N and n+' 0 channels. "

In order to analyze more deeply the inAuence of clus-
tering effects in ' C, we give in Table II the rms radius of
the ' 0 ground state, and the mean distance d between a
and ' C for difFerent states. The mean distance d is ob-
tained from the rms radii of ' 0, ' C, and a by

3d =16&r'& —12&r'& —4&r'& (10)

The rms radii of ' C are given in Sec. III; for the o. parti-
cle, we use the shell-model value (&r ) =9b /8) The.
' 0 rms radii are calculated with the wave functions (5).
Let us first discuss the ground-state rms radius. For
RC=0.4 fm, we obtain a value close to the shell-model
approximation (/t& r ) =b&69/32=2. 00 fm). This re-
sult confirms that, for small values of R~, the clustering
between ' C and a is negligible in the ground state. Ex-
cept for Rc=4.0 fm, the a+' C(2+) configuration in-
creases the rms radius. The experimental value
( t/& r ) =2.70 fm) would correspond to Rc between 2.8
and 4.0 fm. For the 02+ and 2+, states, which are believed
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n + '~c(0' 2')

42'
+—0+
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—71-

0

—120
04 fm 16 fm 28 fm 40 fm exp

FIG. 6. a+' C(0+,2+) energy surfaces for J =1

FIG. 8. ' 0 spectra in the a+' C(0+,2+ ) model for different
R& values. The a+' C(0+) and o;+' C{2+j thresholds are
represented by dotted lines.
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TABLE II. rms radius and mean distances d in ' O.

Rc=0.4 fm
(a) (b)

1.6 fm
(a) (b)

2.8 fm
(a) (b)

4.0 fm
(a) (b)

0+ 2.10 2.17 2.19
&&r')

2.26 2.40 2.51 2.87 2.82

0+
0+ C

2
0+ d

2f
1)
3]

2.35
3.88
4.15
3.73
4.76
2.53

2.67
3.50
3.99
3.31
2.96
2.80

2.14
4.00
4.24
4.07
5.46
2.65

2.74
3.65
4.07
3.58
3.19
2.95

2.46
4.73
4.60
4.86
5.87
2.99

2.51
4.53
4.53
4.73
3.65
3.21

2.82
5.73
4.89
5.45

3.74

2.54
4.78
4.55
4.89
4.89
3.42

'Single-channel calculation.
Multichannel calculation.

'M= 0.644.
M adjusted to the experimental energy (see text).

to be o.+ ' C cluster states, we find that, not only+( r ), but also d increases with R C. Since this effect
might be partly due to the binding energy with respect to
the a+' C channel, we have carried out a calculation
where the Majorana parameter is adjusted, for each R&
value and choice of configuration, to reproduce the ex-
perirnental binding energy of the 02+ state ( —1.11 MeV).
The results obtained in this way confirm the increase of d
with Rc, even with an energy correction on the wave
functions. Accordingly, the rms radii in ' 0 low-lying
states are increased, not only by a clustering of ' C, but
also by a larger mean distance between o, and ' C. This
conclusion remains true for the 1, and 3& states.

C. a+'~C phase shifts

In Figs. 9 and 10, we present the a+ ' C elastic phase
shifts in the single-channel model. At zero energy, we
choose

gism(O)
—

&
Jm.

where n " is the number of bound states in the partial
wave t~. Figures 9 and 10 show that, at a given energy,
the phase shifts decrease with increasing values of Rc. In
positive parity, the 0+ and 2 phase shifts present nar-
row resonances located between 15 and 20 MeV for large
R~ values. The analysis of these resonances is delayed to

360- 270-

270 ~

180

90 ~

90 ~

10 15 20 25
s

10 15 20 25

270-

180 .

180 ~

90 ~

90 .

20 25 15 20

3.

E (Mev)

FIG. 9. Elastic a+ ' C phase shifts in the single-channel model for positive-parity partial waves. The curves are labeled as in Fig.
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FIG. 12. As in Fig. 11 but for J"=1 and 7

model with a common oscillator parameter, the forbid-
den states arise from the fact that, when the distance be-
tween both clusters tends towards zero, the wave func-
tion vanishes if a single-particle orbital is occupied twice.
However, if at least one of the colliding nuclei is de-
scribed by a multicluster configuration, this property
does not remain true. Accordingly, at first sight, forbid-
den states are removed, and the energy dependence of the
phase shifts should be strongly modified when going from
a one-center description to a three-n description of ' C.

In fact, the phase shifts presented in Figs. 9 and 10 sug-
gest that the role of the forbidden states is played by
high-energy resonances. These resonances might be re-
lated to the resonances observed in the two-center
nucleus-nucleus scattering with different oscillator pa-
rameters ' and probably are the analogs of the Pauli reso-
nances. At low energy, the phase shifts are not much
affected by these resonances, but, when the energy in-
creases, the phase shifts are increased by about 180'.
Consequently, except in the nearby vicinity of these reso-
nances, elastic-scattering cross sections would not be very
different when R& varies. In Table III, we give the ener-

gy and width of high-energy resonances in the 0+, 2+,
and 1 partial waves. If the analogy with Pauli forbid-
den states is meaningful, their number is expected to be
equal to the number of forbidden states in a two-center

p+ 2description of a+' C scattering (i.e., m =2, m =2,
m' =2). However, the second Pauli resonance is most
likely located at very high energy, where our phase shifts

would not be numerically accurate enough. Table III
shows that the energy as well as the width of these reso-
nances decrease when R& increases. This is because the
inhuence of the Pauli principle between a and ' C is
lowered for large Rc values. For Rc =0.4 fm, Pauli reso-
nances in a+ ' C(0+ ) scattering are not found in the en-
ergy range considered here. When the a+' C(2+) chan-
nel is introduced, relation (13) is no longer valid, and
therefore the existence of Pauli resonances may be ques-
tioned. However, according to the single-channel study,
such resonances are expected to be rather narrow and lo-
cated far above the Coulomb barrier. Consequently,
high-energy resonances obtained in the a+'2C(0+, 2+)
calculation might have common properties with Pauli
resonances. The introduction of the a+' C(2+ ) channel
increases their excitation energy except for the 0+ partial
wave at R&=4.0 fm. These resonances are sensitive to
the number of channels and to the ' C deformation. Ac-
cordingly, a more precise study of these resonances
should require the combination of different Rc generator
coordinates, and the introduction of other channels, such
as p+' N or n+' Q.

V. CONCLUSION

The aim of this work is a microscopic investigation of
a+ ' C scattering with ' C wave functions described in a
triple-e configuration. This description significantly im-
proves the ' C wave function with respect to the one-
center approximation. The binding energy is enhanced
by more than 25 MeV, and the spectroscopic properties,
which completely disagree with experiment in the one-
center description, are in remarkable agreement when cx

clustering is introduced. A further advantage of the
present ' C description is to provide the 0+ and 2+ wave
functions simultaneously. This model could be in princi-
ple applied to other systems involving an s-shell particle
and a nucleus described by three s orbitals located on the
apexes of a triangle. The main limitation of such a multi-
cluster model is the calculation of matrix elements, which
involves seven-dimensional integrals. In the present case,
the presence of four-n particles, and the assumption of an
equilateral triangle for ' C, lead to an efficient vectoriza-
tion of the computer code and make this calculation pos-
sible.

In this paper, we focus on clustering effects in a+' C
scattering, but in this first step we are not concerned with

TABLE III. Energies and widths I I of Pauli resonances. Lengths are expressed in fm, and energies in MeV.

E, I0
0+

E,
2+

r, E,

1.6
2.8
4.0

-20
19.5

3
0.2

a+' C(0+)
18.3 0.3
18.2 0.5
15.1 0.3 22.9 0.6

a+' C(0+,2+)
1.6
2.8
4.0

-26
-21
16.3 0.6

-28
23.4 0.5

—1

0.6 24.5 0.2 0.9
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a comparison with experiment. An extension of this
work could be to introduce distortion effects in ' 0 by
combining different R& values for the ' C wave functions.
In this way, the ' 0 wave functions should be rather reli-
able and a comparison with experiment should be mean-
ingful. The present model could be also applied to the E2
component of the ' C(a, y )

' 0 cross section, which still
remains uncertain.

The main results are the following. The study of the
' 0 rms radii shows that a+ ' C clustering increases with
the side Rc of the equilateral triangle. When Rc in-

creases, not only the rms radius of ' C becomes larger,
but also the distance between the cx and ' C nuclei. Ac-
cording to the study of o.+' C phase shifts and of ' 0
spectra, the inAuence of clustering in ' C decreases with
increasing values of J. In addition, clustering effects in
' C reduce the coupling between the a+ ' C(0+ ) and
a+' C(2+) channels.

The present multicluster model gives rise to high-
energy narrow resonances in the o, +' C phase shifts.

These resonances might be associated to the Pauli forbid-
den states in two-center calculations with different oscil-
lator parameters. They are located around 20 MeV, with
a width in general lower than I MeV, but their precise lo-
cation depends on Rz and on the number of o;+' C
channels. Of course, at such high energies, many other
channels are open, and the properties of the high-energy
resonances might be significantly affected. The introduc-
tion of excited channels, such as p+' N and n+' 0,
should probably give a more realistic description of these
resonances, and deserves further studies.
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