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We have calculated ground-state properties of nuclear matter in a simple string-flip quark model in
one dimension. Special emphasis was placed on the transition from hadron to quark matter and to the
response of the system to color fields. Numerical simulations involving a large number of quarks were
carried out for two- and three-quark clusters. This in turn enabled us to investigate the hadron-to-quark
transition through the study of finite-size effects. The concept of a sudden-quark potential was intro-
duced as an example of a generic response of the medium to color fields. We have argued that this
response might be relevant to the propagation of a rapidly moving quark-antiquark pair (e.g., J /¢

meson) through the medium.

I. INTRODUCTION

One of the main thrusts behind the newly commis-
sioned nuclear physics facilities (CEBAF, RHIC) is the
possibility of unambiguously identifying quark signatures
in nuclei. Unfortunately, quark signatures in nuclear
phenomena have, so far, proved elusive. Much of the
success of these facilities will therefore rely on strong
theoretical programs that will search for and identify
areas sensitive to the quark substructure of nucleons.
One of the objections most often raised by the critics of
conventional nuclear structure models is that, because of
the intrinsic size of the objects, a picture of nucleons in-
teracting in the medium via meson exchanges is inap-
propriate. The process is claimed to resemble three high-
ly overlapping quark bags where the identification of nu-
cleons and mesons is ambiguous at best. Still, there
seems to be ample experimental evidence that will sup-
port that, although some properties of the nucleon may
be modified inside the nuclear medium, a nucleon inside
the nucleus resembles to a very good approximation a nu-
cleon in free space. Furthermore, to date, there is no
compelling evidence that will even indicate that some of
these medium modifications are beyond conventional ex-
planations. Perhaps the greatest challenge facing nuclear
physics today is the explanation of these remarkable
facts, namely, how can such successful hadronic models
emerge from the basic underlying theory with quarks and
gluons as fundamental degrees of freedom.

It is also interesting to note that, although most of
these questions have been posed since the advent of QCD,
remarkably little progress has been made in answering
them. A serious difficulty encountered when attempting
to answer these questions is how to model a system that is
believed to have quarks confined inside hadrons at low
density while free quarks at high density. Most calcula-
tions that attempt to address the quark substructure of
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aucleons have then resorted to phenomenological
descriptions. In some of these approaches, for example,
one introduces ad hoc parameters to determine the transi-
tion from a hadron-based to a quark-based description of
the process. To date, however, there are very few calcu-
lations of uniform quark matter that attempt to repro-
duce nuclear-matter properties using exclusively quark
degrees of freedom [1,2,3]. A particular version of these,
the so-called string-flip model, will be used throughout
this work.

In the string-flip model quarks interact via a truly
many-body potential. The many-body nature of the po-
tential allows quarks to be confined inside hadrons, but at
the same time enables the force to saturate; i.e., hadrons
can separate without generating strong van der Waals
forces (cluster separability). Furthermore, quarks are
treated as identical particles and all processes are de-
scribed in terms of an explicitly antisymmetric quark
wave function. Another virtue of the model is that the
dynamics, given entirely in terms of a quark-confining po-
tential and exchange symmetry, generates the following
limits: a hadron gas at low density and a quark Fermi
gas at high density. The model, however, has serious lim-
itations. The string-flip model is intrinsically nonrela-
tivistic and, as such, does not satisfy fundamental symme-
try principles of QCD, like chiral symmetry and Lorentz
invariance. Nevertheless, nonrelativistic constituent
quark models have proved to be very useful in the under-
standing of hadron spectroscopy and hadronic reso-
nances [4]. It is in this spirit that we use this model.

In this and future work we want to use the string-flip
model to address a variety of issues. Initially, one would
like to understand ground-state properties of quark
matter. For example, how do properties of hadrons get
modified inside the medium. How much, if any, does the
interaction between quarks in the medium get modified
because of screening effects. How are well-known prop-
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erties of the nucleon-nucleon force (e.g., the strong
short-range repulsion) realized in the model. Further-
more, because in the string-flip model the system is
known to behave as a hadron gas at low density and a
quark Fermi gas at high density, one can also study this
hadron-to-quark transition as a function of density. In
fact, understanding this transition is the main goal of this
work. We want to use the sting-flip model to gain some
insight into the nature of the transition. We would like
to identify, for example, physical observables that may
characterize the transition.

There has already been substantial progress made in
calculating nuclear-matter observables within the string-
flip model [1,2,3]. Among the observables calculated in
the past were the energy per quark and length scale for
quark confinement as a function of density. Unfortunate-
ly, because of limitations in computer power, these ob-
servables were only calculated with a small number of
quarks (rn =16). In contrast, numerical simulations in-
volving a large number of quarks might be able to give
precise estimates of the importance of finite-size effects.
Clearly, the numerical value of any physical observable
calculated in infinite quark matter should not depend sep-
arately on the number of quarks and the volume of the
system. Instead, all observables should only depend on a
single intensive variable, namely, the density of the sys-
tem. In practice, however, numerical simulations are al-
ways carried on in a finite-size box with a finite number of
quarks. It is therefore important to investigate the sensi-
tivity of physical observables to finite-size effects. More
interesting, however, the study of finite-size effects might
signal the onset of very exciting phenomena. In particu-
lar, at the critical point for a transition, certain correla-
tion lengths become infinite. Consequently, the measure-
ment of these observables on a finite lattice will always
show evidence for large finite-size effects. In this work
we will carry out simulations involving a large number of
quarks (up to 128) in the hope of elucidating details of the
hadron-to-quark transition through the sensitivity of
some observables to finite-size effects.

We would also like to study the response of the system .

to color fields. There are a variety of issues that one
could in principle address. For example, one would like
to study the dielectric properties of the medium and its
effectiveness in screening color charge. These issues are
of direct relevance to questions of current interest. Un-
derstanding the polarizability of the medium, for exam-
ple, might be of relevance to the formation and propaga-
tion of a J /3 meson in the nuclear medium. In fact, J /¢
suppression in the medium has been advocated by many
as one of the clearest signatures for the formation of a
quark-gluon plasma in relativistic heavy-ion collisions
[5]. In those models the basic mechanism for J /¢
suppression is color screening. The screening of the color
force by the medium weakens the interaction between the
¢C pair and, in turn, precludes the formation of the bound
state. Another issue that has generated much excitement
is color transparency [6,7]. Underlying this idea is the
fact that if the color constituents of a rapidly moving
hadron are close together (after a hard-scattering pro-
cess), then the interaction of this “small” hadron with the
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medium should be small. One would therefore like to
have a model to investigate how a rapidly moving c€ pair
propagates through the medium. Relevant to the above
ideas, then, is the study of the response of the system to
the sudden introduction of two rapidly moving color
charges. In particular, how is the color interaction be-
tween this “fast” pair of quarks modified in the medium.
We labeled these quarks as fast because we will assume
that their rapid propagation through the medium will not
affect the dynamics of the ‘“‘slow” quarks in the system.
In particular, the slow-quark dynamics will still be de-
scribed by the same ground-state wave function, indepen-
dent of the presence of the two extra quarks. In this
work we will use the concept of a sudden-quark potential
as an example of a generic response of the medium to
color fields. To fully understand the response, however,
one is forced to calculate the complete excitation spec-
trum of the system. This takes us to the second phase of
the program.

In future work we will try to examine the different
modes of excitation of the system. Particularly interest-
ing will be the search for new modes of excitations not
seen in isolated hadrons or present in conventional
descriptions of nuclei. Some of these modes might origi-
nate from the collective response of many quarks. These
“quark giant resonances” may involve coherent density,
spin, flavor, and/or color excitations. It will also be in-
teresting to examine the density dependence of collective
modes. For example, in the low-density (hadronic) phase,
there is a well-known low-energy (w~20 MeV) spin-
isospin mode: the Gamow-Teller resonance. At higher
excitation energies (w~300 MeV), there is also a well-
known excitation in the quark degrees of freedom, name-
ly, the nucleon-to-delta (N—A) transition. It is un-
known, however, how the excitation energy, collectivity,
and mixing of these hadronlike and quarklike modes will
change with density. Presumably, there should be a
softening of the N—A excitation as one moves away
from the low-density phase, where confinement scales
dominate, and into the high-density deconfined phase.
Hopefully, careful study of these ideas might help eluci-
date some recent experimental findings that have report-
ed a large (~50 MeV) downward shift in the position of
the A peak measured in several nuclei relative to that on
a free proton [8].

The paper is organized as follows. In Sec. II we intro-
duce and review some properties of the string-flip model
with particular emphasis on the two-quark (2Q) nucleon
case in one dimension. We present the main ideas of
quark pairing and introduce the one-parameter variation-
al wave function. In Sec. III we generalize the formalism
to the three-quark (3Q) nucleon case. We should men-
tion that only in one dimension does there exist an
efficient algorithm (i.e., nonfactorial) for treating the
three-quark nucleon problem. In Sec. IV we present the
results of the numerical simulations in one dimension.
Some of these results have already been calculated in the
past. We include these for completeness. In addition, we
present results of simulations involving a large number of
quarks with special emphasis on the hadron-to-quark
matter transition (through the study of finite-size effects)
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and on the sudden-quark potential. Finally, Sec. V con-
tains our conclusions.

II. TWO-QUARK NUCLEONS

The Hamiltonian for two isolated quarks moving in
one dimension is given by

H=1P}+1P3+v(xy,)

=—10}— 133+ L(x,—x,), 2.1
where the quark-confining potential is assumed to be har-
monic and we work in units in which the quark mass, the
spring constant, and # are equal to 1. Throughout this
paper we will also assume that quarks are fermions de-
voided of any intrinsic structure such as spin, flavor, and
color. The ground state of the two-quark system is then
given by the lowest negative-parity eigenstate of the har-
monic oscillator, i.e.,

Yolr=x,—x,)=rexp(—Agr2/2) , (2.2)
with energy
3

eo=‘—/?=2. 121 (2.3)

and with

1

=—=0.707 2.4

Ao v , (2.4)

being the oscillator parameter characterizing the length
scale (Ay !7?) for confinement (see Table I).

A. Many-quark potential

In extending the model to infinite quark matter, one
would like to preserve certain fundamental properties
that are observed in nature. For example, quarks must be
confined within hadrons. This requires the presence of a
confining force acting between quarks. Furthermore, the
force must saturate (cluster separability); i.e., once the
dynamics has dictated which quarks are to be confined
within a given hadron, the residual van der Waals forces
between different hadrons must vanish for large hadron
separation. Finally, since quarks are identical fermions,
their dynamics must be prescribed by a Hamiltonian
symmetric in all quark coordinates and its behavior
governed by a totally antisymmetric wave function.
Clearly, a conventional many-body potential energy con-
sisting of a sum of two-body potentials will not be able to
satisfy the above requirements. If the two-body potential

TABLE 1. Energy (per quark), oscillator parameter, and
mean-square radius [defined in terms of quark distances to the
center of mass, ie., {(r2)=(3,;(x;—x.,)*)] for isolated nu-
cleons in the two- and three-quark models.

Model E/N Ao (r?)
20 3/2v2=1.061 1/v2=0.707 3/4A,=1.061
30 4/v3=2.309 1/V3=0.577 4/3%,=2.309
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falls off with increasing quark separation, it will not gen-
erate large van der Waals forces, but will neither confine.
If, on the other hand, the potential confines, the force will
not saturate. If the model is going to confine quarks into
hadrons and, in addition, have cluster separability, the
potential must be an N-body interaction that depends
upon the coordinates of all N quarks. The N-body poten-
tial that we will use here was first introduced by
Horowitz, Moniz, and Negele [1] as a generalization of
the potential used by Lenz et al. [9] in the calculation of
two-hadron (four-quark) scattering. The Hamiltonian for
a system of N quarks is given by

N
H=T+V=—13 32+V(x).

n=1

(2.5)

The N-body potential V(x) is constructed by pairing all
N=2A quarks into A4 clusters. For a given pairing P,
the pairing function Vp(x) is formed by calculating the
energy v (v being the confining potential) stored in the
“string” connecting one quark, P}, with a second quark,
P,-z, inside the ith hadron and then adding the contribu-
tions from all individual clusters, i.e.,

A
Vpx)= 3 vix 1 5) .

= PP

(2.6)

The potential energy is then chosen as the pairing func-
tion with the minimum value among all (N —1)!! possible
pairings of N quarks into A4 clusters:

V(x)=minVp(x) . (2.7)
[P]

The confining potential thus acts only between quarks
within the same cluster. The many-body potential is
therefore able to confine quarks inside hadrons, while at
the same time preserving cluster separability. Although
there are no long-range van der Waals forces in the mod-
el, hadrons do interact at short distances via the ex-
change of quarks between clusters. Furthermore, the po-
tential is symmetric under quark exchange since the per-
mutation of two quarks will simply cause them to ex-
change partners. Finally, the potential is clearly many
body since moving one single quark might cause the rear-
rangement of all A4 strings. While the many-body poten-
tial is sophisticated enough to generate quark
confinement, cluster separability, and the correct symme-
try under quark exchange, it is conceptually quite simple.
In particular, a clear picture of the quark dynamics
emerges in the low- and high-density phases. In the low-
density phase the dynamics favors the clustering of
quarks into individual hadrons. In this phase the
confinement scale is much smaller than the average in-
terhadron separation. While the potential is essential in
order to confine quarks, it is only important between
quarks within the same cluster. In this phase quark ex-
change is suppressed and the system resembles a collec-
tion of noninteracting hadrons. In the high-density
phase, on the other hand, quark exchange and string
rearrangement are very prevalent. Since the length scale
for quark confinement is now much bigger than the inter-
quark separation, the potential energy becomes unimpor-
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tant as compared to the kinetic-energy term. In this
high-density phase, then, the system behaves as a free
Fermi gas of quarks. Clearly, one would like to also have
a good understanding of the intermediate-density region
where quarks might still be clustered inside hadrons, but
where there still might be a significant amount of hadron
overlap.

B. Quark pairing

Implicitly assumed in the string-flip model is the adia-
batic approximation, namely, that gluons are light de-
grees of freedom with a dynamics that is faster in com-
parison to the “heavy-quark” dynamics. As a quark is
moved, then, the model assumes that the gluon flux tubes
adjust very rapidly to the instantaneous position of the
quarks in such a way as to minimize, for example, the
square of the overall length of the strings. This is the
main justification to the prescription adopted in defining
the many-body potential [Eq. (2.7)]. The basic problem,
then, is to decide how quarks are to be paired. A flux
tube leaving a quark in the system must end up on anoth-
er quark. The fundamental question, however, is which
quark. Presumably, lattice gauge theories solve this
problem, but at a spectacular computational cost. In lat-
tice QCD one evolves not only quarks, but also the gauge
fields in accordance to the QCD dynamics. This compli-
cated dynamics dictates the arrangement of flux tubes in
the lattice. Unfortunately, unless some remarkable event
develops, it is unlikely that the nuclear-matter problem
will ever be solved in the lattice. One will therefore need
to resort to phenomenological models. Deciding which
quarks are to be paired is, nevertheless, likely to remain a
general problem that most models will have to address.

Solving the quark assignment problem is probably the
most taxing and challenging feature of the string-flip
model. A brute force algorithm that will search among
the (24)1/244!=(N—1)!! possibilities (A =N /2 being
the number of nucleons) for the two-quark nucleon case
is only feasible for a very small number of nucleons. For-
tunately, a power-law algorithm developed and imple-
mented by mathematicians and economists is particularly
well suited for the solution of the two-quark assignment
problem [10]. The problem, however, becomes more
severe for the three-quark nucleon case that will be ad-
dressed in Sec. III. Here, not only the number of possi-
bilities, (34)!1/64 4!, grows much faster with A4, but
more importantly, to date, there are no power-law algo-
rithms that can solve the three-quark assignment prob-
lem. In one dimension, however, the solution to the as-
signment problem is trivial. Instead of searching among
a factorial number of configurations, the search is limited
to two configurations for the 2Q case and to three
configurations for the 3Q case. For the two-quark cluster
case the optimal configuration is clearly obtained by pair-
ing quarks to their nearest neighbors. A given quark can
be paired to either its nearest neighbor to the left or to its
nearest neighbor to the right. Once that given pairing is
selected, all remaining pairings in the lattice are fixed.
For the 3Q case there are three possible configurations to
select from since the given quark can be the leftmost,
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center, or rightmost quark in the group. Even though
any realistic simulation will eventually have to be carried
out in three dimensions, the numerical advantages of do-
ing one-dimensional simulations are clearly enormous.
Furthermore, we expect that some qualitative features
arising from the quark substructure of hadrons will
remain valid in three dimensions.

C. Variational wave function

For N quarks moving in a one-dimensional box of
length L, the one-parameter variational wave function is
defined by

U (x)=e MWL (x), (2.8)

where A is the variational parameter and Wgg is a free
Fermi-gas wave function. A simple way of writing this
Fermi-gas Slater determinant is achieved by adopting an-
tiperiodic boundary conditions. This selection is simply a
matter of convenience since we do not expect our results
to depend significantly on the choice of boundary condi-
tions. For this case, then, the Fermi-gas Slater deter-
minant can be written as
N T
WEg(x)= [T sin |—(

n<m

X, —X,,) (2.9)

The Fermi-gas wave function characterizes a system of
free fermions with no correlations other than those gen-
erated by the Pauli principle. The exponential term, on
the other hand, characterizes the amount of clustering in
the ground state through the variational parameter A.
For a dilute system of quarks, where pairs of quarks clus-
ter into individual hadrons, the variational wave function
reproduces the exact wave function of isolated clusters in
the limit A—1/V2 [see Eq. (2.4)]. In the high-density
phase, on the other hand, where the interparticle separa-
tion is substantially smaller than the confinement scale,
the potential becomes unimportant and the variational
wave function will reproduce the Fermi-gas results in the
A—0 limit. Consequently, this simple one-parameter
wave function is exact in the low- and high-density limits,
with A~ 172 playing the role of a confinement or clustering
scale. Furthermore, Horowitz, Moniz, and Negele have
performed an exact evaluation of the energy per quark in
one dimension using a path-integral Monte Carlo method
and showed that the one-parameter variational wave
function agrees extremely well with the exact results for
the energy at all densities [1]. Establishing the reliability
of the variational approach is particularly relevant for
generalizations of this model to three dimensions where
exact Monte Carlo solutions to fermionic systems have
yet to be developed.

The analytic form of the variational wave function en-
ables one to derive useful relations that, in particular,
lead to substantial savings of computer time. For exam-
ple, by performing a simple integration by parts, the ex-
pectation value of the kinetic energy,

(T)py=Trg(p)+20%V ), , (2.10)

can be written entirely in terms of the kinetic energy of a
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one-dimensional free Fermi gas,

Trg(p)=mp%/6 , (2.11)

and the expectation value of the potential energy. The
kinetic energy is larger than the Fermi-gas result because
of the presence of correlations induced by the clustering
of quarks. Clearly, the kinetic energy is minimized in the
absence of these correlations. The potential energy, on
the other hand, favors a large value of lambda (small
clustering length). The dynamic interplay between these
two effects will generate an optimal value for the varia-
tional parameter that will minimize the total energy of
the system:

(E),=Tec(p)+ A+ 1{V),, . 2.12)

Because of statistical errors in the determination of the
energy, the variational parameter can be most reliably
obtained by calculating zeros in the derivative of the en-
ergy with respect to lambda, i.e.,

d{E),,

=AY ), — (A H2)((V2 ), = (V)},)=0 .

(2.13)

Therefore, in calculating the derivative of the energy with
respect to lambda, one must evaluate not only the expec-
tation value of the potential energy, but, in addition, also
its variance. The evaluation of these expressions is
simplified by the fact that most observables satisfy simple
scaling relations. The only dimensionful parameters in
the wave function are the clustering length A~!/? and the
size of the box L. Hence the expectation value of the po-
tential energy can, on the basis of purely dimensional ar-
guments, be written as

(V),=L*f(AL?) . (2.14)
Instead of being a function of two independent variables,
A and p=N /L, the expectation value of the potential en-
ergy (V) M,/L2 becomes a function of a single scaling
variable AL2. Similar relations are also satisfied by other
observables. Consequently, the expectation value of these
observables evaluated at a variational parameter A, and
density p, can now be related to the same observables
evaluated at different values of A and p. In particular, the
expectation value of the potential energy and square of
the potential energy satisfy the following scaling rela-
tions:

2

Po
- <V>}\0p0’

( V)Apz

T 2.15)
0

? ‘ < V2>A’000 ’

< V2>7»p=

provided the variational parameter is also scaled in the
following way:
2

L2, (2.16)

Po

A=

The numerical advantages of these scaling relations
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should now be evident. In general, for a given value of
the variational parameter A, and the density p,, the
derivative of the energy with respect to A will not vanish.
However, one can now use the above relations to scale
Eq. (2.13) and then search for a new value of the density
that will satisfy d{E) 2p/dA=0. This new value of the
density is given by

~1/4
(VD apy

V2, — (V)

2
AoPo

This procedure clearly leads to a substantial savings of
computational effort. Instead of using several Monte
Carlo runs to determine the optimal value of A at a given
density, one can now use every individual run to deter-
mine the scaled values of the variational parameter and
density [Egs. (2.16) and (2.17) respectively] at which
d(E),,/d\ will vanish.

III. THREE-QUARK NUCLEONS

Ultimately, the simple two-quark cluster model in one
dimension will have to be generalized to three-quark nu-
cleons moving in three dimensions. The numerical ad-
vantages of one-dimensional simulations, however, have
already been mentioned in the Introduction; with the ex-
ception of one dimension, the solution of the three-quark
assignment problem must rely on a brute force (factorial)
algorithm. The one-dimensional model, however, can be
straightforwardly generalized to three-quark nucleons.
There are, at least, two reasons why the model should be
generalized. First and foremost, because nature has
chosen this possibility and, second, because in studying
transitions between different states of matter it is impor-
tant to have the composite objects also described by the
correct statistics. For the two-quark cluster case, nu-
cleons obey Bose-Einstein statistics since the totally an-
tisymmetric quark wave function is even under the ex-
change of two (two-quark) nucleons.

The Hamiltonian for an isolated three-quark hadron is
given as a straightforward generalization of Eq. (2.1), i.e.,

H=1P?+1P3+1Pi+v(xy)+vlxys)+olxy)
=—192— 182 — 182+ L(x, —x, 2+ Llx, —x;)?

+%(X3_xl)2 . (3.1)
By introducing the center of mass and relative coordi-
nates (x, —x,) and [(x;+x,)/2—x;] (this latter choice
not being unique), the Hamiltonian separates into a free
problem for the center of mass and a pair of uncoupled
harmonic oscillators in the relative coordinates. The
ground state of the three-quark system is then given by
the lowest totally antisymmetric (in the quark coordi-
nates) eigenstate of the above Hamiltonian, which, up to

a normalization constant, is given by (x;; =x; —x;)

_ 2 2 2
Aglx iy +x53+x%5,)/2

Yo(X1,X9,X3)=X 15X 73X 3;€ , (3.2)

where
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1
Ao=—==0.577 3.3
characterizes the quark clustering length, and with
€,=4V3=6.928 (3.4)

being the ground-state energy of the system (see Table I).
The many-body generalization of the three-quark clus-
ter model is also straightforward. In the three-quark
cluster model, one considers all possible groupings of
N=3A4 quarks into A4 clusters each containing three
quarks. For a given grouping P, the potential energy for
the ith cluster is given as the sum of pairwise harmonic
interactions between quarks exactly as in Eq. (3.1), i.e.,

— 241 241 2
vix )=L(x ;—x )+ Lx ,—x )+ Hx 3—x ).
( pinio} 7%, piz) = o2 Fpl 7 Xp3 T Xyl

(3.5)

The total potential energy for that grouping is simply ob-
tained by adding up the individual contributions from all
A individual clusters:

A

Ve(x)= ,~§1 U(xpilpizpl}) .

(3.6)
Finally, the potential energy for the system is obtained by
selecting the minimum value of the potential energy
among all the (3 4)!/(64 A!) possible groupings:

V(x)=minVp(x) . (3.7)
[P]
The model is clearly symmetric in all quark coordinates
and confines three quarks into individual hadrons. Al-
though nucleons may interact via quark interchange, the
force saturates at large distances and allows clusters to
separate without generating large vant der Waals forces.
As in the two-quark cluster case, we propose a varia-
tional approach to the calculation of ground-state observ-
ables. In fact, a one-parameter variational wave function
identical in form to Eq. (2.8) is guaranteed, because of the
structure of the ground-state wave function for the isolat-
ed three-quark cluster [Eq. (3.2)], to again be exact in the
low- and high-density limits. Consequently, similar rela-
tions to the ones obtained in the two-quark cluster case
hold in the present case as well. For example, the kinetic
energy of the system is again given as a sum of a free
Fermi-gas contribution plus a term generated by the pres-
ence of clustering correlations in the ground state, i.e.,

(T ), =Tr(p)+30¢V),, , (3.8)

while the total energy of the system and its derivative are,
respectively, given by
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FIG. 1. Energy per quark as a function of density for the 2Q
model. The solid line shows the results of the numerical simula-
tions with V =16 quarks (statistical errors, less that 1%, are not
shown). Also shown are the Hartree-Fock (dashed line) and
Fermi-gas (dot-dashed line) results.

(E);,=Trc(p)+BA+1(V),,,
d{(E),,

=60V ),

—(6A2+2)[{V?),,—(V)i,]. (3.10

IV. RESULTS

In Fig. 1 we show the dependence of the energy per
quark with density for N=16 quarks. The solid line is
the result of the variational Monte Carlo calculation.
Also shown are the free Fermi-gas (dot-dashed line) and
Hartree-Fock (dashed line) results [1] (see also Table II),
where
1
4p* ’
The minimum in the Hartree-Fock energy separates the
low-density region, where the potential energy dominates,
from the kinetic-energy-dominated high-density region.
The form of the potential energy in the Hartree-Fock ap-
proximation reflects both the many-body nature of the
potential (Vg ~p for two-body potential) as well as the
absence of clustering correlations in the Hartree-Fock
wave function. Since ground-state correlations are essen-
tial at low density, the Hartree-Fock result grossly
overestimates the energy in this limit. On the other
hand, the presence of strong clustering correlations in the

2.2
Eup(p)=Trg(p)+ VHF(p)—“—*lGL-i- 4.1)

TABLE II. Variational vs Hartree-Fock energies in the 2Q model for N =16 quarks.

p T/N V/N E/N Tur /N Vue /N Eup/N
0.25 0.540 0.534 1.074 0.103 3.791 3.894
0.50 0.630 0.516 1.146 0.411 0.948 1.359
0.75 0.936 0.402 1.334 0.925 0.421 1.346
1.00 1.646 0.234 1.881 1.645 0.237 1.882
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variational wave function gives rise to quark confinement
and to a substantial reduction in the energy as compared
with the Hartree-Fock result. In this limit, then, the sys-
tem resembles a free-hadron gas with an energy per quark
approaching the isolated two-quark cluster limit. In the
opposite (high-density) limit, the Hartree-Fock energy
approaches the variational results. In this limit quarks
are no loger confined inside hadrons and the system
behaves as a collection of noninteracting quarks. At high
density, then, there are no important correlations in the
ground state beyond those generated by the Pauli princi-
ple. It is important to note that in this model nuclear
matter is not bound. Even though the potential is attrac-
tive at intermediate separation (strings can flip and
reduce the energy), Pauli correlations are so strong in one
dimension that they preclude any possible binding be-
tween clusters.

To further emphasize the transition from hadron to
quark matter, we have calculated the two-body correla-
tion function. For an infinite system, the two-body corre-
lation function is given by the expectation value of

1

I3 4.2)

pa(r)=— 3 8(r —(x;,—x;)),

i)
and measures the probability of finding a quark a dis-
tance r away from another given quark. In Fig. 2 we
show the results of the Monte Carlo simulations together
with the two-body correlation function for an isolated
cluster (dashed line) and for a free Fermi gas (solid line).
The two-body correlation function for the isolated cluster
is, up to normalization, given by the square of the isolat-
ed cluster wave function [Eq. (2.2)]. The free Fermi gas
(normalized to one at large distances), on the other hand,
is given by

FG(r)

B 1= j3ker) , kp=mpo,
Po

4.3)

where p, is the one-body density and j, is the zeroth-
order spherical Bessel function. The fact that the two-
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FIG. 2. Two-body correlation function for N =16 quarks as
a function of the quark separation for various values of the den-
sity in the 2Q model. Also shown are the isolated two-quark
cluster (dashed line) and Fermi-gas (solid line) results.
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body correlation function vanishes at the origin is simply
a consequence of the Pauli principle. At low density
(p=0.25) the correlation function shows a distinctive
peak corresponding to the presence of the other quark in-
side the cluster. At intermediate separation the probabil-
ity of finding another quark is exponentially suppressed
[see Eq. (2.2)]. Finally, at large distances the given quark
starts to feel the presence of the other quarks in the sys-
tem. The peak at small distances gradually disappears
with increasing density as clustering correlations cease to
be important and the system approaches the free Fermi-
gas phase.

In Fig. 3 we show the energy per quark and variational
parameter as a function of density for several values of
the number of quarks. Statistical errors for the variation-
al parameter A were determined in such a way that the
derivative of the energy with respect to lambda at A,
(Anax) Was negative (positive) within three standard devi-
ations. The quoted value of lambda was then given as the
average of A, and A, It is interesting to note that
while the energy per quark at small density (p=0.25) has
changed by less than 1% from the isolated-cluster limit,
the length scale for quark confinement (A~ !/2) has in-
creased by almost 5%. We should mention that this fact
is in agreement with some explanations of the spin-
independent, or old, European Muon Collaboration
effect. Consistent with the above results is also the fact
that at high density the variational parameter approaches
zero or, equivalently, the length scale for confinement
goes to infinity. In the intermediate-density region there
is a rapid, although continuous, change in the variational
parameter. This rapid change signals the transition from
a hadron- to a quark-dominated phase.

The results that we have presented so far clearly indi-
cate a qualitative change in the behavior of the system as
the quark density is increased. These findings, however,
have already been published for quite some time [1]. We
have decided to include them simply for pedagogical
reasons. We feel that their inclusion will give coherence
to an otherwise disconnected discussion about the nature
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FIG. 3. Energy per quark and variational parameter A as a

function of density for various values of the number of quarks in
the 2Q model.
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TABLE III. Variational parameter A in the 2Q model.

N 8 16 32 64 128

P

0.250 0.650(20) 0.640(20) 0.650(20) 0.645(25) 0.640(20)
0.375 0.580(20) 0.575(15) 0.575(25) 0.570(20) 0.575(25)
0.500 0.410(20) 0.465(25) 0.470(20) 0.475(25) 0.470(30)
0.625 0.170(10) 0.245(15) 0.330(20) 0.355(15) 0.350(20)
0.750 0.101(04) 0.118(08) 0.143(08) 0.198(12) 0.250(10)
0.875 0.075(05) 0.080(10) 0.085(05) 0.100(10) 0.120(10)
1.000 0.053(02) 0.058(03) 0.060(05) 0.068(03) 0.073(08)

of the transition, which, after all, represents the ultimate
goal of this work. We now proceed to discuss our new
findings.

We start by examining our results as a function of the
(finite) size of the system. The advent of new and more
powerful computers has facilitated our task of perform-
ing numerical simulations with a large number of quarks.
This fact is essential in order to estimate finite-size effects.
The variational parameter A as a function of density for
several values of the number of quarks is also shown in
Table III. These results, together with Fig. 3, show large
finite-size effects at intermediate density. This fact gives
compelling evidence in support of a transition occurring
in the system at intermediate density. Irrespective of the
natural length scales in the problem (all of them much
smaller than the size of the box), there is evidence for a
long-range coherence in the system involving the whole
length of the box. One can understand these effects in
terms of a balance between the “rigidity”” of the quark
pairings and the importance of the potential. At low den-
sity the calculations are not sensitive to finite-size effects.
Although the potential energy gives a substantial contri-
bution to the total energy of the system, the quark pair-
ings are very rigid, making it very difficult for the strings
to flip; once a quark has found a partner, it is very unlike-
ly that it will get changed. Consequently, quarks move in
a region of space comparable to the length scale for
confinement and have no way of finding out that they are
in fact capable of moving in a much larger space, namely,

V(r)EVA+1(r)_VA ’
A+1
Vaern= [dx, - dx, Wxy, ...
i=1
A

Va=[dx, - dx,Wiix,, ...

i Pi P

where in defining V4 (r) we have assumed, in accor-
dance with the sudden approximation, that the N=24
slow moving quarks have a spatial ground-state distribu-
tion W3(x,,... , X, 4) that remains unchanged even after
the introduction of the two extra quarks. The main

, X, 4)min vix
24100 E

, X min vix s
2admin 3 0lx,2)

the whole length of the box. At high density, on the oth-
er hand, string rearrangement is very prevalent. Now
quarks can find out about the large size of the box be-
cause the movement of a single quark might cause the
string to flip and the disturbance to propagate over the
whole size of the box (note that this is strictly true only in
one dimension). ‘At high density, however, the potential
energy gives only a small contribution to the total energy,
and consequently we do not observe large finite-size
effects. Finite-size effects are most noticeable at inter-
mediate densities where the quark pairings are relatively
loose, and so the string can occasionally flip, while at the
same time the potential energy is still a substantial frac-
tion of the total energy of the system.

Further evidence for a transition in the system is given
by the response of the medium to color fields as charac-
terized by the sudden-quark potential. The sudden-quark
potential is defined as the change in the potential energy
of the many-body system when two extra quarks are sud-
denly introduced into the system. The term sudden stems
from the fact that the “slow” quarks in the system do not
have time to adjust to the change brought upon them by
the rapid inclusion and propagation of the two fast
quarks. Consequently, the dynamical behavior of the
slow quarks is described by the same variational wave
function irrespective of the presence of the two extra
quarks. The sudden-quark potential between two “fast™
moving quarks, one located at the origin and the other
one a distance r away, is then given by

2) > (4‘4)

P

difference, then, between the expressions for V', . ,(7) and
V 4 lies in the possibility of a new quark pairing once the
two fast quarks are introduced into the system. In study-
ing this observable we hope to understand how effective is
the medium in screening the force between two color
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FIG. 4. Sudden-quark potential as a function of the fast-
quark separation for various values of the density in the 2Q
model. Shown in the inset is the p=0.88 result on a different
energy scale. The numerical simulations were carried out with
N =32 “slow” quarks.

charges. In the string-flip model screening happens
through string rearrangement. In contrast to their in-
teraction in free space, the two fast quarks might reduce
their energy by taking advantage of the medium and pair-
ing to nearby slow quarks. In Fig. 4 we show results for
the sudden-quark potential as a function of the fast-quark
separation for several values of the density. Results are
shown at low (p=0.25), intermediate (p=0.50), and
high density (p=0.88). Also for reference we show the
zero-density result v =r2/2. The potential is always at-
tractive for very small separation. This is understood be-
cause every time the pair is introduced in a region of
space occupied by a string, the string breaks, quarks
recouple (one fast with one slow), and the potential ener-
gy gets reduced. The size of the attraction therefore in-
creases with increasing density since the reduction in the
potential is proportional to the amount of space occupied
by all the strings. At larger separations, however, the sit-
uation is different. Although string rearrangement gives
rise to screening at low and intermediate density, the
sudden-quark potential will still be large (and positive) at
large separations. The most interesting case happens at
high density (amplified in the inset). At this density
string rearrangement becomes so effective in screening
the color force that even qualitative features of the poten-
tial get modified: The potential becomes always attrac-
tive and short ranged; i.e., there is perfect screening at
large separations (¥ —0 as r—> o). Our simple model
will thus predict that the formation of, for example, a
J /¢ meson in relativistic heavy-ion collisions should,
indeed, be strongly suppressed.

In Fig. 5 we show results for the energy per quark as a
function of density for the three-quark cluster model.
Qualitatively, one obtains similar results as in the two-
quark cluster case: a hadron gas at low density and a free
Fermi gas at high density. In fact, since Pauli correla-
tions are even stronger in this case (see Fig. 9), they
overwhelm any possible attraction coming from string
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FIG. 5. Energy per quark as a function of density for the 3Q
model. The solid line shows the results of the numerical simula-
tions with N =24 quarks (statistical errors, less that 1%, are not
shown). Also shown are the Hartree-Fock (dashed line) and
Fermi-gas (dot-dashed line) results.

rearrangement and preclude the binding of nuclear
matter. The energy per quark and the variational param-
eter as a function of density for several values of the num-
ber of quarks are shown in Fig. 6 (see also Table IV).
Once more, there is a rapid, but smooth, variation in the
intermediate-density region where the system makes the
transition from hadron matter to a free Fermi gas of
quarks. Some qualitative changes between the 2Q and 3Q
models, however, can be seen in Fig. 7. The two-body
correlation function for the isolated three-quark cluster is
obtained by integrating over one of the two independent
relative coordinates [see Eq. (3.2)]. At low density the
correlation function still shows a distinctive peak at small
distances corresponding to the presence of a nearby
quark in the cluster. The presence of a third quark in the
cluster, however, gives rise to an enhanced Pauli repul-
sion at intermediate distances, which is not seen in the 2Q
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FIG. 6. Energy per quark and variational parameter A as a
function of density for various values of the number of quarks in
the 3Q model.
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FIG. 7. Two-body correlation function for N =24 quarks as
a function of the quark separation for various values of the den-
sity in the 3Q model. Also shown are the isolated three-quark
cluster (dashed line) and Fermi-gas (solid line) results.

cluster case. At large enough density, however, cluster-
ing correlations are unimportant, the system behaves like
a free Fermi gas of quarks, and the 2Q and 3Q models be-
come indistinguishable.

To fully appreciate the fact that a hadron is a three-
quark composite, one can calculate the three-body corre-
lation function. For an infinite system the three-body
correlation function, defined by the expectation value of

pirs)=7 3 8(r—(x—x,N8(s—(x,—x)), @)
i jEk

measures the probability of finding one quark a distance r
away and a different quark a distance s away from yet
another third given quark. For an isolated cluster the
three-body correlation function is, up to normalization,
simply given by the square of the isolated-cluster wave
function [Eq. (3.2)]. The three-body correlation function
for a free Fermi gas (normalized to one as r,s — ) is, on
the other hand, given by

p5C(r,s)

Po

=1—[j3(kpr)+ji(kps)+j3(kgt)]

+2[jolkpr)jolkps)jolkpt)] ,

where ¢ =r —s, and it satisfies the following properties:

(4.6)

p3o(r)
— 3 — 1.
¥r—> 0

3
Po s== PO

pEC(r,s)

4.7)

TABLE IV. Variational parameter A in the 3Q model.

N 12 24 48 96
p
0.250 0.550(20) 0.550(20) 0.555(15) 0.550(20)
0.500 0.480(20) 0.470(20) 0.470(10) 0.465(25)
0.750 0.255(25) 0.330(20) 0.335(15) 0.330(20)
1.000 0.070(10) 0.080(10) 0.095(15) 0.145(05)
1.250 0.040(05) 0.040(05) 0.045(10) 0.050(05)
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FIG. 8. Three-body correlation function for N =24 quarks as
a function of quark separation at s, =1.4 for various values of
the density in the 3Q model. Also shown are the isolated three-
quark cluster (dashed line) and Fermi-gas (solid line) results.

In Fig. 8 we show results for the three-body correlation
function as a function of 7 for a fixed value of s =5,=1.4.
Essentially, it represents the probability of finding a
quark at position r given the fact that two quarks are al-
ready fixed at » =0 and s,. The two nodes in the correla-
tion function are then a consequence of the Pauli princi-
ple. The two peaks seen at low density represent the two
most likely positions for the “third”” quark in an isolated
hadron. As the density increases, the second peak in the
correlation function dissolves in much the same way as
the single peak does in the two-body correlation function;
hence the probability of finding the “third” quark at
large distances is essentially constant. The first peak,
however, remains at all densities. This is simply a conse-
quence of having already two quarks relatively close to
each other and the Pauli principle. Finally, in Fig. 9 we
show the two-nucleon (NN) correlation function for the
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FIG. 9. Nucleon-nucleon correlation function for 4 =16 nu-
cleons as a function of the center-of-mass separation between
the quark clusters at a nuclear density of p=1. The 2Q model
results (N =32 quarks) are shown in the solid line, while the 3Q
model results (N =48 quarks) are given by the dashed line.
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2Q and 3Q model at a nuclear density of p=1. The
single-nucleon coordinate is defined (in both models) as
the center of mass of the cluster. The NN correlation
function is then obtained by using Eq. (4.2), but with the
distance between quark coordinates substituted with the
distance between the center of mass of the clusters, i.e.,

pévzv(r):% ﬁ'ﬁ(r—(ri-—rj)), (4.8)
i#j
where r; is the coordinate of the ith cluster,
(x!+x2)/2 for two-quark cluster ,
i (x}+x2+x?)/3 for three-quark clusters .
(4.9)

The main feature displayed by the correlation function is
a strong NN repulsion at short distances that is generated
by the Pauli repulsion at the quark level. This relatively
featureless NN correlation function displays nucleons
well localized at average positions, r=0,1/p,2/p,.. .,
with relatively little “Fermi motion.” This fact is partic-
ularly pronounced in the 3Q model where the Pauli prin-
ciple at the quark level severely limits the motion of nu-
cleons around their average positions.

V. CONCLUSIONS

We have calculated ground-state properties of quark
matter for two- and three-quark nucleons in one dimen-
sion. We have taken full advantage of the simplicity of
the quark pairing in one dimension. Ground-state prop-
erties were evaluated using a variational Monte Carlo ap-
proach to the string-flip model and studied as a function
of density. Special emphasis was placed on those observ-
ables that might characterize the transition from hadron
matter at low density to a free Fermi gas of quarks at
high density.

The many-body nature of the potential was essential in
order for quarks to cluster into hadrons and for hadrons
to separate without generating large van der Waals
forces. In addition, the model displayed the following
limits: At low density, quarks clustered into hadrons and
the system resembled a collection of weakly interacting
hadrons. At high density, on the other hand, the
confining potential became unimportant and the system
behaved like a free Fermi gas of quarks. These results
were confirmed by evaluating the equation of state for
quark matter, the length scale for confinement (i.e., the
variational parameter), and the two- and three-body
correlation functions. In our model nuclear matter does
not saturate. In fact, because of strong Pauli correla-
tions, the system is not even bound. This, however, may
be a limitation of our one-dimensional approximation and
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not necessarily a limitation of the string-flip model.

The simplicity of the pairing algorithm in one dimen-
sion allowed us to carry out numerical simulations with a
very large number of quarks. This fact enabled us to as-
sess the importance of finite-size effects. We found large
finite-size effects at intermediate densities. This finding
made explicit the fact that a long-range coherence, typi-
cally involving the whole length of the box, was present
in the system. The magnitude of the finite-size effects was
attributed to a delicate balance between the “rigidity” of
the quark pairings and the importance of the potential.
Again, we argued that these large finite-size effects might
depend on the one-dimensional approximation. We also
tried to study the dielectric properties of the medium.
We used the sudden-quark potential as an example of a
generic response of the system to color fields. Color
screening happened at all densities. Particularly interest-
ing, however, were the results obtained at high density;
the potential became short ranged and attractive, show-
ing perfect screening at large fast-quark separation. We
concluded that in our simple model color screening might
indeed give rise to a suppression of J /¢ formation in rel-
ativistic heavy-ion collisions. Finally, we calculated the
nucleon-nucleon correlation function. The main feature
displayed by this observable was a strong repulsion at
short distances. As in the case of most of the other ob-
servables, it was strongly dominated by the Pauli correla-
tions at the quark level.

In summary, we have calculated ground-state proper-
ties of nuclear matter modeled directly in the quark coor-
dinates. The dynamics in the model was generated en-
tirely by a quark-confining potential and exchange sym-
metry. Although we are confident that some of the re-
sults obtained in the one-dimensional model will remain
valid in three dimensions, it is clear that the model will
have to be extended (three-dimensional calculations are
in progress [11]. This fact is particularly true in view of
the important role played by Pauli correlations in the
model. Furthermore, because one of the main goals of
the project is to calculate quark giant resonances, the as-
sumption of quarks with no internal degrees of freedom
will also have to be relaxed. Nevertheless, our results
might be viewed as a first step in the long quest toward
unambiguously identifying quark signatures in nuclei.
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