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The process of heavy-ion fusion followed by compound-nucleus fission is explored in the context of
light nuclear systems. Spin- and mass-asymmetry-dependent saddle-point energies are calculated for

several nuclei with 40< Ay <80 using the diffuse-surface, finite-nuclear-range model.

A simple,

double-spheroid approximation to the macroscopic-energy calculation is developed for determining
fission barriers and fragment total kinetic energies. Fission cross sections are calculated within a statisti-
cal model and compared to experimental results. These comparisons support the idea that nuclear
fission is the dominant process responsible for the fully energy-damped yields observed in this mass re-

gion.

I. INTRODUCTION

Nuclear-fission studies have tended to concentrate on
relatively heavy systems of compound-nuclear mass
Acn > 100, largely ignoring the possibility of light-
nucleus fission. Only recently has it been shown that
compound-nucleus fission can also play an important role
in heavy-ion reactions forming systems as light as
Acn~45-60 [1-7]. The fission process in light systems
has a number of distinctive features which set it apart
from its heavier-system counterpart. In contrast to
heavy-system fission, where symmetric breakup is favored
in the absence of shell effects, the dependence of the mac-
roscopic potential-energy surface on nuclear deformation
and shape asymmetry favors the breakup of lighter sys-
tems into two unequal-mass fragments. This behavior
emphasizes the progression from light-particle evapora-
tion to heavy-fragment, binary breakup of the compound
nucleus [8]. Another characteristic of light-nucleus
fission is the relatively greater importance of the rotation-
al energy in determining whether a given system will
fission. For these systems it is only for the higher spin
states of the compound nucleus that fission can compete
favorably with light-particle (p -,n -, and a-particle) emis-
sion. At lower spin values the possibility of heavy-
fragment emission is significantly reduced because of the
rapid increase in the fission barrier in going to more sym-
metric breakup channels [2]. The limited range of spin
values leading to fission suggests the possibility of using
this process to learn more about the structure of nuclei at
high spins.

Part of the difficulty in studying the fission of light sys-
tems has been the lack of model calculations to give gui-
dance as to its system dependence and to highlight reac-
tions where the measured binary-reaction yields are in-
consistent with expectations. One of the motivations for
the present work was to determine whether binary cross
sections observed in several systems with A\=40 and
attributed to a dinuclear ‘“‘orbiting” mechanism [9] are
significantly in excess of what can be reasonably attribut-
ed to a fusion-fission process, as has been claimed [10].
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For heavier systems the transition-state model [11],
where the fission probability is related to the available
phase space at the saddle point, has been quite successful
in describing the general characteristics of the breakup
process. The standard application of this model assumes
a symmetric saddle-point configuration, however, and is
therefore inappropriate for lighter systems. It is possible
to generalize these calculations to include the possibility
of fission to different mass fragments, as has been done
for the °Ni system [2], but this requires calculation of
the mass-asymmetric saddle-point energies—a lengthy
procedure since it is essential in describing light-nucleus
fission to include diffuse-surface and finite-nuclear-range
effects [12] in calculating these energies. Earlier esti-
mates of the fission-barrier energies based on the stan-
dard, lepodermous liquid-drop model led to barriers
which were too large to allow for significant fission com-
petition with light-particle emission. Realistic calcula-
tions of the fission process in light systems are only
achieved by the inclusion of diffuse-surface and finite-
nuclear-range corrections.

In this paper a simple parametrization is developed for
the spin- and mass-asymmetry-dependent saddle-point
energies in the mass range 40 = Ay =80. This parame-
trization is fitted to saddle-point energies determined us-
ing the full macroscopic-energy calculation for the “°Ca,
#Ti, ¥V, 5Fe, Ni, and 3°Zr systems. The resulting pa-
rametrization is then incorporated into a statistical-
model calculation using the transition-state model. Fis-
sion cross sections are calculated for heavy-ion reactions
leading to the 40Ca, #2Sc, 'V, *Ni, and %°Zr compound
systems and the results are compared to experimental,
fully energy-damped, binary-reaction cross sections mea-
sured for these systems. The reactions considered are at
energies where the complete-fusion process is expected to
dominate over incomplete-fusion processes. In general,
the experimentally observed cross sections throughout
this mass range are found to be of a magnitude that can
be explained by a fusion-fission mechanism assuming
reasonable corrections to the saddle-point energies by
shell effects in the nascent, relatively ‘“cold” fission frag-
ments.
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This paper is organized as follows. In Sec. II the ex-
perimental evidence for fissionlike decay in the mass
range 40 < Ay =80 is briefly summarized. A simple pa-
rametrization of the fission barriers is presented in Sec.
111, followed in Sec. IV by a discussion of how these bar-
riers can be incorporated into a statistical-decay model.
The calculated cross sections and final fragment kinetic
energies for several representative systems are compared
with experimental values in Sec. V. Results are summa-
rized and conclusions stated in Sec. VI.

II. OVERVIEW OF EXPERIMENTAL SYSTEMATICS

The evidence for the fission of light nuclei stems from
the observation of fully energy-damped, binary yields in
heavy-ion reactions. These yields are characterized by
constant d o /d 0 angular distributions, suggesting a decay
from a rotating complex of lifetime comparable to, or
greater than, the rotational period. The total kinetic en-
ergies of the outgoing fragments are independent of angle
and can be accounted for with a simple model that con-
siders the breakup of a rotating, binary system with no
initial relative motion in the radial direction. The final
kinetic energies are then given by summing the relative
Coulomb, rotational, and nuclear potential energies in
this configuration. These two features have led to the ob-
served yields being characterized as resulting from either
a dinucleus ‘“orbiting” or fission mechanism. Table I
summarizes some of the systems for which such yields
have been observed, ordered by their compound nucleus
mass Ay, With 40 = 4 o = 80.

Few of the experiments that show evidence for fission-
like processes in light systems are sufficiently complete to
establish the exit-channel isotopic distributions or even
the inclusive fission cross section. There are a number of
reasons for this. In channels near the entrance channel,
there can be significant quasielastic yields, requiring
large-angle measurements covering a wide angular range
to unravel the fully energy-damped products from those
of faster processes. Further complicating the situation is
the theoretical expectation that the fission process should
favor the mass-asymmetric channels. In particular, for

TABLE 1. Systems with 40 < 4y <80 for which fissionlike
yields have been reported.

Detected

Reaction Acn  E.n,. (MeV) Reference fragments
88+ 12C 40Ca 30-40 [9] 5<Z<8
Bgi+ N 428¢ 30-57 [31] 5<Z=10
Bci+ ¢ v 46,51 (4,5] 5=Z=<12
BNa+2Mg YV 46 [6] 3<Z<10
3p 4160 4y 46 [7] 6<Z<7
14 12¢ oy 37,44 [5] 5<Z<11
160 4-40Ca 6N 50-62 [47] 22<A4<36
25+ 2Mg S6Ni 52,60 [1,2] 12<4 <28
160+ 4Ca 60N 51-64 [47] 22<A4<36
160 4 48T Zn 75 [48] 5<Z<10
288 4 50Cr 78Sy 96 [43] 12< 4 <58
0Ca+4Ca  Zr 86,103 [24,43] 6<A4<62
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some of the light systems considered, the population of
the ®Be channel is expected to be significant. The experi-
mental difficulties associated with ®Be detection have so
far prevented direct fission cross-section measurements in
this channel. (Although Harmon et al. [13] have found
evidence for this decay in the velocity distribution of the
associated 328 heavy recoil in the 23Si+!2C reaction. The
production of ground-state ®Be fragments to large angles
has also been deduced for the 32S+2*Mg reaction by a
measurement of the breakup a particles [2].) Depending
on whether energy-loss or time-of-flight identification is
employed, the current fission measurements tend to iden-
tify either the nuclear charge or mass of the reaction
fragments, but not both. This complicates detailed com-
parisons of the isotopic distributions with calculations.
In lighter systems with even, and equal, numbers of pro-
tons and neutrons, this last problem is mitigated by the
observation that the channels corresponding to even-even
N=2Z nuclei (i.e., ?C, %0, ®Ne, etc.) are the most
strongly populated. Table I indicates the range of mass
(or charge) which are presented in the various experimen-
tal references.

The secondary emission of light particles from the
fission fragments can also pose a serious challenge for de-
tailed comparisons of the theoretical and experimental
mass-asymmetry dependence of the fission cross sections.
One means of obtaining an experimental measure of the
degree of secondary emission is to detect both fission
fragments in coincidence, as has been done for the 56N
system [2]. In general, however, it is necessary to model
the effects of secondary light-particle evaporation to com-
pare calculations with experiment. A procedure for do-
ing this, using the Monte Carlo evaporation code LILITA
[14], is discussed in Sec. IV.

Another problem that arises in trying to compare cal-
culated fission cross sections to experimental values is the
need to know the fusion partial-wave distribution for the
model calculations. These distributions are usually de-
duced from total fusion cross-section measurements by
assuming a diffuse cutoff of the transmission coefficients
for fusion. Unfortunately, there are relatively few cases
where both evaporation-residue and fission cross sections
are measured concurrently and analyzed in a consistent
manner. Relatively small differences in the evaporation-
residue cross sections used to deduce the total fusion
cross section can lead to significant differences in the cal-
culated fission competition. Also, the favoring of
asymmetric-mass channels by the fission process can re-
sult in the evaporation-residue channels containing
significant fission yields. To achieve a consistent analysis
of a number of different systems, a simple critical-
distance model is used in the present paper to estimate
the total fusion cross section for each system considered.
The sensitivity of the calculations to the assumed total
fusion cross section is tested, however, in several cases
where measured evaporation-residue cross sections are
available.

III. ASYMMETRIC FISSION BARRIERS

The application of the transition-state model in light
nuclear systems requires knowing the macroscopic-
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energy fission barriers as functions of the spins and mass
asymmetries of the respective decay channels. For light
systems it is important that these calculation include
diffuse-surface and finite-nuclear-range effects. Although
the procedure for calculating these barriers using the
Yukawa-plus-exponential model [15] is discussed by Sierk
[12] and an interpolation routine is available for finding
the mass-symmetric barriers for nuclei of atomic number
Z =20 [16], the mass-asymmetric barriers are not readily
available. The full calculation of the fission saddle-point
energy for a specific mass asymmetry and spin of a com-
pound nucleus is sufficiently involved to make it imprac-
tical to directly incorporate these calculations within a
statistical-model calculation. Fortunately, the macro-
scopic fission barrier is a smoothly varying function of
spin and mass asymmetry, making a simple parametriza-
tion of the barrier energies possible.

To develop this parametrization, the saddle-point ener-
gies for several nuclei in the mass range 40 =< 4y <80
were first calculated following the procedures outlined in
Ref. [12]. These full calculations were done for the “°Ca,
44T, ¥V, 2Fe, *°Ni, and %°Zr systems. Saddle-point ener-
gies were found by determining the stationary points of
the compound-nucleus potential-energy surface as a func-
tion of spin and constrained mass asymmetry. The
potential-energy calculations, in which the shape of the
compound nucleus is expressed in terms of three connect-
ed quadratic surfaces of revolution, include diffuse-
surface and finite-nuclear-range effects. The parameters
used for the potential calculation were the same as given
in Ref. [12].

The shape parametrization, discussed by Nix in Ref.
[17], can be written in cylindrical coordinates (see Fig. 1)
as

b3 —(b}/ai)Nz—1,)*
p>=1b3—(b3 /a3 )z —1,)
b3—(b3/al)Nz—1;)?

forl/,—a;<z=z,,
<

for z, <z=<Il,+a,,

forz,<z=z,,

where a; is imaginary for light nuclei with constricted
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FIG. 1. Geometry of saddle-point shapes consisting of three
connected quadratic surfaces of revolution.
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necks at the saddle point (as is the case in Fig. 1). Con-
straints on the shape coordinates assure that the nuclear
surface is continuous with smooth transitions between
the three segments. With these constraints the shape is
determined by five nontrivial coordinates. Although res-
trictive, this parametrization is well behaved in the pro-
cedure for locating the saddle points. Sierk [12] has
shown that more general parametrizations can lead to un-
realistic shapes for lighter systems, with two saddle
points for nuclei with Z =< 50.

The saddle-point energies were calculated for all even
spins ranging from 0.4J .. to J.. for the respective
compound nuclei, where J,, is the spin value for which
the mass-symmetric fission barrier vanishes. Only a few
calculations were done for lower spin values since these
play little or no role in the fission process. (The final pa-
rametrization was, however, found to reproduce these re-
sults reasonably well). The program used for these calcu-
lations was checked against the results of Sierk for the
symmetric barriers in the mass range 40 < 4~y =80, al-
ways agreeing to better than 0.5 MeV, and by comparing
with the asymmetric barrier calculations published for
the spinless '''In system by Sierk [18], again with better
than 0.5-MeV agreement for all mass asymmetries.

The minimization procedure used in these calculations
was generally successful in finding suitable saddle-point
configurations for mass asymmetries 7 <0.45, with
n=1—2(A4; /Acn). A refers to the mass of the lighter
fission fragment assuming the final mass ratio is the same
as the ratio of volumes on the two sides of the constricted
neck at the saddle point. It was not always possible to
converge on a valid saddle-point configuration for more
asymmetric mass divisions, and in these cases it was
necessary in calculating the fission cross sections to rely
on extrapolated barrier energies based on the double-
spheroid approximation, to be discussed next, developed
from the more symmetric barriers.

The saddle-point energies obtained with the full calcu-
lations were fitted by a double-spheroid approximation in
order to obtain a simple method of calculating these ener-
gies. The model is of two, axially aligned, ellipsoidally
deformed spheroids separated by a gap. The goal was to
obtain a reasonable scaling for the saddle-point energies
rather than attempting to reproduce the full saddle-point
calculations. In this double-spheroid model, the saddle-
point energy is given by

VadaeJensM=Vc+V,+V,+V, ,

where Vi, V,, and V, are the Coulomb, rotational, and
nuclear energies, respectively, and ¥V, is an energy offset.

In obtaining expressions for the different components
of V,qaie» it is found convenient to express V, in terms of
an ellipsoidal geometry, the geometry used for the
double-spheroid approximation, whereas V- and V, are
most readily expressed in terms of a quadrupoloid
geometry. It is therefore necessary to have a way of
equating these two geometries. For a spheroid of mass
A, the equivalent quadrupoloid to the ellipsoidal shape of
semiminor to semimajor axis ratio b /a is taken to have
deformation
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2 1—b/a
Yz’o(o,o) 1+2b /a )

Bo=

The semimajor axis length a of the ellipsoid is expressed
in terms of the spherical radius R, with R =ry,4!/* and

=R(b/a)"?®. The comparable semimajor axis
length for the quadrupoloid @ is given by @a=R[1
+1V(5/m)B,], where R is a scaled radius such that the
equivalent quadrupoloid has the same volume as the el-
lipsoid used for the double-spheriod approximation. For
spherical shapes, R =R. The distance between centers r
in the double-spheroid approximation is given by
r=s-+a,+ta,, where s is the gap distance between the el-
lipsoidal surfaces. When using the equivalent quadrupo-
loid shapes, the gap distance was taken as § with
§=r—a,—ad,. The ellipsoidal and quadrupoloid
geometries are sufficiently similar at the deformations en-
countered in this analysis that the corresponding dis-
tances are very similar.

The two-body potential of Krappe, Nix, and Sierk [19]
was used to determine the nuclear interaction. This po-
tential is based on the same Yukawa-plus-exponential,
finite-range model utilized in deriving the saddle-point
energies. The interaction potential for two nuclei of radii
R, and R, and quadruple deformations S, | and B ,, re-
spectively, has the form [19]
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where R,=R,+R, and Y, ,(0,0) is the spherical har-
monic evaluated at 6=0° and ¢=0°. The depth constant
D and constant F are given by

4a3g(R1/a)g(R~2/a)e‘R12/a ,
= — CS
roR 1,
and
R (R,/a) (R, /a)
F=d4+ 12_f~1 _f~2a ,
a g(Rl/a) g(Rz/a)
respectively, with  g(x)=x cosh(x)—sinh(x) and

f(x)=x2sinh(x). The geometric mean of the surface en-
ergies of the interacting particles is used with

e/ =[c,(1)c,(2)]"/2 .

The individual effective surface-energy constants depend
on the relative neutron-proton excess I;,=(N;,—Z;)/ A;
(i=1,2) with ¢,(i)=a,(1—«,I?), where a, is the surface-
energy constant and «; is the surface-asymmetry con-
stant. For consistency with the macroscopic-energy cal-
culations, the constants used for these calculations were

_ 5 | Ry, 5/a ro=1.16 fm, a =0.68 fm, a;,=21.13 MeV, and «;=2.3.

V,==D|F+ a € The deformation dependence is expressed with the
functions A ,(1) and A,(2) for particles 1 and 2, respec-

S ' 3 3 tively. For particle 1(2) with quadrupole deformation

a [BO 1R1ALAD+By ,R3A4,5(2)]2,0(0,0) Bo, 1(2) this term is written as
3 > 2 R
042(1(2))=a—aa— g 12) 2 413|2 sinh | — | -3 | — cosh | —2 I
a a Ry Ry a Ry a
2 3
X |43 2] +3]|2 | |e e
r r r

The form given above for the nuclear potential is only
valid for §=0. Although a generalization of the potential
for § <0 is possible, as discussed in Ref. [19], this was not
needed for the present work.

The rotational-energy term was taken as

V,=
’ 2'-7tot

——JenJent1),
with

jtotzjl +‘72+ jrel
and

T12)

=0.24,,)R})[(b/a)**+(b/a)~*7]

2
+441:)8%uawa >

l71‘e1__-y’r2

{
A, and A4, refer to the atomic masses of the two frag-
ments, respectively. The surface-diffuseness parametric
@yukawa —0.75 fm. The radii R, and R, are for the ellip-
soidal shape.

The expression used for the Coulomb energy between
the two deformed spheroids again makes use of the
equivalent quadrupoloid shapes with [20]

Z.,Z,e? 3 Y,,0(0,0
Vc:“"r— 1+ 5 r—(ﬁo 1R2+/302R2)

The charge was assumed to be uniformly distributed with
Zl :ZCNAl/ACN'

Simple functional forms for the double-spheroid pa-
rameters can be found which make it possible to use this
model to quickly and accurately estimate saddle-point en-
ergies in the mass range 40 =< 4 =80. These energies
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would otherwise have to determined through the full
macroscopic-energy calculations. The surface separation
s is taken to have the functional form s(fm)=0.79
+0.00805 4y, with the coefficients determined by
fitting the results of the full calculation. The ratio of
minor to major axis lengths b /a is taken as 0.8 for both
spheroids. The energy offset is taken as

Vo(MeV)=—5.19+0.0046 A ox +E, porc( A;)

sphere
+Esphere( A 2 )—Esphere( 4 CN ).

E nere is the macroscopic energy of a spherical nucleus
and is given by Eq. (2) of Ref. [21], assuming a uniform
charge to mass distribution between the two fragments.
For this calculation the pairing and Wigner energy terms
are set to zero. Incorporating this potential-energy
difference has the advantage of including a charge-
asymmetry term in the overall barrier energies, allowing
for a parametrization that works for even-odd and odd-
odd nuclei as well as the even-even nuclei. The expres-
sion for V, also contains an expression linear in the
compound-nucleus mass.

A comparison is made between the double-spheroid ap-
proximation using fitted parameters (solid curves) and the
full macroscopic-energy calculations (points) for several
systems in Fig. 2. For the 4OCa, #Ti, ¥V, 2Fe, and *°Ni
systems, the comparison is shown for the two spin values
corresponding to 0.6J,, and 0.8/ .., respectively. The
comparison is shown at 0.64J_ . and 0.93J .. for the
heavier ¥Zr system. In each case the two spin values
cover the region where fission competition is likely to be
significant. The calculated barrier energies, based on the
double-spheroid model, are extrapolated to the mass
asymmetry corresponding to a lighter fragment mass of
A; =6. The Sierk value [12] for the symmetric saddle-
point energy is shown to the left of each line, indicating
good agreement with the present calculations. The limit-
ing case of =1, where the lighter-fragment mass van-
ishes, should be the same as the equilibrium energy of the
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FIG. 2. Fission barrier energies as a function of mass asym-
metry for the “°Ca, *Ti, ¥V, 2Fe, *Ni, and *°Zr systems. Spin
values corresponding to 0.6/ ., and 0.8J,,, are shown for all
but the 3°Zr systems, with J,,,, = 307, 36#, 414, 427, and 437 for
the five systems, respectively. For *Zr spins, 36# (0.64J,,,,)
and 527 (0.93J,,.x) are shown. The symbols indicate values ob-
tained from the full saddle-point calculations, while the curves
are for the double-spheroid parametrization discussed in the
text. The results at n=1.0 are from the equilibrium energy cal-
culations of Sierk [12]. The Sierk values for the symmetric bar-
rier energies are shown to the left of the curves.

nucleus at the corresponding spin value. These equilibri-
um values, tabulated by Sierk, are also shown. The ener-
gy difference between the saddle point and corresponding
equilibrium energies at a given spin value is the fission
barrier B;.

TABLE II. Selected examples of double-spheroid parametrization.

s Ve v, v, Vo EL"
Zen Acn 4, 7 J Jan (fm) b/a (MeV) (MeV) (MeV) (MeV) (MeV)
20 40 12 0.40 187 30% 1.11 0.8 15.1 8.3 —2.8 10.3 18.1

20 0.00 17.7 7.3 -30 11.0 20.2
12 0.40 24 15.1 14.6 -28 10.3 22.4
20 0.00 17.7 12.9 —3.0 11.0 24.3
23 49 12 0.51 24 41 1.18 0.8 16.7 11.5 —2.7 11.3 21.6
24 0.02 21.9 9.3 -29 12.2 25.9
12 0.51 32 16.7 20.3 -2.7 11.3 27.2
24 0.02 21.9 16.4 -29 12.2 31.1
28 56 12 0.57 26 43 1.24 0.8 21.7 11.6 —26 5.4 26.4
28 0.00 31.0 8.8 —2.9 3.1 34.7
12 0.57 34 21.7 19.6 —2.6 5.4 314
28 0.00 31.0 14.9 -29 3.1 39.2
40 80 16 0.60 36 56 1.43 0.8 37.4 12.8 —23 -6 43.1
40 0.00 56.0 9.3 —26 —20.8 60.5
16 0.60 52 37.4 26.4 —23 ~7.6 51.4
40 0.00 56.0 19.2 —2.6 —20.8 51.8
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40ca(n=0.40, J=18)

FIG. 3. Comparison of shapes determined from the full
saddle-point calculations (solid curves) and the double-spheroid
parametrization of the saddle-point energies (dashed curves).
The 7=0.40 and 0.42 asymmetries for *“°Ca and **Ni correspond
to A,/ A,=12/28 and 16/40, respectively.

Table II gives typical shapes and potential-energy
values calculated in the double-spheroid approximation.
Figure 3 compares the shapes of the double-spheroid ap-
proximation to the connected-quadratic-surface approxi-
mation used in the saddle-point calculations for several
systems. The resulting configurations are similar to those
of the “exact” saddle-point calculations, although clearly
with differences. The spheroid approximation does not
show a neck connecting the two fragments, and the as-
sumption of equal fragment deformation is an
oversimplification. The approximation is sufficiently
similar in geometry to the calculated saddle-point shapes,
however, to expect that the relative rotational and
Coulomb energy between the two fragments will be
reproduced reasonably well. This can be tested by com-
paring the calculated fragment total kinetic energy Ef
predicted by the double-spheroid approximation with ex-
perimental values. For these comparisons the total kinet-
ic energy in the exit channel is taken as

ﬁZ
tot — +1
EE VC+Vn+25rell(l ),
with
I rel
I=—"Jcn -
jtot N

Although the saddle and scission points in light systems
are expected to be quite similar [22], any dissipative pro-
cess active between these configurations will result in
somewhat lower fragment kinetic energies.

IV. TRANSITION-STATE MODEL CALCULATIONS

Fission cross sections were calculated using the
transition-state model [11], with the fission probability
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taken as being proportional to the available phase space
at the saddle point. In heavier systems the level density
above the symmetric saddle point is generally used in
these calculations. This is justified by a mass-asymmetry
dependence of the saddle-point energy which favors sym-
metric fission. In contrast, the macroscopic energy in
light systems favors the asymmetric breakup of the com-
pound nucleus, requiring that the spin-dependent, mass-
asymmetric saddle-point energies be used to determine
the fission phase space. In this section the details of
fission calculations based on the asymmetric-mass bar-
riers are given.

A. Fusion partial-wave distributions

The fusion cross-section calculations consist of deter-
mining the compound-nucleus spin distribution. For
these calculations the fusion partial cross sections for for-
mation of a compound nucleus of spin J from projectile
and target nuclei of spins J, and J,, respectively, at
center-of-mass energy E were taken as [23]

27 +1 B s

(27, +1)(2J,+1) S:%_u ,:%H

o, =mA? T(E),

_ 1
1+exp{[l—I,(E)]/A}

T,(E)

The total fusion cross section of: is then given by

=]
tot —
Ofus™ 2 gy -
J=0

The diffuseness parameter A was set to 1#. Although this
parameter is, in principal, system dependent, for the
present survey of the fission process in light systems it
was held fixed so as not to introduce an arbitrary,
system-dependent constant in the comparison of the
theoretical to experimental results.

The energy-dependent, critical angular momentum for
fusion /4(E) was set to the maximum partial wave for
which the nuclear surfaces of the target and projectile
(assumed spherical) touch, subject to the interaction po-
tential V,,, in the entrance channel. This potential is
given by

2 2
Vim=ﬁ—z—'——e~+ % SI+D+V,,
r 2ur

where Z, and Z, are the charges of the projectile and tar-
get nuclei, respectively, / is the angular momentum
brought into the reaction, and r is the distance between
the two nuclear centers. The potential of Krappe et al.
[19] was again used for the nuclear interaction V,, how-
ever, assuming spherical shapes for the target and projec-
tile. This form for ¥, assumes a “self-masking dissipa-
tion” [24] where the frictional energy loss from the rela-
tive motion in the entrance channel comes entirely from
the centrifugal energy as the orbital angular momentum
decreases.

An alternative method of determining /, is to use the
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experimental total fusion cross section ol to deduce this

quantity. This requires, however, knowing both the total
evaporation residue and fission cross sections. In several
cases where this information was available, the fission
calculations were also made using the experimentally de-
duced [/, values.

B. T/ /T

The ratio of the fission decay width I'; to the total de-
cay width of the compound nucleus I',,, was determined
using the statistical model. It was assumed that the com-
pound nucleus decays through the emission of neutrons,
protons, alphas particles, or fission fragments, with

Fy=T,+T,+T,+T, .

The fission partial width I'; can be further expressed as a
sum over the possible heavy-fragment decay channels.
To reduce the length of the calculations, this sum was
truncated with

AeN/2 AL /242

=2 >

A, =6Z, =4, /22

TA(Z,,4L),

where T'((Z;,A;) is the decay width to the channel
where the lighter fragment has charge Z; and mass A4;.
For odd compound-nucleus masses, the upper limit of the
atomic-mass summation was taken to be (Acy—1)/2,
and for odd values for the light-fragment mass, the corre-
sponding charge sum was taken over 2 units about the
central charge of (A4, +1)/2. Although a summation is
performed over the different fragment charges, the results
are not significantly changed if only the most probable
(lowest barrier) channel is considered for each mass
asymmetry. For the light systems and corresponding
bombarding energies discussed here, secondary fission
following light-particle emission from the compound nu-
cleus is unlikely. This is a consequence of the limited
spin range over which the fission process competes with
light-particle emission. It is therefore sufficient in calcu-
lating fission cross sections to use energy-integratedI
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widths for the compound-nucleus decay, without follow-
ing the full decay chain.

The partial widths for the three light particles x (x =n,
p, or a) of spin s, to be emitted from the compound nu-
cleus of excitation energy E &y and spin Jy to form an
evaporation-residue nucleus ER of excitation energy E fg
and spin Jgg are given by [23,25]

PER(EER —A,JgR)
2rfipen(Egr — A, Jgr)

JEr T5x JCN+s

X X 2

S=|Jgg =5, | 1=y =5l

T, )de, ,

where the integral is over all kinetic energies of the emit-
ted light particle €, and poy and pgg are the level densi-
ties of the compound nucleus and resulting evaporation
residue, respectively. The transmission coefficients
Ti*(e, ) are obtained from optical-model calculations us-
ing average parameters.

The parameter A determines the zero point of the
effective excitation energy. Since fission comes early in
the decay chain, the densities corresponding to relatively
high excitation energies in the compound nucleus and
residues dominate the partial-width calculations. At
these high energies A can be determined by assuming that
the virtual ground state for the level densities should cor-
respond to the macroscopic-energy ground state [23],
with

AMeV)=Eg(Z,A)—Eg*(Z,A) .

E; is the measured binding energy of the nucleus, and
E g is the corresponding macroscopic energy, obtained
using the binding energy terms from Eq. (2) of Ref. [21],
and including the Wigner energy term, but not the pair-
ing energy.

The fission widths I'(Z; , 4, ) are obtained with an ex-
pression similar to that for the light-fragment widths, but
using the level density above the mass-asymmetry-
dependent saddle point:

TA(Z;,A4;)= (e)de ,
f L L f8=0 27TﬁpCN(EéN —A7JCN) JCN
where

0 (o) 1 for eSE¢y—VagaeWen>M —AVge(Zp, A)—A,

€
Ton 0 for e>E&n — Viadaie Jons M) —AVgen(Zp, A)— A .

The integration variable € can be envisioned as the energy
going into internal excitation of the system at the saddle
point. Limiting this variable to 20 MeV, even when the
energetics would allow for a greater value, does not
significantly affect the width calculations since the level
density is strongly energy dependent. Vq.(Jcen>7) 1S
the spin- and mass-asymmetry-dependent saddle-point
energy with respect to the macroscopic-energy ground

state of the compound nucleus, as discussed in the previ-
ous section. This is a smoothly varying function of the
mass asymmetry 7, as seen in Fig. 2.

The experimental evidence indicates a strong isotopic
dependence for the fission cross sections that is incon-
sistent with a smooth dependence of the potential-energy
surface on the mass-asymmetry parameter 7. This can be
understood in terms of shell and pairing corrections to
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the energy surface from the structure of a nascent fission  corrections [21] for the two nascent fragments, with
fragments. As a first approximation of these corrections,
aterm AV (Z;, A; ) has been added to the barrier en-
ergy. This term, which can be viewed as a macroscopic
shell correction, consists of the sum of the Wigner energy and
J

AVgen(Z;, Ay )= wz,, Ap)+ W(ZCN-_ZL? Acn—AL)

1/4, Z and N odd and equal

W(Z,A)=(36 MeV) 0, otherwise

A—ZZ’

It follows from the form of the Wigner energy that, for compound nuclei where the neutron and proton numbers are
equal, the total barrier energy V4. +AVen Will have local minima for channels where both fragments also have
N =Z and for which AV, =0. Until more realistic calculations of the shell and pairing corrections are performed for
the strongly deformed, nascent fission fragments, detailed agreement between the calculated and experimental isotope
distributions cannot be expected. It will be shown in the next section, however, that the simple expression for AV
presented here is sufficient to reproduce the general trends of the experimental results.

The model calculation also requires level densities for the light-particle evaporation residues and at the saddle point
(the level density of the compound nucleus is common to all of the widths and, consequently, does not affect the
different branching ratios). The same Fermi-gas formula [26] was used to determine both the evaporation residues and

fission saddle-point densities, with
3/2

2J+1 — | # _ JE
plu,J)= 5 Via, 27 [u] 2exp(2Va, u )
and
ﬁl
E{gx ——=J(J+1)—A, evaporation residues ,
u= 29

Ein—VUen:)—AVga(Z,, A )—A—¢, saddle point .

For the evaporation residues, the level-density parameter
a,=a,, and the spin is that of the evaporation residue
J=Jgr. The saddle-point densities are calculated with
a,=a; and J=Jy. The moment of inertia coefficients
for the evaporation residues was obtained using the equi-
librium energies calculated by Sierk [12], with

ﬁz . Eyrast(J)
29 JWJ+1)

and taking the limiting value of this expression for J =0.
Again, the saddle-point moments of inertia and energies
are calculated using the double-spheroid approximation.

The extent to which fission competes with light-
particle evaporation is largely determined by the relative
values of level-density parameters @, and a,. In heavier
systems it has been found that fission competition can be
reliably reproduced by setting a, =a, if fission barriers
calculated with the Yukawa-plus-exponential model are
used. A similar assumption is employed in the present
calculations where values of a, = Ay /(8.0 MeV) and
a;= Acy /(8.0 MeV) are assumed.

C. Comparison with other models

Previous models developed to describe fissionlike pro-
cesses in light nuclear systems include the equilibrium
model of orbiting of Shivakumar et al. [27,28] and the
extended Hauser-Feshbach model of Matsuse and Lee
[29,30]. These models, together with the transition-state

[

picture, share the common idea that the final fragment
distribution is determined by statistical processes. Other-
wise, the premise of the equilibrium model is quite
different from either the transition-state picture or the ex-
tended Hauser-Feshbach model. Both the transition-
state and extended Hauser-Feshbach models describe a
fusion-fission process.

The equilibrium model gives a unified description of
fusion and damped binary-fragment yields by viewing the
dinuclear orbiting configuration as a doorway which can
lead to fusion or binary decay. In this picture the final
mass and energy distributions of the heavy fragments are
determined after the dinuclear complex has held together
long enough for the relevant degrees of freedom to reach
equilibrium. This is a statistical model in that the rela-
tive probability of fusion to binary decay is determined
by the density of states in the respective configurations.
However, unlike fusion-fission models, the binary yields
arise from a configuration that never achieves the com-
pact form of the equilibrated compound nucleus. This
model is successful in describing both the evaporation-
residue and damped binary yields, as well as fragment to-
tal kinetic energies, for several systems in the mass
A =40 region [28,31,32] and, by allowing for fragment
deformation, can also successfully describe the observed
yields from the S+ 2*Mg reaction [2]. As a predictive
tool, however, the model suffers from requiring system-
dependent changes in the nuclear-strength parameter and
fragment deformations to achieve good reproduction of
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experimental results, without giving guidance as to how
these parameters should be changed. For nearby sys-
tems, however, it can be expected that these changes will
be small.

The extended Hauser-Feshbach model starts with the
same premise as the transition-state picture that the fully
energy-damped, binary fragment yields arise from the
process of complete fusion followed by binary fission.
The two models principally differ in how the phase space
for the fission process is determined: The extended
Hauser-Feshbach model takes this as a product of the
level densities in the two nascent fragments, at the point
of scission. The effective Q values for the different mass
channels, used for the level-density calculations, are
varied between their asymptotic values (calculated with
ground-state binding energies) and the liquid-drop value
where shell effects vanish. Although this model is similar
in concept to the scission-point model developed to de-
scribe heavier-system fission [33], the significant energy
differences between the saddle and scission points found
in heavier systems are not expected to be present in light
systems [22]. This suggests that the predictions of the ex-
tended Hauser-Feshbach and transition-state models
might be expected to be similar. The advantage of the
transition-state picture, however, is that the geometry of
the saddle point, including the role of fragment deforma-
tion, is fully determined by the macroscopic-energy cal-
culations. In the extended Hauser-Feshbach model, a
fragment-separation parameter is adjusted in an ad hoc
manner to account for the system-dependent geometry.

D. Correction for secondary light-particle emission

For most of the reactions being considered, the possi-
bility exists for the fission fragments to be emitted with
excitation energies above their respective particle-
emission thresholds. The resulting secondary light-
particle emissions can strongly affect the measured mass
distribution of the fragments. In the case of the
3ZS-i—Z“Mg reaction, for instance, where a coincidence
measurement enabled an experimental correction to be
made for this evaporation, it was found that the peak
seen in the mass distribution corresponding to symmetric
breakup of the system disappeared when the results were
corrected for secondary emissions [1,2]. These emissions
can also have a strong influence on the average total ki-
netic energies observed for the fragments. Although the
average velocity of the fragments in a given breakup
channel will not change, under reasonable assumptions of
the decay process, these fragments will be identified as
corresponding to a lower charge or lower mass channel,
where a different average velocity might pertain for parti-
cles which do not undergo secondary evaporation. The
net result can be a measured total kinetic energy for a
mass channel which is different from w