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Using Coulomb distorted waves for the electron wave functions, we investigate (e,e’y) processes
where the nucleus is excited by inelastic electron scattering and the subsequent decay photon is detected
in coincidence with the scattered electron with the nonavoidable bremsstrahlung process which must be
coherently included. We examine the effects of Coulomb distortion on the resulting cross sections and
compare our results with plane-wave analyses and with previous approximate calculations. In addition
to examining other calculations, we compare our results with the available data and discuss the possibili-
ties of using this reaction to determine multipole admixtures and extracting transition charge and

current distributions for medium and heavy nuclei.

I. INTRODUCTION

For many years electron scattering has been one of the
most important tools for investigating nuclear structure.
The principle reasons for this are that the electromagnet-
ic interaction is well understood and that it is relatively
weak, so that it only slightly disturbs the nucleus under
study and penetrates the entire volume. While phase-
shift analysis is necessary for the analysis of elastic elec-
tron scattering, the plane-wave Born approximation
(PWBA) suffices for the analysis of inelastic electron
scattering from light nuclei. For inelastic electron
scattering from medium and heavy nuclei, it was neces-
sary to include Coulomb distortion in the electron wave
functions and carry out a distorted-wave Born approxi-
mation (DWBA) analysis. This was worked out many
years ago [1], and more recently, a Coulomb distorted
analysis of the radiation tail accompanying elastic
scattering [2] which lies under the inelastic cross section
justified an ad hoc procedure long used for subtracting
the radiation tail from medium and heavy nuclei [3]. Us-
ing these tools, inelastic electron scattering has become a
very precise tool for extracting the radial distributions of
transition charge and current distributions to nuclear lev-
els, particularly for cases when only one multipole transi-
tion is allowed or dominant.

With the advent of new continuous-beam machines,
coincidence experiments of the form (e,e’x ) become pos-
sible. In most cases particle x is some nucleon knocked
out of the nucleus or a meson produced from a bound nu-
cleon, which then exits the system. In both cases the
coincidence requirement eliminates the troublesome radi-
ation tail, but having a hadron as an outgoing particle in-
troduces the traditional uncertainties arising from the
strong interaction. While many interesting experiments
are being done with x being a hadron, the idea of keeping
the precision and the lack of uncertainty associated with
purely electromagnetic interactions is difficult to give up.
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The basic features of (e,e’y) were first explored by
Rose and co-workers [4,5] in the plane-wave electron ap-
proximation. They identified the essential properties of
the process and treated both the problem of
bremsstrahlung-nuclear interference and the case of
nonzero spin nuclei. Subsequently, Drechsel and Uberall
[6] extended the plane-wave analysis to overlapping nu-
clear levels, while Arenhovel and Drechsel [7] formulated
the problem in the language of polarizabilities. More re-
cently, Fein et al. [8] have used this approach to examine
the suitability of (e,e’y) as a probe for giant resonances.
Finally, within the plane-wave approach, Donnelly, Ras-
kin, and Dubach [9] have emphasized the complementar-
ity between the (e,e’y) process and electron scattering
from polarized targets. An early work [10] set up the
basic formalism for including Coulomb distortion in the
nuclear part of the process, but investigated only a few
cases. More recently, Ravenhall et al. [11], in collabora-
tion with the experimentalists at the University of Illi-
nois, have included the Coulomb distortion effects on the
part of the transition induced by the charge operator in
the Coulomb gauge. They avoided kinematic regions
where the bremsstrahlung interference is a significant
contribution. To date, the experimental efforts to use the
(e,e’y) reaction have been carried out at Illinois [12] and
Mainz [13]. While both groups reported that accurate
measurements of the process are difficult, they were able
to obtain quite good data from an E2 transition in '*C
and a mixed E2-M1 transition in ’N. The primary ex-
perimental difficulty, apart from rather low counting
rates, is the detection of the coincidence gamma rays in
the hostile environment of an electron-scattering hall.
However, as noted by Papanicolas in an invited talk four
years ago [14], with care the reaction (e,e’y) can be
effectively used to study nuclear excitations below the
particle-emission threshold to a high degree of accuracy
even for mixed-multipole transitions.

With the intention of helping achieve this possibility,
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we will examine the (e,e’y ) reaction with the inclusion of
the bremsstrahlung amplitude in both the plane-wave ap-
proximation and with Dirac Coulomb waves for the elec-
tron. Inclusion of the bremsstrahlung amplitude will in-
crease the kinematic region available to the experimental-
ists since useful coincidence data can be obtained nearer
the incident and scattered electron directions, and in-
clusion of Coulomb distortion in both the nuclear excita-
tion and bremsstrahlung amplitudes will permit the
analysis of experiments from medium and heavy nuclei.
In the present work, we restrict ourselves to particle
stable states where the resolution of the detectors is
greater than the natural decay width of the states. This
permits us to only calculate the amplitude corresponding
to nuclear excitation followed by subsequent decay since
the time-reversal amplitude is very small. Our purpose is
to fit the available data and to examine a number of nu-
clear transitions, particularly mixed-multipole transi-
tions, to see if (e,e’y) can be useful in extracting the nu-
clear transition and current distributions. We also have
particular interest in the case of heavy nuclei since the
bremsstrahlung amplitude is proportional to Z, while the
nuclear excitation and decay is proportional, roughly
speaking, to the number of nucleons involved in the tran-
sition. Thus the bremsstrahlung amplitude increases rel-
ative to a single-particle transition and subsequent decay.
Furthermore, both are modified by Coulomb distortion.
One of our goals is to see how useful (e,e’y) is for such
cases.

In Sec. II we give our formalism for describing the
(e,e’y) process in both the plane-wave approximation
and DWBA. We include both the nuclear excitation and
subsequent decay amplitude and the bremsstrahlung am-
plitude. In Sec. III we present a number of examples to
illustrate the application of the (e,e’y) process to the
study of real nuclei, including mixed-multipole transi-
tions. In Sec. IV we briefly summarize our conclusions.

II. FORMALISM

A. Nuclear excitation amplitude

The Hamiltonian density representing the interaction
of electron and nucleus due to exchange of one photon of
momentum k is

H{})=—4ma[pPG(r,,t, )pP(r,)

—j®-G(r,,r,)joP(r,)], (1)

where pP and jP (p%® and joP) are electron (nuclear)
charge and current-density operators and « is the fine-
structure constant. The Green’s functions G and G for
the interaction are given by

G(r,,1,)=ik 3 j (kr Oh{Pkr YYMP)YEM#,), @)
LM

for the charge-charge interaction, and

Gl(r,,r,)=ik 3 j (kr Oh{V(kr )YYX @ )YIM?,), 3)
JLM
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for the current-current interaction, where r. and r,
refer to the larger or smaller of r, and r,,. They are given
by an expansion into spherical harmonics, which also
separates the nuclear and the electron variables. Using ¥
and ¥ to denote the time-independent nuclear and elec-
tron wave functions, the amplitude for transitions from
the initial state i into the final state £’ is

AP =—ama [ [[(plpPl9,)Gr,,r,) (¥, |pP|@,)

— (Yl jPlY ) -Glr,,1, ) (W, jP ¥, ) dT,,dT,
(4)
The matrix elements (¢,[p?|¢;) and (¢, |j°P|y;) are

the transition charge and current densities, respectively.
For the electron these quantities are simply evaluated:

(BplpPle) =l (x,) (5)

byl i) =yhiray;(r,) 6)

where a is the Dirac matrices. For the nucleus, transi-

tion densities are conveniently expressed by employing
the expansions

(L o
(WolpPI) =3 Ciadht, pr(r) YHG,) %)
LM

. J,LJ
(PpliPlw;)=3 CA'III-M{VIJ,,[‘]L,L(rn YL (?,)
LM

Iy )YII‘:I,L~1(?n)

L +a(ry )YII?,L 7]
(8)

The strength of the transitions are characterized by the
reduced transition probabilities for electric and magnetic
multipoles defined by

B(EL;J;—J)
2+
C2J,+1

2

(2L + )

wL

N (o
LD fo r2dr pr (r)j(er)

B(ML;J,—J;)
2041
T 2J,+1

_L
L+1

(2L + 2

1! © 5 .
X fo r¥drJ,  (r)j,(or) (10)

COL

In Appendix A we define the form factor associated with
these charge and current densities and give the con-
straints imposed by the continuity equation.
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1. Plane-wave approximation )
uf =

E;+m, 1/2‘ pycosd, p;sinde 2 ]
We give a brief review of the plane-wave Born approxi- 2m E;+m, E;+m,

mation treatment of inelastic electron scattering, where

we neglect the distortion of the electron wave functions 14)
by the static Coulomb field of the nucleus and take the
electrons to be in plane-wave states. The wave function

e

s | Ertm, 172 Py sinfre 2 Py cosd,
for an electron of momentum p and energy E may be up = o 01 Eor -
written, for the initial state, m, FTm, E;+m,
_ i(p;r) 15
9 ppr)=uVpe T an (13)
and for the final state The matrix elements for the scattering of the electrons by
¢(f”)(pf,r )= }N) Ye ipym) (12)  the nucleus can be written as
The spinors u}'(p) are given for electrons traveling in s 1
pinc Li(f) (f lJ;ll>'7’
general direction by &= —dnai f T f dr W
172 1
u(h= Eitm, 0 i{f'lpnli)
! 2m, p;cos0,/E;+m, ’ + e Yo |4p »
p; sinbye ' /(E; +m,)
(13)
E 4+ 172 0 (16)
ult'= ST —z'1¢ ’ where 7 =u *'y and a=pfy. The multipole expansion of
2m, p;sinfe '/E.+m, . 0 .
* 0. /(E —'i— y the Fourier transform of the nuclear matrix elements can
p; cos6,/(E; +m, be carried out by
J
ST loxoli)e dr=v"4n 3, Li*Cy sy Dii0(6,,0F(q) , an
LM
© . .\ ig- = L~diLd g .
fo (f'li(0)]iYe'a rdr=\/2772EILCM"_M{Wf S uDy;,(6,6,00,[F(q)+iuFf(q)], (18)
LM p==1

where (6,¢) are polar and azimuthal angle of q and the various form factors F; (¢) are given in Appendix A. Choosing
q along the z direction and substituting Eqgs. (17) and (18) into Eq. (16), we obtain, for the excitation amplitude in the
plane-wave approximation,

JLI. F(q)L JL Ff(q)
A (M, Mp,my,mp)=—4raiV2r 3 i, zLCM#Mf,ug y?—HCMM{, nEy -—2
L,u q w w
Fi(q)
+ix/2(2L+1)C,{,f)ﬁgf~—L—~yo u; (19)
q

where _2;'\# are the spherical unit vectors given by £&,=—(X +ip)/V2, E_,=(& —i$)/V2, E;=%, and p==1 in the trans-
verse terms since q is along the z axis. The scattering amplitude can be separated into magnetic (transverse) and electric
(transverse and longitudinal) components, which can be written as

Vv
Aﬁzh—%L—T’.Lu;'(_CM lM a §1+CML—Jf1M a: § u Fil(q) , 20)
q -
FE(q) 5 FL(@)
Ag¥ 2L—q (CI‘II'III‘IIM a§1+CM—1M a§ Ju; +i"V2(2L +1) fi q C;lf)il u}u : 1)
q —

2. Distorted wave

Next, we consider the distorted-wave treatment of inelastic electron scattering. That is, we take into account the dis-
tortion of an electron wave function due to the static Coulomb field of the nuclear charge density. The incoming and
outgoing electron wave functions ¥; and ¢/, are the solutions of the Dirac equation containing the potential due to stat-
ic charge distribution of the nucleus. Explicitly, initial and final electron wave functions for electron momentum p,(p )
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and energy E; (E,) in a central field when expanded in partial waves with appropriate boundary condition are

2
(E;+m,)
WP T ) =dm | | S e IO L YT (b ) 22)
i KL
172
, (E;+m,) —i - .
1/}}"(pf,re)=477 #I;—e— Ze 8" ICL“;,Z),{,”Yﬁ -m (ﬁf)l/)',:'(pf:,re) s (23)
f ’

where the spinor is

8:(pisre X(7,)

VPOT)= if (o W 22)

(24)

With these expansions the integration over the nuclear angular variables and the electron angular variables can be per-
formed. In a coordinate system in which the incoming electron direction defines the z axis, one obtains the result

(E;+m NEp+m,) '
(2J; +VE,E;V?
JLJ

iy
MMM

A}’f,f,(M,-,Mf,,m,m’)ZSﬂ'za

X 2 ———-————(2L+1)1/2 2 j +I+1/2+Iei(8x+sx’)i1—1'(2l+1)(2j+1)l/2
LM

1(1/2) 1(1/2)
C jC jmmm+MCm1v{m+M

X [CHEEW ('l jl; AL )R B(kL ')+ CBEW (T jl; LL )R M(kL k)]
XYprM=m(p), (25)
where I =1(—«) and the electric and magnetic radial integrals R Z(xkL«’) and RM(kL«’) are given by
REkLe)=QL+Dik [ * [ “|pr(r)ip(kr DRk g ur)g e (r )+ £ lr)f ¢(r,)]
Jr,e—1r)jp —1(kr hy Yy (kry)
VL(2L+1)
XAL[f(r)8,e(re) =& (r ) f o (r )1 H (k=K f (1 )8 o (r )+ 8, (r ) f o (7)1}

Jrp+1(r )L 4alkr o )hL(,l-)f—l(kr> )
—1 e ————
V(L+1)2L+1)

+

XUL+D[f(r)ge(r,) =8 (r ) fe(r )] — (k=K' f o (ro )8 (r. )+ 8, (1) fe(re)]}

X riridr,dr, (26)
and

Vp(kr OhiV(kr )
VL(L+1)

These particular forms of the radial integrals result from using the Lorentz gauge.

© . J (n
RMLk')=QL+1ik [ 7 [ EIAAY (KK (7 g e (r )+ 8 r ) f o) 2 2drydr, . 27)

B. Deexcitation process

The nucleus y decays from the excited state f' to state f with the emission of a photon and, of course, is independent
of whether or not we use a plane wave or distorted wave for the excitation. The transition matrix element for the pro-
cess is given by

1(E )t

Agy =i [ d*x(f,11Hp, 10, £ Ve , (28)

where H;, = —V4maj- A, where A is the vector potential of the real photon field. In terms of the creation and annihi-
lation operator, it can be written as

A= (a; i e "' +a] quxemt) , (29)
P
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where %} ;, = exe 7and A denotes the polarization state of nuclear photons propagating with momentum k:

A3 = —27iV4maS(E;+o0—Ep) [ d3r(f1j€flf e kT (30)
We can expand the photon field €*e ~¥T in terms of the multlpole expansion

e k=27 3 LiH—1)"MTID*L . (4,,0,,0)( AT +ir ATE) 31)

LM

where the radial parts of the current density are defined by the complex conjugate of Eq. (8) and the D function is
defined by Rose [15]. The scattering amplitude thus is found to be

20/ A
A5S5 (0, My =STIRVATE g )
V(2 p+ e
XS (—1)~M+; —LD*MA(¢V,97,0)C,{,§§§{W[\/2L+1F,§4m)+iAF£<w)] . (32)

In order to examine mixing between electric and magnetic multipoles, we separate this amplitude into magnetic and

electric parts, both of which are transverse:
iM647a)! 2 ;=L M

dex —
(MM Mp)=———
T QT Do

and

5 \1/2 —
Ef (A, My M= META) T o r, My
V(2 e+ Do L

"di_m

(6, LFM(w )c{{f'ﬁjglf (33)
(6, )FLE(a))C,‘JlfI];Mf , (34)

For convenience, we introduce a mixing parameter 3 and write the total amplitude for excitation and deexcitation as

A™N A m,m' M, M, J,J )=
Jf,Mf

[B dex

where the subscripts ¢ and @ are the arguments of the
form factors for the excitation (plane-wave case) and
deexcitation amplitudes, respectively. The coincidence
cross section is obtained by multiplying the excitation
amplitude times the deexcitation amplitude and coherent-
ly summing over the angular momenta labels, L,L’ and
the intermediate magnetic substrates M,. Finally, the
modulus squared of the product of the amplitudes is aver-
aged over the initial spin states, summed over the final
spin states, multiplied by the density of states, and divid-
ed by the incident flux to obtain

dSUnucl
dQ,dQ do
2
opsEE, 2
=4 -~ J A A d;x
MM A

(36)

The deexcitation amplitude is the same for both the
plane- and distorted-wave excitation, but one should note
that, in the plane wave calculation, we choose the Z axis

(M, M) +(1

S [BES ) (My,Mpym,m")+(1=BIMS; (M, Mp,m,m")],

B) dex

o, My M), (35)

along q while in the distorted wave, we choose the Z axis
along p;.

C. Bremsstrahlung amplitude

1. Distorted wave

The Hamiltonian density for electrons in a static elec-
tromagnetic field and photon is

H=H,_  +Hpc+H,, , 37)

rad

where the spherical symmetric static Coulomb potential
of the nucleus, ¥V(r), is included in the Dirac Coulomb
Hamiltonian

Hpyc=—ia-V+V(r)+m,B, (38)

and a and B are the standard Dirac matrices. Substitut-
ing the partial-wave expansion Egs. (22) and (23) for the
initial and final electron states and the photon multipole
expansion and carrying out the angular integral and re-
quisite Dirac algebra, we obtain [2]



&

COULOMB DISTORTION EFFECTS IN (e,e’y) PROCESSES 2699

(E,~+me)(Ef+me)a 12

X 2\/2L+11_L2(~1)'M+‘D* (¢,,6,,0)

A}’,-'e(?»,M,L,m,m’)=87T37»

X 2e"5x+5K')I-1—1'(_1)j+1/2(2j+1)1/2(2l+1)1/2
et

K12 C I /2))
X C ot ICE L ZY mim + CL G /231 /200C i m + M

X R (k,k', L, )Y M= (5 ) (39)

where the initial electron momentum p; has been chosen to define the z axis. The radial integral in Eq. (39) is given by

1+(_1)I+T'+L
2

1+(__1)I+1'+L

M4ia 5

R(x,k',L,A)= 'y, (40)

where 1=1(—k), and the magnetic and electric radial integrals are given by

() = mlf%”l)—]—l,—z S itor S g8t ) @1)
and
RS N
1'B'= T+1 fow jL—1lor) (fxgx'"‘gkf,«)-m‘-K « (f&e+8S) | Firlorf 8etgcfe) |ridr, 42)

and for calculational convenience we have written the radial integrals in the least singular gauge.

The bremsstrahlung amplitude also can be expressed as a sum over the polar angle dependence of the D functions
[15] by writing

a;= 3 apydi -m(6,) , 43)
LM

with the azimuthal dependence in the coefficient a; . In this form we can apply the Yennie- Ravenhall [16] conver-
gence technique to make the L sum converge faster. The recursion formula for d7,.,,(6) on j is given by
172

(j+m'+1)(j—m’'+1) +

(G+m+1D(j—m—1)

s
a;

(jt+m)j—m)
(j+m')j—m')

di. (8.)cosd,=—Laitl(g.) + 224, (0, (44)
m'm\Yy % a, m'm\Yy a, m'm\Yy’ >

where a,=[(j—m+1D(j+m~+1)/(j+1)2j+1)]a;, a,=[(j—m')Nj+m')/j(2j+1)]a;, and a,=[mm’'/j(2j
+1)]a;. Inour case, j=L, m'=A, m =—M, and Eq. (44) reduces to

VIL+M+1NL —M+ 1) +A+1)L— 7L+1)dL+

L —+
dy —m(6,)cosb, L+DRL+D) u(6,)
V(L+M)L —M)L+ML—M\) ,1_, MA
- (L+DQL+1) A5 —m(0) = T 1) dn-m(0) - @5)

Equation (43) can be written as

asg= mzauu cos9,,)d§,_M(9y), (46)
and applying relation Eq. (45), we get

1

@ (1= cosb,) f zaLMdA -m(6;) 47)
where

‘g 1+ MA —a V(L+M)L—M)L+ANL—A)

Gov = Am \TT L) | M LQL+1)

T M (L+1DQ2L+1)
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Using this technique, we can calculate the DWBA bremsstrahlung amplitude for all photon angles 6, at least 20°-30°
from the incident and outgoing electron directions. For photon angles closer to either the incident or outgoing electron
directions, the L series does not converge well.

2. Plane-wave amplitude

The transition matrix element for the second-order (bremsstrahlung) process is given by [2]
172
U (T +Ty)u; . (49)

2

—; 3/2 - m__
S;=i(4ma)’z8(E;+w—E;) 2E,E, o

The operators T, and T, corresponding to the two different diagrams appear between initial and final electron spinors
with four-momenta p,=(E;,p;) and p,+(E;,p,) and can be written in terms of an integral over the intermediate
three-momentum p as

‘( . +m) —ir(k—
f fd d A YOEI 27 P 27’0F(ip_p’|)e (k P+pf) , (50)
(p;—p*)p—p;l
( —y-pt+m; —ir- _
=f fdrd Yo 7’205/2 Y'p 2AF(|p_pf|)e (k+p—p,) s1)
(p}—p*)lbp —py|
where F(q)=F(|p— p, H=F(lp—p f|) is the form factor due to the finite size of the nucleus, A denotes the photon po-

larization, and €=y’ —y- §A After integrating over r and p and taking a™ =(a —zaz)/\/2 ¥ =Pa, and y,=p, for
positive A, we obtain

E,+myy+ap, sin02ei¢2+a3(p2 cosf, +w)
_(pf+k +2Pfk 00502)

S;=C(2m3%(§ﬂu}a‘

4 E;—myy+a;p,sind, cosd,+a,p, sind, sing, +as(p, cosd; —k) y (52)
p}—(p}+k*—2p;k cosb,) o
and taking a* = —(a,+ia,)/V'2, for negative A, we obtain
S-—ci Flg) 1 E.+myytap, sinezei¢2+a3(p2 cosf,+k)
s (’T)v zure” 2 (p2+k2+2pk cosd
pi —\py -PyK COS »)
N E;—myyt+a,p;sinf,cosd, +as(p; cosd;—k)+ayp, sinb, sing, (53)
pF—(pf+k*—2p;k cosb,) b
[
where C=i(47a)*/*28(E;+o—E;). The bremsstrah- ete =27 Ifi—’“(—l)—MHD"‘_ﬁ,’“(i)
lung cross section can be written as an incoherent sum LM
over the electron spins and photon polarization, X(A™ +ip ATE ) | (56)
4o ) where D"LLM,#(/IE) are defined by Rose [16] and A} and
- 3 AP (54)  ATL, are the transverse magnetic and electric Hansen
dQ,dQ,do my,my,A v solutions given by Eisenberg and Greiner [17]. The label
u denotes different polarization states of the photon. For
where k=p;—pin T; and k=p—p; in T,, we can perform the
E, kzpf E, 172 space integrals in Eqgs. (50) and (51). For example, the
A ’21"”2 =|—"=| Sh (55)  (TM) contribution to S% for photon polarization is given
T™ = rpLM
contains all flux, density of states, and statistical factors. (Sﬁ‘ ) _CL% ur (B A,u(F 1 tF f Yo
IRy

Since the DWBA calculation for bremsstrahlung neces-
sarily involves a photon multipole expansion, it is useful
to obtain a multipole decomposition of the plane-wave re- +yoF,+F$)B ;l[};f Ju; , (57
sult for checking purposes. We expand the photon field

in multipoles by writing where



44 COULOMB DISTORTION EFFECTS IN (e,e’y) PROCESSES

BIM=[8r°2L +1)]A—1)F*MHIDeL (Ryg,  (59)

and f , are spherical basis vectors for A=0,+1. The in-

tegrals over d3p are written as a scaler integral

M =cLiL, GEMA where

F(lp—p, DY Mk )8k —k ;)
(p}—p))p—p; k>

with F$¢=m, IM* and F=E,1*M* and vector integral

FiMr=cL™ G where

GM—r= | d’p, (59

PF(Ip—p: Y *(k,)8(k —k,)
(p;—p?)|p—p;Ik>

The integrals with the subscript 2 are obtained by inter-
changing the labels i and f for E;, p;, and k,. The in-

GiM—r= [ d’p . (60)

]

d3atot . Cl)zpr,Ef
dQ.,dQ.do  256p7

2

m,m’, A
Mi,Mf,Ji,Jf

brem
2 ALM
LM

2+’

However, when the final nuclear state is an excited nu-
clear state (not the ground state), there is no interference
with bremsstrahlung. In the following we only consider
the case where the nucleus returns to the ground state.

III. RESULTS AND DISCUSSION

Before examining specific cases, let us discuss the coor-
dinate system for displaying results. We choose the in-
cident electron to be along the z axis and the scattered
electron lies in the x-z plane. Thus the momentum
transfer q=p; —p, has azimuthal angle ¢, =m. The out-
going photon is characterized by polar and azimuthal an-
gles 6, and ¢,, but for convenience in display, the in-
plane photon distributions are plotted for 6, ranging
from 0° to 360° with #¢,=0. Thus, in these plots, 6,
occurs somewhere between 6, equal to 180° and 360°.
For photon distributions out of plane, we use the stan-
dard polar angles.

The formalism for the (e,e’y) process developed in the
previous section is now used to explore the size of the
corrections brought about by Coulomb distortion with
the particular concern to see if the Coulomb effects inter-
fere with using this reaction to study the underlying nu-
clear transitions. The ingredients needed for studying a
given nuclear excitation and deexcitation process are
multipole decomposed transition charge and current ra-
dial distributions. We used transition charge and current
distributions extracted from inelastic scattering experi-
ments, for the light nuclei 'C and '°N, a medium nucleus
%9Zr, and heavy nuclei '*'Ta and 2°*Pb. In particular, we
examine excitation and deexcitation of the 4.439-MeV,
(I"=27) state of ’C, 6.32-MeV (I"=23") state of "N,
5.06-MeV (I"=77") state of *°Zr, 0.136-MeV (I"=2")
state of '®'Ta, and 2.615-MeV (I"=3") state of 2°*Pb.
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tegrals GE¥~* and G ~* can most easily be evaluated
by choosing the vector p; —p, to define the z axis and for
p; and p, to lie in x —z plane. It is convenient to take k
as the integration variable rather than p. The integration
over dk; is straightforwardly done by using the delta
function [2]. The ¢ integration can be performed analyti-
cally by use of contour integration, while the remaining
integration over 0 is done numerically [2].

D. Interference and total cross section

For the case where the final nuclear state is the initial
nuclear state, the amplitude for the nuclear excitation fol-
lowed by deexcitation must be coherently added to the
bremsstrahlung amplitude. Thus the cross section for
this case is given by

3 AN P S (ARFm AN + AR AFN) ) L (61)
LM L.M
L'M

A. 2C(e,e'y)(27,4.439 MeV)

We first consider an E2 transition to the 4.439-MeV
state in '2C. We use the Fourier-Bessel fit to the transi-
tion charge and current distributions given by Ravenhall
et al. [11] to characterize the transition. In Fig. 1(a) we
show the coincidence differential cross sections for excita-
tion and deexcitation, bremsstrahlung, and interference
terms at 7=66.9 MeV and electron-scattering angle of
60°. The bremsstrahlung and interference terms are
negligible apart from photon directions near the incident
and scattered electron directions or diffraction minima.
Note that, for '2C, Coulomb distortion plays a significant
role with a small shift in the photon angular distribution,
but with a significant change in the magnitude of the to-
tal cross section. In Fig. 1(b) we show the Coulomb dis-
tortion effects on the total coincidence cross section at
electron incident energy E;=66.9 MeV and scattering
angle of 6, =60°. As noted earlier, the DWBA calcula-
tion for bremsstrahlung does not converge for photon an-
gles too near the electron incident and final direction, and
so we only show the DWBA results in angular regions
where we achieve convergence. In Fig. 1(c) we show our
DWBA calculation as compared to the experimental data
from Illinois [12]. The experimental data were not an ab-
solute measurement and have been shifted to obtain a
best fit which is excellent. Our results are in general
agreement with those of Ravenhall et al. [11], in that we
confirm their conclusion regarding the sign between the
longitudinal and transverse form factors, but our agree-
ment with the data is somewhat better. We suspect this
arises from their approximate treatment of the Coulomb
effects on the transverse terms. Note that the full PWBA
and DWBA curves are very slightly shifted in angle for
this case; the primary effect is a change in magnitude.
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FIG. 1. (a) Coincidence cross sections for 2C(e,e’y) as a
function of photon polar angle 8,. The curves labeled nuclear
and bremsstrahlung are the cross section for these two process-
es, the curve labeled interference is the absolute magnitude of
the interference term between nuclear and bremsstrahlung, and
the curve labeled total is the coherent sum of both processes.
(b) Coulomb distortion effects on the total coincidence cross sec-
tion for '2C(e,e'y) as a function of photon polar angle 6,. Note
that the DWBA calculation for bremsstrahlung does not con-
verge for photon angles too near the electron incident and final
direction. (c) Same as (b) except the electron scattering angle is
80°. The experimental data is from Ref. [12].
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B. *Zr(e,e’y )(7,5.06 MeV)

To investigate Coulomb distortion and bremsstrahlung
contributions in a medium nuclei, we consider the case of
an M7 transition from the spin-O ground state to the
5.060-MeV 77 state in *°Zr which has been studied using
inelastic electron scattering by Heisenberg et al. [18].
They performed a model-independent reconstruction of
the current density J; ; (r) for the pure magnetic transi-
tion using the Fourier-Bessel expansion, and we have
used their results. In Fig. 2(a) we show the coincidence
differential cross sections for nuclear excitation and deex-
citation, bremsstrahlung, and the interference terms for
T=100 MeV. In this case bremsstrahlung alone is not
very significant, but there is a significant interference
effect. In Fig. 2(b) we show the Coulomb distortion
effects on the total coincidence cross section at electron
incident energy T7=100 MeV and scattering angle of
6,=60°. Recall that we can only show DWBA results in
the angular region where we achieve convergence. In or-
der to check the energy dependence of Coulomb distor-
tion, we varied the incident energy of electron and as ex-
pected, the Coulomb distortion reduces significantly with
an increase of the incident electron energy from 100 to
150 MeV as shown in Figs. 2(c) and 2(d).

C. 2%Ph(e,e’y )(37,2.615 MeV)

To investigate Coulomb distortion and the bremsstrah-
lung contribution in a heavy nuclei, we examine the exci-
tation of the first the 3~ state in 2°®Pb and subsequent
gamma decay back to the ground state. We use the tran-
sition charge and current distributions from the Tassie
model [1] for 2®Pb as normalized by the inelastic data
given by Heisenberg et al. [18]. In Fig. 3(a) we show the
coincidence differential cross section for nuclear excita-
tion deexcitation, bremsstrahlung, and the interference
terms at 7= 100 MeV and scattering angle of 6, =60°. In
this case the interference term contributes 5—10 % away
from the bremsstrahlung peaks. This is a very collective
transition [the B(E3) is approximately 29 single-particle
units], and so the nuclear excitation and deexcitation
dominates. In Fig. 3(b) we show the distortion effect on
the bremsstrahlung coincidence cross section at 7=100
MeV and scattering angle of electron 6, =60°. The dis-
tortion effects on the bremsstrahlung cross section are
comparable to those on the nuclear excitation and deexci-
tation cross section. As usual, we only show DWBA re-
sults in the angular region where we achieve convergence
in the bremsstrahlung cross section. To examine the
prospects of looking at a single-particle transition in such
a heavy nucleus, we repeated the above calculation with
the B(E3) value reduced by a factor of 29 and show the
results in Fig. 3(c). Note that while both bremsstrahlung
and the interference terms contribute significantly, the
distinctive octupole pattern remains.

D. ®!'Ta(e,e’y X %+,0. 136 MeV)

We again used the Tassie model for the %—%“L (0.136
MeV) excitation in '*!Ta for the charge and current dis-
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tributions. This transition can be mediated via
M1,E2,M3,E4,. . .,E8, but since the photon energy o is
so small, it is dominated by the M1 and E2 transitions.
The reduced transition probabilities B(E2)=19000
e?fm* and B(M1)=1.28X1073 ¢2fm?, as determined by
Armbruster et al. [19], were used for absolute normaliza-
tion. In Fig. 4(a) we show the coincidence cross section
for nuclear excitation and deexcitation, bremsstrahlung,
and the interference terms at 7=30 MeV. In this case
neither bremsstrahlung nor the interference terms are
significant. While the strength of the E2 and M1 transi-
tions has been determined, the relative phase of the tran-
sition amplitude is not known. In order to investigate the
dependence of the photon angular distribution on the rel-
ative sign between electric and magnetic transition ma-
trix elements, we show the effects of choosing a positive
and negative relative sign in Fig. 4(b). We find a
significant change in the angular distribution pattern, and
from this information we could easily extract the relative
sign if we were to have experimental results. In Fig. 4(c)
we also show what patterns would be produced for a pure
electric (E2) or pure magnetic (M 1) transition.
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E. ®N(e,e’y (37,6.32 MeV)

The next case we consider is the excitation of the spin
-1~ grand state of °N to the 3~ state at 6.32 MeV and
deexcitation by photon emission back to the ground state.
We use the Fourier-Bessel fit to the transition charge dis-
tribution of Nick [13] and analytic forms for the trans-
verse electric and magnetic form factors given by Don-
nelly, Raskin, and Dubach [9] to characterize this mixed
transition. For an E2-M1 mixed transition, there will
generally be a single Coulomb multipole, but two trans-
verse multipoles (one electric and one magnetic). Mea-
surements of the angular distribution for a well-chosen
set of electron and photon angles may then be used to
determine not only the transverse-longitudinal interfer-
ence, but also the transverse-transverse nuclear interfer-
ence and, thereby, to separate the two transverse mul-
tipoles (E2 and M1). The reduced transition probability
B(E2)=14.4 ¢?’fm* and B(M1)=1.43X10? e?fm? for
the decay have been determined by Shukla and Brown
[20]. In Fig. 5(a) we show the nuclear excitation and
deexcitation, bremsstrahlung, and interference contribu-
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FIG. 2. (a) Same as in Fig. 1(a) for Zr(e,e'y). (b) Same as in Fig. 1(b) for **Zr(e,e’y). (c),(d) DWBA and plane-wave coincidence
cross sections for *°Zr(e,e’y) as a function of photon polar angle 0, for the electron incident energies =100 and 150 MeV, respec-
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FIG. 3. (a) Same as in Fig. 1(a) for 2°®Pb(e,e’y). (b) Same as
in (a) for 2®Pb(e,e’y) except that a single-particle value was
used for B(E3). (c) Coincidence cross sections due to brems-
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FIG. 4. (a) Same as in Fig. 1(a) for *!Ta(e,e’y). (b) Coin-
cidence nuclear excitation and deexcitation cross sections for
81Ta(e,e'y) with relative sign change between electric and
magnetic matrix elements, as function of photon polar angle 6,.
(c) Coincidence nuclear excitation and deexcitation coincidence
cross sections for pure electric (E2) and magnetic (M1) transi-
tions, as function of photon polar angle 6,,.
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FIG. 5. (a) Same as in Fig. 1(a) for '*N(e,e’y). (b)—(e) Coincidence cross section for ’N(e,e’y) as function of photon azimuthal
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tions to the differential cross section at 7=183 MeV and
scattering angle of electron 6, =25°. In this case brems-
strahlung and the interference terms are only significant
near the incident and scattered electron angles. In Figs.
5(b)—5(e) we show a comparison of our calculations with
the experimental results carried out at the University of
Mainz by Nick [13]. The photon angular distributions
were measured for various polar angles as a function of
the out-of-plane azimuthal angle ¢,. Recalling that we
have defined the electron azimuthal angle as O, we set the
electron-scattering angles 6, =24°, 40°, 54°, and 72° and
fixed the photon polar angle 6, at 90°, 120°, and 130°
while varying ¢,. In general, our calculated shapes are in
very good agreement with the measured distributions.
Note that only relative cross sections were measured, and
so we multiplied the data points of a given azimuthal dis-
tribution by a factor which gives the best fit to our calcu-
lated cross sections. While Coulomb distortion effects re-
sult in small shifts in the 6, distribution we only found an
overall magnitude change in a given ¢, distribution.
Hence this experiment is not sensitive to Coulomb effects.
In order to check the sensitivity of the nuclear excitation
and deexcitation to the relative strength of the E2 and
M1, we varied the S factor in Eq. (35) to obtain the az-
imuthal distributions shown in Fig. 5(f) for T=183 MeV,
electron-scattering angle 8, =25°, and photon polar angle
0,=130°. The experimentally determined B(E2) and
B(M1) corresponds to $=0.5 and gives the best fit to the
data. Increasing or decreasing S results in quite different
shapes. In Fig. 5(g) we varied the B factor for photon po-
lar angle distributions for T=96.3 MeV, scattering elec-
tron angle 6, =50°, and photon azimuthal angle ¢,=0".
Again, we find that the shapes for different admixtures
are quite different, and so it should be possible to extract
the mixing parameter.

IV. SUMMARY AND CONCLUSION

We have a working calculation for the (e,e’y) process
which treats the Coulomb distortion of electrons exactly
using solutions of the Dirac equation with the static

Coulomb potential of the nucleus included. The in-
gredients needed for studying a given nuclear excitation
and deexcitation process are multipole decomposed tran-
sition charge and current radial distributions. In the
preceding section we investigated the (e,e’y) process for
a number of different nuclear excitations and subsequent
deexcitations described by various simple models which
have been fitted to inelastic electron-scattering data. We
have carried out our calculations using the plane-wave
approximation and the distorted-wave Born approxima-
tion, and in both calculations we have included the ac-
companying bremsstrahlung amplitude which contributes
coherently for nuclear deexcitations back to the ground
state. We have concentrated our attention on examining
the gamma angular distributions both in and out of the
scattering plane defined by incident and scattered elec-
tron directions.

The Coulomb distortion effects are not very large for
light nuclei, but they do result in small shifts in the angu-
lar distributions and should be included when one is sort-
ing out transverse and longitudinal parts of the excitation
process. We also note that Coulomb distortion leads to
changes in the absolute value of the cross section which
would be important for absolute normalization measure-
ments. For medium and heavy nuclei, the Coulomb dis-
tortion effects are quite large in both the nuclear excita-
tion process and accompanying bremsstrahlung process,
but in the cases we examined, they do not cause any
difficulty in examining the photon angular distributions.
That is, sensitivity to mixed multipoles is still present,
and this reaction can be a very useful tool for determin-
ing the various multipole components and their relative
phases in mixed transition.

We have also included the bremsstrahlung contribu-
tions in both the plane-wave and DWBA calculations. If
we avoid detection of photons within 30°-40° of either
the incident or scattered electron direction, the brems-
strahlung contributions for the light nuclei can usually be
ignored, although the interference term makes small con-
tributions. For medium and heavy nuclei, the brems-
strahlung contributions increase, but even for single-
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particle transitions the nuclear excitation and deexcita-
tion gamma distinctive multipole patterns can still be
clearly seen. This is because the bremsstrahlung photon
distributions tend to be rather smooth with respect to an-
gle apart from the peaks around the incident and outgo-
ing electron directions.

We have demonstrated with a number of examples that
the (e,e’y) appear to very useful in analyzing mixed-
multipole transitions in nuclei. While Coulomb distor-
tion effects and the bremsstrahlung contributions need to
be included, particularly for heavy nuclei, they do not
significantly reduce the utility of this reaction in doing
nuclear spectroscopy.
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APPENDIX:
CHARGE AND CURRENT DENSITIES

In PWBA the form factors F; are simple Fourier-
Bessel transforms of the nuclear charge and current den-
sities and are given in terms of the transition charge and
current densities p; (r) and J ;.(r) as

Fi(@)= [ “pr(r)jrgrridr , (A1)
Eyv=2L4 [*°rv/T 3 .
FL(q)_E fo [VL+1J 1 1(r)jp —4(gr)
“/EJL,LH(")jL+1(qr)]"2dr > (A2)
Fg)= [ "I (rislgrridr (A3)
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where C, E, and M represent Coulomb, transverse elec-
tric, and transverse magnetic, respectively. The continui-
ty equation, which is just a statement of charge conserva-
tion, connects the currents J; ; 4, and J; ; _; to the tran-
sition charge p; by

E(UpL(r)z‘/z— E—_—L;l' JL’L_I(r)
—VIFI %*LH ’JL‘LH(r), (A4)

where £ =V2L +1. After Fourier transformation the
continuity equation becomes

%FE(Q)Z—‘/ZFL,L—1(Q)_‘/L +1Fp;44(q),

(AS)

which can be used to eliminate J; ; _,(r) so that the
transverse electric form factor becomes

L+1 12
=T %Ff(q)

FE(q)=— 7

_% f-’L,L+1(")jL+1(‘I")"2d" . (A6)

Finally, since the measured form factors are just
Fourier-Bessel transforms of the densities, they can be in-
verted to obtain

2 [0 s
pL(r)=; fo Ff(q)j_(gr)g*dq ,

__2 VL =|uE
Jpaln=—=—% [ " |Fiq)
L+1]"”
[0}
L Fe
+ L P L(q)
Xjr+1lgrig’dq ,

JL,L(r):% fowFi”(q)jL(qr)qqu .
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