
PHYSICAL REVIEW C VOLUME 44, NUMBER 1 JULY 1991

Comparison of various parametrizations of the double-humped fission barrier

B. S. Bhandari and M. Khaliquzzaman'
Physics Department, Faculty ofScience, University of Garyounis, Benghazi, Libya

(Received 19 July 1990)

The double-humped potential barriers in actinide nuclei in the fission direction have been
parametrized using three different procedures, namely, the smoothly joined parabolic segments,
third-degree polynomials passing through and with zero slopes at the successive extremum points,
and straight-line segments connecting the successive extremum points. The fission penetrabilities
through the barriers and the ground-state spontaneous fission half-lives for a wide variety of 25 ac-
tinide nuclides have been calculated for these different pararnetrizations. Our results clearly indi-

cate that while the third-degree polynomial and the straight-line parametrizations of the double-
humped fission barrier lead to approximately similar results on the fission penetrability and fission
half-lives, the corresponding results using the smoothly joined parabolic segment parametrization
differ significantly by almost two to five orders of magnitude depending on the specific type of the
fissioning nucleus and on the parameters of its corresponding double-humped fission barrier.

I. INTRODUCTION

Most of the actinide nuclei are now known to exhibit a
double-humped potential barrier against fission. The
shell correction method, developed by Strutinsky, ' first
clearly showed that such fission barriers occur mainly as
a result of the superimposition of the oscillatory "shell
corrections" or the so-called single-particle effects on the
relatively flat potential-energy surfaces predicted by the
liquid-drop model in the corresponding deformation re-
gions for the actinide nuclei. The relatively flat or the
gently varying macroscopic potential surface arises from
the near cancellations between the Coulomb and the
surface-energy contributions to the liquid-drop potential
energy. Minima and maxima in the total potential-
energy surface, when the microscopic shell and pairing
corrections have been included, can be traced back to the
gaps or concentrations of the single-particle levels at par-
ticular deformations. Such gaps and bunchings in the
single-particle spectra develop at large deformations, par-
ticularly for the spheroidal shapes with special symmetry
such as those with major to minor axes ratios of 2 to 1. It
is these shell effects that give rise to the second minimum
in the potential-energy surface associated with the spon-
taneous fission isomerism. The concept of the double-
humped fission barrier has been spectacularly successful
in explaining a host of experimentally observed phenome-
na such as narrow and broad resonance structures in
sub-barrier fission cross sections, fission isomers, and the
so-called "isomeric shelf" observed in the deep sub-
barrier photofission cross sections of the various actinide
nuclei. The theoretical foundation of the double-humped
barrier, its experimentally observable consequences, and
the various experimental evidences supporting such a
two-peaked character of the fission barrier in the actinide
nuclei have been extensively reviewed by several au-
thors. 2

The concept of the double-humped fission barrier is
essential in understanding simultaneously the low-energy

fission cross sections and the various fission half-lives in
terms of the penetrability through such a potential bar-
rier. The shape isomers are commonly interpreted as the
lowest state of the intermediate minimum, or the so-
called second well, between the two barriers of the
double-humped fission potential shapes in the actinide
nuclei. The competition between the spontaneous fission
and the gamma decay to the ground state of the fissioning
compound nucleus (first well) from the shape-isomeric
state can then be described in terms of the relative
penetrabilities through the outer and the inner barriers,
respectively, of the double-humped potential shapes at
the isomeric energy E;. On the other hand, the fission
barrier as a whole determines the ground-state spontane-
ous fission half-life of such actinide nuclei. The ability to
calculate fission half-lives is essential for theoretical pre-
dictions concerning the stability and synthesis of heavy
nuclei. Such calculations " require the detailed
knowledge of the variation of the inertial-mass parameter
(nuclear inertia) and of the shape of the fission barrier as
a function of the fission coordinate along a selected one-
dimensional path through the multidimensional
potential-energy surface. This path begins at the nuclear
ground state and includes saddle points and minima in
the fission direction and a few points beyond the last sad-
dle. The nuclear inertia associated with motion in the
fission direction can be either calculated microscopically
using the cranking model ' ' or obtained phenomeno-
logically in a semiempirical model. '

The choice of the exact path between the saddle points
and minima along the fission direction is obviously open
to considerable ambiguity. This concerns the parametriz-
ation of the double-humped fission barrier. One of the
methods used in the theoretical calculations " of the
fission half-lives constructs the fission barrier by connect-
ing the successive extrema with third-degree polynomials
whose derivatives are made to vanish at both ends. This
completely defines the corresponding third-degree poly-
nomial. Another commonly used potential parametriza-
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tion of the double-humped fission barrier is in terms of
the smoothly joined parabolic segments, ' ' each of
which represents either a potential barrier or a potential
well as the case may be. The potentials as well as their
first derivatives are matched at the joining points between
the successive parabolic segments. While both these pro-
cedures lead to reasonably realistic and smoothly varying
fission barrier shapes, there are considerable differences
in the curvatures or the widths of the individual potential
segments obtained in these two parametrizations of the
double-humped fission barrier. As the calculated fission
half-lives and the penetrability through such a barrier de-
pend strongly on both the height and the width of the in-
dividual potential segments, it is therefore of interest, and
thus the purpose of the present paper, to compare the re-
sults on fission barrier shapes, on fission penetrabilities,
and on fission half-lives calculated using the above two
different potential parametrizations. For comparison
purposes, we have also included a third potential parame-
trization in which the successive extrema are connected
by straight lines. %'hile obviously not of much physical
interest, such straight lines have been commonly used to
construct the later part (beyond the last saddle) of the
double-humped fission barrier in the heavy nuclei.

In Sec. II we describe the various potential parametriz-
ations of the double-humped fission barrier and compare
the resulting shapes. Sections III and IV deal with the
calculation of the fission penetrability and that of the
fission half-lives, respectively, within the framework of a
double-humped fission barrier model. The formalism of
such calculations is brieAy described, and the results ob-
tained using the various potential parametrizations are
critically compared. A brief discussion of the inertial-
mass function is given in Sec. V. Finally, a discussion of
the results and the conclusions are presented in Sec. VI.

II. FISSION BARRIER PARAMKTRIZATION

A. Formalism

The double-humped fission barrier (Fig. 1) to be
parametrized consists of a primary potential well (I) con-
taining the ground state of the spontaneously fissioning
nucleus, and a second well (II) fianked by a barrier on
each side. The barrier to the left (A) of the second well is
usually termed the "inner barrier" while that to the right
(B) of the second minimum is called the "outer barrier"
in fission literature. In order to compare the results of
various parametrizations of such a potential barrier, we
have considered three different types of such potential pa-
rametrizations and the details are given in the following.

l. Using smoothly joined parabolic segments

The potential barrier has been parametrized in this
case by smoothly joining four parabolas and is given as a
function of the dimensionless deformation parameter
(fission coordinate) e by'

V(e)=E + ,'pen (e e)——
where the positive sign applies for j =0 and 2, and the

negative sign for j = 1 and 3. E represent the minima
and maxima of the potential, Ace. their respective curva-
ture energies, and e- the locations of the extrema on the
deformation (fission coordinate) axis. p is the inertial-
mass parameter of the fissioning nucleus along the e
direction and has been assumed to be constant for all
values of e. Since the deformation parameter e is dimen-
sionless, p has the dimensions of the moment of inertia.
The value of p used in the present work has been taken to
be equal to'

p =0.0542 fg MeV

where A' is to be expressed in MeV sec and 2 is the nu-
clear mass number.

The potential barrier defined by Eq. (1) is seen to con-
tain a total of twelve parameters, three to describe each
of the four parabolas. %'e require that the parabolas
representing the inner and the outer barriers join smooth-
ly with the parabolas representing the primary and the
intermediate (second) minima at their points of intersec-
tion. This means that the potentials V(e) as well as their
first derivatives must be matched at the points of inter-
section. This leads to six matching conditions or equa-
tions. Three of these determine the locations of the
points of intersection on the e axis and the remaining
three help eliminate three of the twelve parameters re-
quired in Eq. (1). Another parameter is eliminated by the
translational invariance of the potential barrier on the e
axis, by arbitrarily setting

V(e)=ED, at @=@0=0. (3a)

This reduces the number of parameters required to speci-
fy the double-humped fission barrier to eight. These are
chosen to be the four energies E0, E&, E2, and E3 and the
four curvature energies Aco0, Ace„A'co&, and Aco3. The ex-
act locations of the various extrema as well as of the
points of intersection of the successive parabolic seg-
ments along the e axis can then be expressed' ' in
terms of these eight basic parameters. The double-
humped fission barrier parametrized in this manner in
terms of four smoothly joined parabolic segments has a
zero slope (first derivative) at the origin as well as at all
its other extrema (maxima or minima). At the origin
(@=@0=0),we further require

V(e) =ED = —
—,'fico(), (3b)

such that the ground-state energy, E~ =E0+—,'Am0, in the
primary potential well of the spontaneously fissioning nu-
cleus is equal to zero. The value of the curvature energy
Aco0 of the primary potential well has been assumed equal
to 1 MeV for all the actinide nuclides considered in the
present work.

Information concerning the parameters E&, E3 and
Ace„kco3 is usually obtained by analyzing the measured
energy dependence of the near-barrier fission cross sec-
tions of the actinide nuclei. On the other hand, the ex-
perimental information on the isomeric energies and on
the isomeric-decay half-lives help determine E2 and 8~2
in conjunction with other observed characteristics such
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as the vibrational resonances in the sub-barrier fission
cross sections and the so-called isomeric shelf, " if ob-
served in a given nucleus. It is important to realize, how-
ever, that most of the experimental information used in
extracting these parameters comes from near the top of
the barriers and from the isomeric excitation energy. The
heights of the fission barriers thus estimated are reason-
ably reliable. However, extrapolating the same values of
the parameters Am from those near the top of the bar-
riers down to much lower excitations and in deformation
regions far from their corresponding extrema (maxima or
minima) is open to question in view of the absence of any
compelling physical reasons suggesting that the shape of
the double-humped fission barrier must be exactly quad-
ratic in the entire range of the deformations involved dur-
ing the fission process. One of the present authors has
recently attempted to test the adequacy of using smooth-
ly joined parabolic segments to parametrize the double-
humped fission barrier by examining its simultaneous
consistency with the three relevant Assion observables,
namely, the near-barrier fission cross sections, isomeric
half-lives and their fission branching ratios, and the
ground-state spontaneous fission half-lives for a wide
variety of a total of 25 actinide nuclides. The results of
such a systematic analysis suggest that such a parame-
trization is quite adequate at least for the even-even nu-
clei as it reproduces satisfactorily the various observed
fission characteristics. Major difficulties remain, howev-
er, for the odd-mass and for the doubly odd nuclei where
the calculated ground-state spontaneous Gssion half-lives
are found to be several orders of magnitude larger than
those measured.

2. Using third-degree po)ynom, ials

j =1,2, 3,4 . (4)

The potential barrier as defined by Eq. (4) in the region
between two successive extremum points is seen to con-
tain four parameters 3 k, k =0, 1, 2, and 3 for a given
value of j. Two of these parameters are determined by
specifying the exact values of V (e) at the supposedly
known values of the two extremas e. on the e axis. The
remaining two parameters are determined by requiring
that the third-degree polynomial must have zero slopes at
the two extremas:

d V, ( e) /d e = 2,+2 2 ze+ 3 2 .3e =0,
at e=e „and at e=e, .

This completely defines the third-degree polynomial be-
tween two successive extremum points. The entire
double-humped fission barrier is then parametrized in

A simple spline method is used to parametrize the
double-humped fission barrier in this case by connecting
the successive extremum points with a third degree poly-
nomial. The potential energy as a function of the dimen-
sionless deformation parameter (e) in the energy region
between two successive extrema is given as

V (e) = A o+ A. ,e+ A 2e + 2 3e, e, ~e~p. ,

d V, (e)/de= —pco3(e4 —e, ), at e=e4 . (5a)

Such a requirement leads to the potential shape obtained
in the third-degree polynomial (a) parametrization exact-
ly coincident with that of the parabolic parametrization
in the region between the second saddle (e&) and the final
exit point (e'4) as shown by curve a in Figs. I and 2.

(ii) In the second such variation, termed as the third-
degree polynomials (b), we replace the last part of the
fission barrier in the third-degree polynomial parametriz-
ation by a straight line connecting the second saddle (e~)
and the final exit point (E4). Thus, for j =4 in Eq. (4), we
require that

and

3,= —3 o/e4= E3/(e4 —e3)—.
(5b)

Such a requirement leads to the potential shape obtained
in the third-degree polynomials (b) parametrization ex-
actly coincident with that of the straight-line parametriz-
ation in the region between the second saddle and the
Anal exit point as shown by curve b in Figs. 1 and 2.

As mentioned earlier, such third-degree polynomial pa-
rametrizations with a straight line representing the last
part of the fission barrier (beyond the second saddle) have
already been considered in the past in fission literature by
several authors. ' There is, however, a slight difference.
While we have constructed the last part of the barrier by
a straight line connecting the second saddle with the final
exit point as obtained in the parabolic parametrization in
the present work, these authors use a straight line from
the second saddle through a point somewhat beyond the
exit point at the bottom of the valley that leads towards
scission. While such a choice somewhat beyond the exit
point might help reproduce the observed spontaneous
fission half-life of a given nucleus, it also introduces an
arbitrariness and ambiguity in the parametrization in
particular when we wish to compare the results obtained
using the various parametrizations of the fission barrier.

this manner by connecting successive extremum points
with such third-degree polynomials. The double-humped
fission barrier obtained using such a procedure exhibits
zero slopes at the origin as well as at all its other extre-
mas. However, it also has a zero slope at the point of em-
ergence (exit point) of the spontaneously fissioning nu-
cleus from the corresponding double-humped Assion bar-
rier. As the exit point is not one of the extremum points
of the Assion barrier, it seems physically unreasonable
and incorrect to require a zero first derivative of the po-
tential V (e) at this point. In the present work we have
therefore considered two different variations of such a
third-degree polynomial parametrization which differ in
their slopes at the exit point, and thus lead to different
potential shapes for the last part (beyond the second sad-
dle) of the corresponding double-humped fission barriers.

(i) In the first such variation, termed as the third-
degree polynomials (a), we require that the potential ener-
gy V~(E) has the same slope as that of the parabolic pa-
rametrization at the final exit point (e~). Thus, for j =4,
we require that
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The above parametrizations of the double-humped
fission barrier in terms of the third-degree polynomials
require an exact knowledge of the various extremum
points on the fission potential-energy surfaces both along
the energy as well as along the d.eformation axes. While
the measured data on the near-barrier fission cross sec-
tions and on the fission isomers can be used to obtain in-
formation concerning the positions of the various ex-
tremum points along the energy axis, the fission experi-
ments do not yet provide any conclusive information at
all on the exact locations of these extremum points along
the deformation axis. This type of potential parametriza-
tion has therefore been considered so far only in theoreti-
cal calculations of the fission barrier as a one-dimensional
path through the calculated " multidimensional
potential-energy surface. In such calculations the posi-
tions of the various extremum points are determined both
along the energy as well as along the deformation axes.
In the present work the values of the deformation coordi-
nate at various extremum points are obtained from the
parabolic parametrization as explained in detail in Sec.
II B.

j=1,2, 3,4 . (6)

The potential barrier as defined by Eq. (6) in the region
between two successive extremum points is seen to con-
tain two parameters, A -0 and A &, for a given value of j.
These two parameters are determined by specifying the
exact values of V (e) at the supposedly known values of
the two extremum points e on the e axis. This complete-
ly defines the above parametrization.

Such a potential parametrization is obviously not of
much physical interest. The fission barrier obtained in
such a parametrization does not exhibit a zero slope at
the origin and is thus physically unreasonable for the cal-
culation of the ground-state spontaneous fission half-
lives. Besides, it also requires an exact knowledge of the
various extremum points both along the energy as well as
along the deformation axes, and thus suffers from the
same limitations as discussed above for the third-degree
polynomial parametrization. It is intuitively simple,
however, and we have therefore also included this param-
etrization of the double-humped fission barrier in the
present work in order to investigate the range of devia-
tions between the calculated fission penetrabilities and
fission half-lives through more realistic and smoothly
varying fission barrier shapes, and those calculated
through such simple though unrealistic potential shapes
parametrized by connecting the successive extremum
points with straight lines.

B. Results

Having outlined the basic formalism underlying the
above various different parametrizations of the double-

3. Using straight lines

In such a parametrization, the potential energy be-
tween two successive extremum points is given as a func-
tion of the dimensionless deformation parameter (e) as

VJ(e)=A o+A. ,e, e &~@~@

humped fission barriers, we now compare a sample each
of the shapes obtained using such procedures. For a
given set of the barrier parameters (E and A'co,

j=0, 1,2, 3) required for the smoothly joined parabolic
parametrization, we first obtain a complete set of the nu-
merical values of V(e) in the complete range of the defor-
mation parameter e spanning the entire double-humped
fission barrier. From this complete set of numerical
values of V(e) vs e, we obtain the exact locations of all
the relevant extremum points both along the energy as
well as along the deformation axes. These data then be-
come the input for the other two potential parametriza-
tions, i.e., using the third-degree polynomials and using
the straight lines. Beyond the second saddle, we define
the so-called exit point along the deformation axis where
the potential energy V(e) falls to a value equal to the
ground-state energy of the fissioning nucleus. This is the
point where the spontaneously fissioning nucleus is sup-
posed to emerge from the corresponding double-humped
fission barrier. As the ground-state energy E of the
fissioning nucleus in the primary potential well has been
assumed to be equal to zero in the present work, we re-
quire that

V(e)=0 at e'=@4 .

This then completely defines the shape of the entire
double-humped fission barrier.

Figures 1 and 2 show the comparison of such suitably
parametrized shapes passing through the same extremum
points for a symmetric and for an asymmetric double-
humped fission barrier, respectively. The parameters of
these double-humped fission barriers are taken from
those given originally by Cramer and Nix in their'
smoothly joined parabolic segment parametrization of
such a potential barrier. Some of the important features
of such comparisons can be summarized as follows.

(1) The shapes corresponding to the parametrizations
using the third-degree polynomials and those using the
straight lines seem to lie fairly close to each other in the
entire range of the deformation coordinate except for the
last part of the barrier (beyond the second saddle) where
the shape obtained in the third-degree polynomials (a) pa-
rametrization is seen to be coincident with the corre-
sponding parabolic segment. Also, as expected, the po-
tential shape in the third-degree polynomials (b) parame-
trization is seen to be exactly coincident with that of the
straight-line parametrization in this region of the defor-
mation coordinate. Otherwise, the polynomials are seen
in general to be somewhat below the straight lines in de-
formation regions close to the bottom of the barriers,
both near the ground state and also near the isomeric
minimum. On the other hand, the polynomials are seen
to be somewhat above the straight lines in deformation
regions close to the top of the barriers. Such similarity in
the potential shapes should then lead to approximately
similar values of the calculated fission penetrability and
of the fission half-lives through the corresponding
double-humped barriers.

(2) Both of these above shapes diff'er noticeably from
the potential shape obtained using the smoothly joined
parabolic parametrization. Except for the cases where
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the barrier peaks are very narrow (larger values of A'~,

and fico3), the individual parabolic segments in the barrier
regions are seen to be relatively broader as compared
with the shapes obtained using the third-degree polyno-
mials as well as the straight lines in the corresponding de-
formation regions. Such differences are also seen to be-
come more pronounced as the individual barrier seg-
ments become wider (smaller values of iris'& and fico&).

These features will correspondingly affect the calculated
values of the fission penetrability and of the fission half-
lives through such potential shapes. In Fig. 1 the para-
bolic shapes appear relatively narrower in the barrier re-
gions because of the relatively much broader second well
(smaller value of fico&), and due to the consequent shift of
the points along the deformation axis where the corre-
sponding parabolic segments join smoothly.

(3) A comparison of the above parametrized shapes in
the second-well region also shows features similar to
those obtained in the barrier regions. For very narrow
second-well regions (large A'co2), the various parametrized
shapes are nearly coincident with each other, and appear
very similar. However, as the width of the second-well
region increases (smaller A'co2), the parabolic shape tends
to become broader as compared to the shapes obtained in
the other two parametrizations. This is clearly evident
for the symmetric double-humped potential barrier
displayed in Fig. 1, where the polynomial and the
straight-line parametrized shapes in the second-well re-
gion are seen to be much narrower as compared to the
shape obtained using the parabolic parametrization.
However, the trend is somewhat reversed for the asym-
metric double-humped barrier shown in Fig. 2, where the
parabolic shape is now seen to be relatively narrower.
This has been caused because of the relatively much
broader outer-barrier segment in this case. These
features arise because of the consequent shift in the rela-
tive positions of the points of intersection of the succes-
sive parabolic segments on the deformation axis in the
smoothly joined parabolic parametrization. Such
differences in the width of the second well in the various
parametrized shapes of the double-humped fission barrier
will then lead to corresponding changes in the energies of
the quasibound states in the second minimum. For exam-
ple, a narrower shape in the second-well region shall tend
to push up these quasibound states on the energy scale
and vice versa. Such quasibound states are known to
manifest themselves in the form of narrow resonances in
the sub-barrier fission penetrability through a double-
humped potential barrier.

(4) The differences in such parametrized shapes near
the top of the barriers will be expected to lead to notice-
able differences in the slopes of the near-barrier fission
penetrability. Narrower shapes near the top of the bar-
riers should lead to relatively smaller values of such
slopes.

(5) Individual potential segments are symmetric about
their extremum point in the parabolic parametrization.
The slopes of the individual polynomials and straight
lines depend, however, on the relative separation of the
two successive extremum points. The shapes generated
using the polynomial and the straight-line parametriza-

tions will therefore not be always symmetric about the
extremum point in the individual potential segments, and
may exhibit features similar to those found for a bihar-
monic oscillator.

III. FISSION PENETRABILITY CALCULATION

A. Formalism

+ [1—[(1 Pz )(1 —P& )]'~
I
—sin v&), (8)

where the individual penetrabilities (P„and Pii) are
given in the WKB approximation as

P~ =[1+exp(2v, )]

Pii = [1+exp(2v3)]

The quantities v; are the integrals in respective regions,
as shown in Fig. 1, of the wave numbers or the momen-
tum functions,

E, (e)= [2p[E —V(e)]/iii ]'~ =iK2(e),

for example,

v)= E2 6 d6

vp= E)
2

v3= J Kz(e)de .
3

(10)

The classical turning points a, , a2, a3, and a4 are as
shown in Fig. 1 for an incident energy E. In actual calcu-
lations these turning points are obtained analytically for
the smoothly joined parabolic and straight-line parame-
trizations, and found numerically for the third-degree po-
lynomial parametrization using the Newton-Raphson
method to obtain the real roots of the equation,

[VJ(e) E]=0, j =1,2, 3—, 4 . (12)

The inertial-mass parameter p is assumed constant for all
values of e, and has the value as given in Eq. (2).

B. Results

In Figs. 3 and 4 we compare the results of our penetra-
bility calculations through such parametrized shapes of

The penetrability through the double-humped fission
barrier parametrized as per the procedures described in
Sec. II has been calculated in the Wentzel-Kramers-
Brillouin (WKB) approximation. Details of such penetra-
bility calculations have already been reported in some of
our earlier work, ' and, therefore, we only quote here
the analytical expression for the penetrability.

Defining P~, P~, and P as the respective penetrabilities
for the inner barrier (A) alone, outer barrier (B) alone,
and the entire double-humped barrier illustrated in Fig.
1, it has been shown' that

P =P~ Pii I( [ 1+[(1 P~ )(1 —Ps ) ]'~2—
I ~cos~v~
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FIG 3 A logarithmic plot of the fission penetrabilities through the symmetric double-humped fission barriers as parametrized in
Fig. 1 ~

the double-humped fission barriers as displayed earlier in
Figs. 1 and 2, respectively. The main features of such
comparisons can be summarized as in the following.

(I) The calculated penetrabilities are seen to exhibit
narrow subbarrier resonances at energies corresponding

to those of the quasibound states in the second well.
Such resonances are seen (Fig. 3) to rise to the maximum
possible value of unity for the fission penetrability
through the symmetric double-humped barriers. For the
asymmetric double-humped barriers, however, the pene-
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FIT&. 4. A 1oganthmic plot of the fission penetrabilities through the asymmetric double-humped fission barriers as parametrized in
Fig. 2.
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trability resonances do not seem to rise that high as seen
in Fig. 4. Such features of the penetrability through a
double-humped fission barrier are already known and
well documented in fission literature. '

(2) The behavior of the calculated penetrability as a
function of energy can be understood in terms of the vari-
ous parametrized shapes of the corresponding double-
humped fission barriers. For the symmetric double-
humped barrier displayed in Fig. 1, we observe that while
the parabolic shape is considerably wider in the region of
the second well as compared to the corresponding shapes
obtained in the other parametrizations, it is also seen to
be consistently much lower in height in most of this re-
gion. This results (Fig. 3) in a higher penetrability for the
parabolic barrier as compared to that for the other pa-
rametrizations at energies near the bottom of the double-
humped potential barrier. Such a trend is seen to persist
up to an energy of about 3 MeV, above which the
straight-line parametrization leads to higher penetrabili-
ty. The lowest penetrability corresponds to the third-
degree polynomials (a) parametrization, which exhibits
consistently broader inner and outer barriers in Fig. 1.
The calculated penetrabilities corresponding to the other
two parametrizations are seen to lie between these two
extremes. It is interesting to note, however, that the
differences in the values of the calculated penetrabilities
for the various parametrizations do not seem to exceed
two to three orders of magnitude for the symmetric
double-humped potential barrier of Fig. 1. While the
overall differences in the calculated penetrabilities in vari-
ous parametrizations of the asymmetric double-humped
barrier of Fig. 2 are also of two to three orders of magni-
tude as seen in Fig. 4, the penetrability values at energies
near the bottom of the barrier are now seen to be the
lowest for shapes corresponding to the parabolic and the
third-degree polynomials (a) parametrizations. This is
because of the relatively wider outer barriers obtained in
these parametrizations. The other two parametrizations
lead to shapes yielding somewhat higher penetrabilities.
Such trends are also seen to persist even at higher ener-
gies near the top of the outer (and the lower) barrier as
evident in Fig. 4. The penetrabilities corresponding to
the straight-line parametrization are consistently larger
than those for the other shapes at higher energies because
of the relatively narrower barrier shapes obtained in such
a parametrization near the top of the barriers.

(3) For the symmetric double-humped barrier, the
second well is narrower for the polynomial and straight-
line parametrizations as compared to that for the para-
bolic par ametrization. Consequently, the quasibound
states are pushed up on the energy scale. This is seen
clearly in Fig. 3 where the resonances in the penetrabili-
ty appear at relatively higher energies for the polynomial
and straight-line parametrizations than those for the par-
abolic parametrization. The straight-line parametriza-
tion seems to push up the energies of the quasibound
states even more than that seen for the polynomial pa-
rametrizations. The two different variations of the third-
degree polynomial parametrizations considered in the
present work differ only in their shapes of the fission bar-
rier beyond the second saddle. This does not a6'ect (Figs.

3 and 4) the positions of the penetrability resonances on
the energy scale as these are determined mainly by the
shape of the second minimum. The peak values of the
penetrability at such coincident resonances shall, howev-
er, differ depending on the relative shapes of the corre-
sponding outer barriers. Unfortunately, as the penetra-
bility resonances are very narrow, such differences in the
peak values could not be shown explicitly in Figs. 3 and

(4) For the asymmetric double-humped barrier, the
second well in the parabolic parametrization seems to be
relatively narrower than that in the polynomial parame-
trization, and relatively wider than that in the straight-
line parametrization at energies near the isomeric
minimum. This results (Fig. 4) in the low-lying penetra-
bility resonances for the parabolic shape lying in between
those for the other two parametrizations. At higher ener-
gies, however, the second well with the parabolic shape
becomes narrower as compared to both other parametriz-
ations, and consequently the corresponding penetrability
resonances are pushed up in energy relative to those for
the other two shapes. This is clearly apparent in Fig. 4 at
energies greater than 3.5 MeV.

(5) The slope of the fission penetrability at energies
near the top of the barrier depends upon the relative
widths of the barriers in the corresponding energy region
given in terms of the parameters A~, and %~3. In gen-
eral, the wider the barrier, the larger is the rate of varia-
tion of the penetrability with energy. This is clearly ap-
parent for the third-degree polynomials (a) parametriza-
tion in Fig. 3 in the energy range 5 —6 MeV, and for the
parabolic parametrization in Fig. 4 at energies close to
the top of the outer (and the lower) barrier. Such varia-
tions in the slopes of the near-barrier fission penetrability
with the change in the values of the barrier parameters
AQ) i and Ac03 have been discussed in detail in one of our
recent publications.

IV. FISSION HALF-LIVES CALCULATION

A. Formalism

Using the model of the double-humped fission barrier
parametrization as per the procedures described in Sec.
II, we have calculated the ground-state spontaneous
fission half-lives and the isomeric half-lives for our static
potential shapes with a constant mass parameter with
respect to the deformation coordinate. Various limita-
tions of such calculations are discussed in detail in one of
our recent papers. The expressions used to compute the
various fission half-lives have been taken from the earlier
work of Nix and collaborators, ' ' and are brieAy sum-
marized in the following.

Spontaneous fission half life-
The spontaneous fission decay half-life from the

ground-state level E can be written as

r ", =(1 n)(2m2lc)oIoP(E )]

~here ~0 is the frequency of assault on the fission barrier
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taken as 1 MeV/A' in the present work, and P(Es ) is the
penetrability through the entire double-humped fission
barrier at the ground-state energy E .

2. Isomeric half life-

The total isomeric half-life from the isomeric state in
the second well can be written in terms of its partial de-
cay half-lives as

(r;) '=(~; ) '+(r ") (14)

In this expression, ~~ represents the half-life for the gam-
ma decay from the isomeric state to the ground state (in
the first well) of the fissioning compound nucleus. This is
a two-step process: first, the tunneling through the inner
barrier at energy E, and subsequently the electromagnet-
ic deexcitation to the ground state of the fissioning nu-
cleus. An empirical relation obtained earlier by Nix and
Walker' for this decay half-life is given as

~r= 10 ' [P„—(E, )] ' sec, (15)

B. Results

The results of the fission half-lives calculations using
the above four parametrizations of the corresponding
double-humped fission barrier for a wide variety of 25 ac-
tinide nuclei are displayed in Tables I and II. Table I
compares the parameters of the double-humped fission
barriers parametrized by smoothly joined parabolic seg-
ments for such nuclei with those recommended in fission
literature. This table has been reproduced from one of
our recent works in which Bhandari has examined the
adequacy of such a parametrization. However, there is a
slight difference in the potential parametrization in our
earlier work and the present investigation. The
double-humped fission barrier was parametrized in our
earlier work in terms of the three smoothly joined para-
bolic segments, and a constant value of coo= 1 MeV/iii
was used for the assault frequency to compute the
ground-state spontaneous fission half-lives for the various
actinide nuclei. In the present investigation we have
parametrized the double-humped fission barrier in terms
of four smoothly joined parabolic segments thus includ-
ing explicitly the parabolic segment corresponding to the

where P~(E, ) is the penetrability through the inner bar-
rier at energy E, .

The spontaneous fission decay half-life from the
isomeric state E;, denoted as r;" in Eq. (14), depends
only on the tunneling through the outer barrier, and can
be written as

z,."=(ln2)(2m/co2)[P~(E, )]

where co2 is the frequency of assaults on the outer barrier,
taken to be of the order of 1 MeV/A as listed in Table II
for most of the nuclei considered in the present work.
P~(E, )is the penetra. bility through the outer barrier at
energy E;. The various penetrabilities (P~, P~, and P)
have been calculated in the present work in the WKB ap-
proximation as described in Sec. III.

primary potential well containing the ground state of the
spontaneously fissioning nucleus. Such parametrized
shapes of the double-humped fission barrier exhibit zero
slopes (first derivative) at the origin, and appear physical-
ly more reasonable for the calculation of the ground-state
spontaneous fission half-lives. The curvature energy pa-
rameter (A'coo) corresponding to the primary potential
well has been given the same constant value equal to 1

MeV for all the 25 actinide nuclides considered in the
present work. A comparison of the calculated values of
the ground-state spontaneous fission half-lives obtained in
our earlier work and those listed for the parabolic pa-
rametrization in Table II reveals that the fission barrier
parametrized in terms of four smoothly joined parabolic
segments consistently leads to slightly higher values than
those obtained using three smoothly joined parabolas.
However, the differences in the calculated values for the
two such parametrizations do not exceed a factor of five
for any of the nuclides listed, and are thus well within one
order of magnitude.

For these sets of parameters (Table I) of the double-
humped fission barrier, we have determined the exact lo-
cations of the various extremum points both along the en-

ergy as well as along the deformation axes in the smooth-
ly joined parabolic parametrization. Using these sets of
data on the various relevant extremum points, we have
then parametrized the barrier shapes using the third-
degree polynomials, and also using the straight lines to
connect the successive extrema along the deformation
axis. Such parametrized shapes of the double-humped
fission barrier have then been used to compute the fission
half-lives of various actinide nuclei as described earlier.

The results of penetrability calculations discussed ear-
lier in Sec. IIIB clearly indicate that the quasibound
states in the second well appear at somewhat different en-
ergies in the above three potential par ametrizations.
Such changes in the isomeric energy (ground state in the
second well) lead to considerable differences in the
isomeric half-lives. As these effects tend to overlap with
the differences in half-lives caused by the differently
parametrized potential shapes, it does not seem very
meaningful to compare the calculated results on the
isomeric half-lives in the various potential parametriza-
tions. No such difficulty arises for the ground-state spon-
taneous fission half-life calculations, however, and thus
the results of such calculations for a wide variety of a to-
tal of 25 actinide nuclei are compared in Table II.

We observe that the calculated ground-state spontane-
ous fission half-lives for most of the actinide nuclides list-
ed in Table II are within one order of magnitude of each
other when obtained using the third-degree polynomials
(b) and the straight-line parametrizations. However,
these results are smaller by almost two to five orders of
magnitude than those calculated using the parabolic and
the third-degree polynomials (a) parametrizations. Such
differences are seen to be the smallest for the even-even
nuclei and the largest for the doubly-odd nuclides. We
further observe that the values of the calculated fission
half-lives using the parabolic parametrization are much
closer to those obtained using the third-degree polynomi-
als (a) parametrization than in the third-degree polynomi-
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als (b) parametrization.
As the two commonly used methods of parametrizing

the double-humped fission barrier in the recent fission
literature are those using the parabolic and the third-

degree polynomials (b) parametrizations, it is of interest
to compare the results of the calculated ground-state
spontaneous fission half-lives of a variety of the actinide
nuclides using such procedures. We observe that for all

TABLE I. Comparison of the double-humped fission barrier parameters (Ref. 22) for the 25 actinide nuclides used in the present
work with those recommended by Bj@rnholm and Lynn (Ref. 5). For the primary potential well the parameters Eo = —0.5 MeV and
%coo= 1.0 MeV have been assumed for all the nuclides listed.

Compound
nucleus

Even-odd
(z-x)

Source of
the barrier
parameters

Ei
(MeV)

E
(MeV)

Double-humped fission barrier parameters
E3 AQP i

(MeV) (MeV)
Ac02

(MeV)
AQ)3

{MeV)

236U

(e-e)
238U

{e-e)
237N

(o-e)
235p

(e-o)
237p

(e-o)
238pu

(e-e)
239p

(e-o)
240p

(e-e)
241P

(e-o)
242p

(e-e)
243p

(e-o)
244p

(e-e)
245P

(e-o)
239A

(o-e)
Am

(o-o)
'Am

{o-e)
242A

(o-o)
'4'Am

(o-e)
244A

(o-o)
245A

(o-e)
241C

(e-o)
242C

(e-e)
243C

(e-o)
244C

(e-e)
245C

( e-o)

Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended
Present work
Recommended

5.63
5.6+0.2

5.90
5.7+0.2

5.70
5.7+0.2

5.80

5.90
5.90
5.60

5.5+0.2
6.00

6.2+0.2
5.57

S.6+0.2
6.10

6.1+0.2
5.50

5.6+0.2
5.70

5.9+0.2
5.55

5.4+0.2
5.40

5.6+0.2
6.40

6.2+0.3
6.50

6.5+0.2
6.00

6.0+0.2
6.78

6.5+0.2
5.80

5.9+0.2
6.50

6.3+0.2
5.90

5.9+0.2
6.60

6.3+0.3
5.70

5.8+0.4
6.70

6.4+0.3
5.60

5.8+0.2
6.00

6.2+0.2

2.27

2.06

2.40

2.10

2.10

2.03

2.20

1.90

1.70

1.95

1.95

2.05

1.93

2.10

2.30

1.70

2.20

1.80

2.30

2.10

1.60

1.27

1.40

1.67

1.90

5.53
5.5+0.2

5.60
5.7+0.2

5.40
S.4+0.2

5.10
5.1+0.4

5.20
5.20
5.00

5.0+0.2
5.65

5.5+0.2
5.07

5.1+0.2
5.25

5.4+0.2
5.10

5.1+0.2
5.00

5.2+0.2
5.00

S.O+0. 2
5.00

5.0+0.2
5.22
5.60
5.70

5.2+0.3
5.05

S.1+0.3
5.78

5.4+0.3
5.20

5.4+0.3
5.70

S.4+0.3
5.33S

5.2+0.3
4.52

4.3+0.5

4.00
4.0+0.5

4.40
4.30
4.20

4.3+0.3
4.80
5.00

1.04
1.04
1.04
1.04
0.80
0.80
0.80
0.80
0.80
0.80
1.04
1.04
0.80
0.80
1.04
1.04
0.80
0.80
1.04
1.04
0.80
0.80
1.04
1.04
0.80
0.80
0.80
0.80
0.65
0.65
0.80
0.80
0.65
0.65
0.80
0.80
0.65
0.65
0.80
0.80
0.80
0.80
1.04
1.04
0.80
0.80
1.04
1.04
0.80
0.80

0.70

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.60
0.60
0.60
0.60
0.52
0.52
0.52
0.52
0.52
0.52
0.60
0.60
0.52
0.52
0.60
0.60
0.52
0.52
0.60
0.60
0.52
0.52
0.60
0.60
0.52
0.52
0.52
0.52
0.45
0.45
0.52
0.52
0.45
0.45
0.52
0.52
0.45
0.45
0.52
0.52
0.52
0.52
0.60
0.60
0.52
0.52
0.60
0.60
0.52
0.52
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the actinide nuclides listed in Table II, the parabolic pa-
rarnetrization leads to consistently higher values for the
spontaneous fission half-lives than those calculated using
the third-degree polynomials with the last part of the
fission barrier (beyond the second saddle) approximated
by a straight line. Such difFerences are seen to lie approx-
irnately between two and five orders of magnitude de-
pending on the nature of the fissioning nucleus. The
even-even nuclei show the least discrepancies of approxi-
mately one to two orders of magnitude. However, such
difFerences are seen to increase considerably to approxi-
mately five orders of magnitude for the doubly odd nuclei
with the results for the odd-3 nuclei lying somewhere be-
tween these extremes. Such difFerences in the calculated
fission half-lives can be understood in terms of a compar-
ison of such suitably parametrized shapes for these nu-
clei, as shown in Fig. 5.

We observe that the double-humped fission barrier
parametrized using the third-degree polynomials (b) to
connect the successive extremum points leads consistent-
ly to the smallest possible values of the calculated fission
half-lives among the various difFerent potential parame-
trizations considered in the present work. Such a path
therefore seems to minimize the action integral so as to
yield the maximum value of the fission penetrability at
the ground state among the various difFerent parametriz-

ations considered here. The parameters listed in Table I
were obtained earlier by Bhandari in an attempt to test
the simultaneous consistency of the smoothly joined par-
abolic parametrization with a number of fission observ-
ables such as the near-barrier fission cross sections,
isomeric fission half-lives and branching ratios, and the
ground-state spontaneous fission half-lives for a wide
variety of 25 actinide nuclei. While a good agreement on
even-even nuclei was found in that work, the calculation
predicted too large spontaneous fission half-lives for the
odd-A and for the doubly odd nuclei as compared with
their measured values. Such difFerences are seen to be
lowered when third-degree polynomials (b) are used to
pararnetrize the double-humped fission barrier as ap-
parent from the general trend of the calculated results
displayed in Table II. The experimentaL results listed in
Table II were taken from their compilation by Vanden-
bosch and Huizenga in their text on nuclear fission, and
have been updated, where necessary, to be compatible
with those listed in the most recent review paper on spon-
taneous fission by HofFman and Sommerville.

For most of the even-even nuclei, the spontaneous
fission half-lives as obtained in the third-degree polyno-
mials (b) parametrization are seen (Table II) to be some-
what smaller than their measured values. This can be
corrected by constructing the last part of the barrier us-

TABLE II. Comparison of the ground-state spontaneous fission half-lives calculated using the various difterent parametrizations
of the double-humped fission barrier for the 25 actinide nuclei listed in Table I. Measured values of the corresponding half-lives are
also listed.

Even-odd
Compound character

nucleus of Z-N
smoothly joined

parabolic segments

Ground-state spontaneous fission half-lives (yr)
Calculated results using the double-humped fission barrier parametrized by

third-order third-order
polynomials polynomials straight

(a) (b) lines
Measured

values

236U

238U

237N

235p

237p

238p

239p

240p

241p

242p

243p

244p

245p

239A

240A

241A

242A

243A

244A

245A

241C

242C

243C

244C

24SC

0-e
e-0
e-o

e-o

e-o
e-e
e-o
o-e

0-e
o-o
o-e
o-o
o-e
e-o
e-e
e-o

e-0

3.85 x10"
1.10x10"
4.29 X 10'
9.43 x 10"
8.53 x 1O19

1.46X1O"
4.62 x 10
4.14x1O"
4.76 x1O21

2.92 X 10"
2.O7x10"
9.31x 1010

1.55 x 1O17

9.64 x 1021

1.72 x 1033

1.52 x 1O20

1.88 x 10
1.24 x 1O20

1.72 X 1033

4.94 x 1020

4.57 x 1O"
3.72 x10'
4.38x1O"
5.70x 10
2.76 X 10'8

9 73x 10'
7.41x 1O'4

3 50X 10'
7.68 x 10'
5 ~ 85 x 10"
1.21x 1O"
2.75x10 '

3.06 x 10"
2.20 x 1020

2.29x 1O"
1.6Ox 1O"
7.32 x1O"
1 17x10"
5.69 x 10
6.52 X 1030

8.43 x10"
4.88 x 10
7.42 x 10'
6.32 x 1030

3.11x10"
2.38 x 10"
3.16x 10'
1.88 x10"
5.18 X 10
1.90x10"

1.33 x10"
9.16x 1012

2.50 x 10'
7.06x10"
5.01 x 10'
2.22 x 1O'

1.53 x1O19
5.61 x 10
1.89x1O"
3.82 x 10
1.66x10"
1.39x 10'
1,19x1014
4.97 x 1018

1.54x 1O28

8.31 x 10'
1.07 x 1030

6.3 x1016
1.50 X 10
2.37 X1O17

3 79x 10'
1.31x10'
3.39x 10'
1.96x10'

2.44 x 10"

4.92x10"
3.85 x 10'
9.73 x 10'
2.77 x 10'"
2.06 x 10"
7.54 x 10
7.26x1O"
2.07 x 1010

9.21 x 1018

1.37 x 1010

6.S8x 1O"
4.7 x 10'

4.77 x 1014

1.99 x10"
8.81x1O28
3.6 x 10'

6.S2 x 1O30

2.98 x 1O17

8.54 x 1028

1.04 x 1018

2.2Ox1O17
4.63 x10'
2.24 x 1017

5.66x10'
9.04x10"

2x 1O16

6x10"
) 10"

(5+O.6) x 1O"
5.5 x10"
1.2x10"
-6x10"
7.5 x10"

(6.5+0.3) x 10'

(2.3+0.8) x 10'
& 3 X1012

(2+O. S)x 1O"

7.2x1O'

1.4x 10
(1.4+0.2) X 10'
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FIG. 5. Comparison of the double-humped fission barrier shapes parametrized using the smoothly joined parabolas and the third-
degree polynomials for a typical (i) even-even nucleus, (ii) the odd-A nucleus, and (iii) the doubly odd nucleus. The corresponding
barrier parameters of the smoothly joined parabolic segment potentials are (i) Eo= —0.5 MeV, Acoo=1.0 MeV, E& =5.57 MeV,
Ace& =1.04 MeV, E, =1.90 MeV, Aco2=1.0 MeV, E, =5.07 MeV, Aco3=0. 60 MeV. (ii) Eo= —0.5 MeV, %coo=1.0 MeV, E, =6.0
MeV, Ace&=0. 80 MeV, E2=2.20 MeV, Aco2=1.0 MeV, E3=5.65 MeV, Rco3=0.52 MeV. (iii) Eo= —0.5 MeV, %coo=1.0 MeV,
Ej =6.78 MeV, A~, =0.65 MeV, E2=2.20 MeV, Ace, =1.0 MeV, E3=5.78 MeV, Aco3=0. 45 MeV. Curves a and b beyond the
second saddle have the same meanings as in Fig. 1.

ing a straight line from the second saddle to a point
somewhat beyond the exit point, as already considered by
some authors ' in the past in the fission literature. It is
important to note, however, that such a procedure intro-
duces some arbitrariness or ambiguity in the parametriza-
tion of the double-humped fission barrier.

V. INERTIAL-MASS FUNCTION

It seems appropriate here to include also a brief discus-
sion of the efFect of the inertial-mass parameter and of its
variation with the deformation (fission) coordinate on the
fission penetrability and consequently on the calculated
spontaneous fission half-lives of the actinide nuclei. In
the present work we have assumed the mass parameter p
to be constant for all values of the dimensionless defor-
mation parameter e, and have given it the value as in Eq.
(2). In the smoothly joined parabolic parametrization of
the double-humped fission barrier, the mass parameter
enters both in the potential parametrization [Eq. (1)] as
well as in the action integral [Eqs. (10) and (11)] while
calculating the fission penetrability or the fission half-
lives. As long as p is taken to be independent of e, the
inertial-mass parameter drops out' in the expression for
the fission penetrability, and its only purpose is to scale

the potential energy of deformation along the fission
coordinate. Thus in the smoothly joined parabolic pa-
rametrization of the double-humped potential barrier, the
fission penetrability function and consequently the fission
half-lives are independent of the exact numerical value of
p as long as it is taken to be constant for all values of e.
On the other hand, the inertial-mass parameter does not
enter explicitly into the potential parametrization when
we construct the double-humped fission barrier using the
third-degree polynomials or straight-line segments con-
necting the successive extremum points. Using such po-
tential parametrizations the inertial mass therefore enters
explicitly only in the action integral, as seen for example
in Eqs. (10) and (11),while calculating the fission penetra-
bility and will thus directly influence the calculated
fission half-lives.

Inertial-mass functions and their dependence on the
relevant fission coordinates have been obtained micro-
scopically using the cranking model. Such calculations
yield a fluctuating inertial mass reflecting the specific
single-particle structure of the particular nucleus under
consideration. However, difFerent microscopic models
yield very difFerent results for the inertia, and are thus
not completely reliable in their detailed calculation of the
inertial-mass functions. Because of the uncertainties in
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and the complexities of the microscopic models for the
inertia, it has been found more advantageous to use the
semiempirical approach to determine the inertial-mass
functions. Using the third-degree polynomial parame-
trization of the double-humped fission barrier passing
through the theoretically calculated extremum points
along a selected one-dimensional path through the mul-
tidimensional potential-energy surface in fission, Rand-
rup et al. ' have obtained a semiempirical expression for
the effective-inertial mass as a function of the deforma-
tion (ftssion) coordinate so as to reproduce the observed
spontaneous fission half-lives of a variety of the actinide
nuclei. Such a semiempirically determined mass parame-
ter is found to decrease as a function of the fission coordi-
nate until it approaches the asymptotic value equal to the
reduced mass of the resulting fission fragments. In view
of the large differences obtained in the present work in
the calculated fission penetrability and in fission half-lives
using different parametrizations of the double-humped
fission barrier, it is important to realize that such empiri-
cally determined mass parameters may also depend some-
what on the particular mode of the potential parametriz-
ation.

VI. DISCUSSION AND CONCLUSIONS

The aim of the present work was to get some quantita-
tive estimates of the ambiguity caused by the choice of
different paths passing through the same extremum
points along the fission direction. For this we have
parametrized the double-humped fission barrier in vari-
ous different ways using the smoothly joined parabolic
segments, third-degree polynomials, and straight lines.
The parametrization using straight lines to connect suc-
cessive extremum points is obviously not much of physi-
cal interest as the resulting shapes are far from those ex-
pected in reality. Such parametrization was therefore in-
cluded only for the purpose of comparison. The other
two parametrizations lead to reasonably realistic and
smoothly varying potential shapes as discussed earlier in
the text. Using such parametrized shapes, we have also
calculated the fission penetrability and the fission half-
lives for a variety of actinide nuclei and have discussed
the corresponding results and their comparison in the
preceding sections.

The most significant result to emerge from this investi-
gation is that while the parametrizations using the third-
degree polynomials (b) and straight lines, respectively,
lead to similar results (within an order of magnitude) on
the fission penetrability and fission half-lives, the corre-
sponding results using smoothly joined parabolic segment
parametrization differ significantly by almost two to five
orders of magnitude depending on the type of the nucleus
and on the parameters of its corresponding double-
humped barrier. The smoothly joined parabolic parame-
trization consistently leads to higher values for the fission
half-lives for all the nuclei considered in the present work
as compared to those obtained for the third-degree poly-
nomials (b) parametrization. This result is in sharp con-
tradiction with the conventional wisdom currently pre-
valent in fission literature, holding that selecting

different potential parametrizations or fission paths pass-
ing through the same extremum points does not affect the
calculated fission half-lives by more than an order of
magnitude. Fission penetrability and fission half-lives are
both known to be extremely sensitive to the heights of the
fission barriers relative to the ground state of the fission-
ing nucleus. However, the differences that we have at-
tempted to delineate in the present work are in addition
to the dependence of the fission half-lives on such barrier
heights or on the ground-state energy.

In the absence of any exact knowledge of the fission
path that nature selects for a given fissioning nucleus, it
would be an entirely futile attempt on our part to recom-
mend one over the other potential parametrization for
the double-humped fission barrier. It is, however, mean-
ingful here to summarize the merits and limitations as
well as their relevance to the various fission observables
of the two realistic potential parametrizations, namely,
those using the smoothly joined parabolic segments and
the third-degree polynomials, respectively. Smoothly
joined parabolic segments have been commonly used in
fission literature to parametrize the double-humped
fission barrier to analyze various types of. near- and sub-
barrier fission data obtained in a variety of experiments.
Quantitative information on the parameters of such a
parametrized fission barrier can be obtained from the
various fission observables as summarized recently by
Weigmann. For example, the fission "threshold, " i.e.,
the energy at which the fission probability rises quickly,
yields rather accurate information on the height of the
higher of the two barriers. The slope of the fission pene-
trability (cross section) near threshold depends on the
value of the parameter Ace of the higher barrier. Finally,
the plateau value of the cross section above the fission
threshold depends on the height of the lower barrier.
Similarly, the experimentally measured information on
the energies and half-lives of the fission isomers and of
their excited states (vibrational resonances) helps deter-
mine the parameters of the second well in a double-
humped barrier parametrized using the smoothly joined
parabolic segments. For a given set of the predetermined
heights of the two barriers, the overall width of the
double-humped fission barrier is then directly related to
the spontaneous fission half-life from the ground state of
a fissioning compound nucleus.

In view of such an intimate correspondence with the
various fission observables, it is not surprising that fairly
accurate information on various parameters of the
double-humped fission barriers parametrized using the
smoothly joined parabolic segments has been accumulat-
ed over the past three decades. An extensive quantitative
analysis carried out by Bj5rnholm and Lynn has resulted
in the most accurate quantitative information available so
far on the various parameters of the double-humped
fission barrier for most of the actinides as summarized in
their review paper. Such a potential parametrization
also does not require the exact locations of the various
extremum points on the fission path along the deforma-
tion axis. However, as shown clearly in the present work,
such a parametrization consistently underestimates the
fission penetrability and thereby predicts consistently
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higher values of the fission half-lives.
The use of third-degree polynomials in parametrizing

the double-humped fission barrier has so far been restrict-
ed only to the theoretical calculations of fission half-lives.
The results of the present work show that this method, in
particular the third-degree polynomials (b) parametriza-
tion, leads to the smallest possible values of the calculat-
ed spontaneous fission half-lives among the various
different potential parametrizations considered by us.
Such a procedure therefore seems to minimize the action
integral resulting in the largest value of the fission pene-
trability as compared with the other parametrizations.
However, this method of potential parametrization
suffers from a serious limitation in that it requires an ex-
act knowledge of the locations of the various extremum
points on the fission path along the deformation axis. No
such accurate information can so far be obtained from

fission experiments. The various spectroscopic properties
of the fission isomers revealing their large deformation
relative to that of the ground state of the corresponding
fissioning compound nucleus, such as moments of inertia
and quadrupole moments, lead only to approximate
quantitative estimates and cannot thus be used to
par ametrize accurately the corresponding double-
humped fission barrier using the third-degree polynomi-
als to connect the successive extremum points. The
biharmonic nature of the potential shapes near the ex-
tremum points, as obtained in such a potential parame-
trization, may also preclude any close correspondence be-
tween its parameters and the various fission observables.
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