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Phase transitions in light nuclei
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The SU(3) Elliott model is used to study the thermal description of ?®Ne. This solvable model allows
us to work in the canonical ensemble and still be able to define an order parameter, the expectation value
of the intrinsic quadrupole moment, to investigate the occurrence of phase transitions.

The finite-temperature mean-field description [1-3] of
heavy nuclei has provided the theoretical support for the
study of nuclear properties at high excited energy. In a
recent series of papers [4], some sd shell nuclei, for which
exact shell model diagonalizations are available, have
been investigated with particular emphasis in their be-
havior at finite temperature. The specific heat C, previ-
ously used in the rare-earth region [5], was identified as a
quantity which may signal the appearance of a “phase
transition.” There are many problems concerning the
meaning of phases and phase transitions in nuclei, for the
nucleus is a finite system. Moreover, in a finite-
temperature mean-field description, quantum as well as
statistical fluctuations are present. In regions where
quantum fluctuations are less important (heavy nuclei), it
has been shown [6] how to correct the mean-field solu-
tions for fluctuations. In light nuclei, where a complete
spectrum obtained by a full diagonalization of the Hamil-
tonian is available, we can perform a statistical descrip-
tion using the canonical ensemble. In this way quantum
fluctuations are fully taken into account, but then we lose
the possibility of defining an order parameter, usually as-
sociated with the intrinsic state, to characterize a nuclear
phase. Moreover, a peak in the specific heat due to the
finiteness of the space (Schottky effect) [7] is predicted to
appear independently of whether a phase transition is
taking place or not. A way out of this dilemma is to use,
as an effective interaction in the shell-model calculation,
the Elliott [8] Hamiltonian. This approach has some
unique properties: (a) The energy eigenvalues and their
degeneracies can be expressed analytically. (b) There is a
one-to-one correspondence between states in the labora-
tory frame and states in the intrinsic frame. Therefore
we define the intrinsic quadrupole moment as an order
parameter. (c) The low-lying states, the most important
ones for a statistical description, have a large overlap
with those of realistic calculations.

The Hamiltonian of the Elliott model is a linear com-
bination of the quadratic Casimir operators of SU(3) and
O(3). It is a pure quadrupole-quadrupole interaction,
where the quadrupole operator is an SU(3) generator. Its
eigenvalues are

E(A,pu,L)=352k—4x[A*+u>+Au+3(A+p)]
+3kL(L+1), (1

where A,u are the SU(3) quantum numbers, L is the an-
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gular momentum, and « is the strength of the
quadrupole-quadrupole interaction. The allowed values
of A,u for *Ne are given in Ref. [8]. The other quantum
numbers related to A and u are

K= min(A,p), min(A,p)— ,...,0or 1
L=K,K+1,...,K+ max(A,u), for K#0 2)
L= max(A,u), max(A,u)—2,...,00r 1, forK=0.

The value of « was fixed to k=0.08 MeV by fitting the
energy of the first 27 in °Ne.

Having now the complete spectrum, we can calculate
the partition function Z, the energy E, and the specific
heat C in the canonical ensemble as a function of the tem-
perature:

Z(B)= S (2I,+1)(2L,+1)exp(—BE;) , 3)
E(B)=—23(InZ)/3B , @)
C(B)=3E(B)/aT . (5)
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FIG. 1. The specific heat C for *°Ne versus temperature 7 in
MeV for the Kuo and Brown (KB), Preedom and Wildenthal
(PW), and Elliott SU(3) interactions.
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Here B is the inverse of the temperature 7, I is the iso-
spin, and the subscript i labels the irreducible representa-
tions of SU(3) and O(3). In Fig. 1 we present results for
the specific heat C as a function of the temperature and
compare them with the results of other calculations using
realistic interactions.

The SU(3) specific heat is similar to the realistic ones,
presenting a small peak at 0.5 MeV related to the
ground-state rotational band as it was recognized in Ref.
[4] and a larger one at T =2.4 MeV, which was assumed
as a signal of a phase transition from a deformed to a
spherical system. In order to study the character of this
peak and its relation to deformation we take advantage of
the relation between the laboratory frame and the intrin-
sic frame in the SU(3) model.

The intrinsic quadrupole moment Q, is defined in
terms of the SU(3) quantum numbers as

_|@A+p+3), ifAzp,
QoMt)= | (_p—2u—3), ifA<pu. (©®)

In Fig. 2 we show the expectation value of the intrinsic
quadrupole moment as a function of the temperature.
The deformation is reduced by about 30% at the temper-
ature associated with the second specific heat peak.

To gain insight into the kind of phenomena that are
taking place as a function of temperature, we display in
Fig. 3(a) the expectation value of quadrupole moment (as
before) and its thermal fluctuations. The 30% reduction
in the expectation value of the quadrupole moment, not-
ed above, takes place at a temperature where the thermal
fluctuations are exceedingly large.

In order to understand the meaning of these enormous
fluctuations, we divide the states of the system into two
groups having prolate and oblate shapes, respectively.
We then repeat the statistical calculations for each sub-

T(MeV)

FIG. 2. Expectation value of the intrinsic quadrupole mo-
ment and the SU(3) specific heat as a function of temperature.
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system, getting almost constant expectation values for the
quadrupole moment in the two branches and relatively
small thermal fluctuations [Fig. 3b]. The reduction in the
expectation value of the quadrupole moment thus arises
from the mixing of deformed configurations with oppo-
site signs rather than from the appearance of a dominant
spherical configuration.

We conclude that there is not a true phase transition to
sphericity in this model. Whether the realistic calcula-
tions of °Ne display a true phase transition is still an
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FIG. 3. (a) Expectation value of the intrinsic quadrupole mo-
ment (solid line) and its thermal fluctuation (dashed line). (b)
The same as (a) but for prolate and oblate separately.



2874 BRIEF REPORTS 44

open question, but in light of the present calculations we
can state that a peak in the specific heat does not neces-
sarily signal one. Furthermore, as commented above,
this peak may be to the finiteness of the space.

The present work does not contradict previous calcula-
tions in larger spaces (heavy nuclei), but calls attention to
the proper definition of a phase in nuclear physics, espe-
cially in light nuclei where large quantum fluctuations are
expected. We suggest that a study of the fluctuations in
the order parameter (intrinsic quadrupole moment, pair-

ing gap, etc.) around its thermal mean field value is im-
portant in order to be able to define a nuclear phase. We
also show how exact solvable models containing the
relevant dynamics and defined in the appropriate Hilbert
space may be powerful tools to study thermal properties
of nuclei in the canonical ensemble.
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