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Proton-nucleus scattering and density dependent meson masses in the nucleus
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The inhuence of density dependent meson masses, proposed in many previous papers, on proton-
nucleus scattering in the several hundred MeV region is investigated. Introduction of this density depen-
dence is found to remove the nuclear radius discrepancy which persistently occurred in analysis with the
nonrelativistic impulse approximation when empirical nuclear densities obtained from electron scatter-
ing were employed. Nonlocality, suggested by earlier derivations of the density dependent masses, had
to be introduced. Taking the estimated range of nonlocality from the earlier calculations, agreement
with experiment was significantly improved by this introduction. Effects on the spin-orbit interaction
and imaginary part of the optical model are qualitatively discussed. The density dependent meson
masses aid in increasing the strength of the spin-orbit interaction. Preliminary results calculated in a rel-

ativistic impulse approximation (IA2) formalism for the spin observables are shown and discussed.

I. INTRODUCTION

In a number of papers [1—5] it has been suggested that
mesons masses, in the nuclear medium, decrease at about
the same relative rate with increasing density as the nu-
cleon effective mass m&. Such a decrease in the scalar
meson mass was motivated by calculations in the
Nambu-Jona-Lasinio (NJL) model [6]. For the vector
meson mass, results of these calculations were not so
clear [7], but by scaling the cutoff A, the mass could be
made to decrease. Adami and Brown [8] have shown
that scaling A*/A as ms /ms is necessary in NJL if the
contact scalar interaction there is generalized to a finite
range one. Using the quantum-chromodynamic (QCD)
sum rules, Brown [9] showed that, to a good approxima-
tion, there is only one scale in the broken symmetry mode
of QCD, and that this can be taken to be the pion decay
constant f *, which is the order parameter of the broken
symmetry regime. Thus, all masses except for that of the
pion (and kaon) made up out of up and down quarks
should scale as

fPz v ms

m~ mv ms

Since the pion is a Goldstone boson, its mass changes
only slowly with density [10]. We have neglected this
change.

Independently of these developments, Campbell, Ellis,
and Olive [11]in their study of QCD phase transitions in
an effective field model, arrived at the same conclusion
about the scaling of hadron masses other than that of the
pion, which they did not consider.

Given these theoretical motivations, it is of interest to
see how this decrease in meson masses, Eq. (1), could
have been concealed in the many analyses of standard
processes in nuclear physics, which conventionally took

2 2
gs Nv

, Ps ~=, Pv
ms mv

(2)

and the changes we propose amount to multiplying these
by the density dependent factor (m~/m&), which
represents an -40% effect at p =po.

We shall chieAy consider differential cross sections for
proton-nucleus scattering, and show that with the as-
sumption of the scaling, Eq. (1), these can be well fit pro-
vided allowance is made for the finite-range effects in the
dynamical model [2,3] suggested to be responsible for the
density dependence of the meson masses.

The density dependence of the meson masses results in
a modification of the optical model potential. We can ex-
press this by making a transformation to an effective po-
tential of increased strength but slightly decreased radius.
This potential modification removes a long standing
discrepancy in the nonrelativistic impulse approximation
(NRIA) treatment (NRIA uses, however, relativistic ki-
nematics) of proton-nucleus scattering at medium ener-
gies when densities derived from electron scattering are
employed.

We make some qualitative observations about the ex-
pected changes in the imaginary part of the optical model
potential and in the spin-orbit interaction, once the
scaled meson masses are introduced.

the meson masses to be constant, independent of density.
To this end, we shall, in this paper, reanalyze the scatter-
ing of protons by nuclei in the range of scattering ener-
gies 500—800 MeV. This is a formidable challenge, be-
cause the Dirac phenomenology and the relativistic IA2
have appeared to be extremely successful for just such ex-
periments, initially in predicting not only differential
cross sections but, in considerable detail, spin observables
also. In the relativistic mean field theory, which we use
as a guide, the scalar and vector mean fields are
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Finally, showing the results of some recent relativistic
calculations by Tjon and Wallace, we confirm that intro-
duction of the scaled masses preserves their good IA2 fit
to the cross section and spin observables in the example
classic [12] to the relativistic treatment of 500 MeV pro-
ton scattering from Ca.

II. THE NUCLEAR RADIUS DISCREPANCY

The chief discrepancy in the description of proton-
nucleus scattering data by use of the NRIA is that radii
slightly smaller than those obtained from electron
scattering must be employed to obtain good fits. We
show the comparison of the theory and experiment in
Figs. 1 —4.

We have performed NRIA calculations for comparison
with the proton scattering data from Ca and Ni at 498
MeV and 8Pb at 498 and 796 MeV. The folding and
scattering calculations were performed with the pro-
grams ALLWORLD [13],and DWBA70 [14],respective-
ly. The nucleon densities used in the folding calculations
were determined as follows. The proton density, p, was
obtained by unfolding the free proton charge form factor
from the charge density deduced from electron scattering

experiments. The neutron density, p„, was computed
from the equation

(3)

I' = [1—Ap(r)/po] (4)

which, for small scattering angles, took into account the
density dependence of the meson masses in the meson

where p„i ~
denotes the HFB neutron (proton) density of

Decharge [15]. These densities were folded with the
Love-Franey t matrix [16] to obtain the optical potential
which was then used to calculate the proton-nucleus
scattering. These "uncorrected" NRIA predictions for
cross sections are shown in Figs. 1 —4. The results for the
difFerential cross section show a phase shift and under-
predict the data at large 0 for all targets at all energies.

A similar phase-shift discrepancy in K+-' C scattering
was noted by Brown et al. [1],and removed by the intro-
duction of density dependent vector meson masses fol-
lowing the suggestion of Abraham Gal [17]. We now
sketch the resolution of this discrepancy.

In a local density approximation, which we shall need
to improve upon below, the free E +X t matrix is
modified by the factor (in the linear approximation)

I l I I

50

808pb ( p p ) 208pb

I I I I

5.0 10.0 15.0 20.0 25.0 30.0

6. (de )
FICx. 1. Uncorrected nonrelativistic impulse approximation

(NRIA) predictions for Pb(p, p) elastic scattering cross sec-
tion at T~ =498 MeV. The nucleon densities used were ob-
tained as described in the text. The data are from Ref. [12].

I I I I I I

5.0 10,0 15.0 20.0 25.0 30.0

0. (de )

FIG. 2. Same as Fig. 1, but at 796 MeV. The data are from
Refs. [34] and [35].
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Following the procedure pursued in the K+-' C
analysis, we included the density dependence of the
meson masses in the analysis of proton-nucleus scatter-
ing. Folding calculations were performed with a reduced
effective density radius R '=R —

A,a for several values of
This was achieved by shrinking the densities pp( )

ob-
tained above [Eq. (3)] by a percentage equal to A,a/R (ap-
proximating the densities by a 2pF shape to obtain the
equivalent a and R). The optical potentials obtained via
folding were then multiplied by the enhancement factor
(1—

A, ) '. This is equivalent to adding a p term to the
density as given below in Eq. (8). However, the factor
used for the spin-orbit potential involved

=3%~S.O. 2 '"Central

for reasons which we give later after a discussion of the
spin-orbit potential. The values of A,„„„,&

that give the
best fits to the data were found to be 0.2 for Pb at both
the energies, and 0.3 for Ca and Ni. Attempts to find
other values of A, which give good fits to the data were
unsuccessful within the model constraints. Results and
comparison with experiment are shown by the dashed
lines in Figs. 5 —8. It is clearly seen that with our X's of

0.2—0.3, the radius discrepancy has largely been eliminat-
ed, at least with respect to the phase of the differential
cross sections. (We return to a discussion of the ampli-
tudes and of the related solid lines below. ) The A, 's that
optimize the fits would give mg(po)/m~=0. 9 for Pb
and 0.85 for the other nuclei. This is substantially larger
than values usually assumed for the nucleus effective
mass at nuclear matter density, but in the same range as
found in Ref. [1]. Similarly large values were found in
the nuclear matter calculation of Ref. [23] where the
largeness was caused by vacuum polarization effects.
More conventionally, values mg(po)/mz 0.8 are ar-
rived at, but, as we shall discuss later on, with corrections
for finite range, our values decrease and some of the addi-
tional smallness in m& may be mocking up effects from
decreased meson masses. The values of k we find here lie
within the range needed to fit the X+- C scattering [1].

The fact that our dotted lines lie above the experimen-
tal data for large 0 could be anticipated from the detailed
mechanism, Refs. [2] and [3], in which the p(r)-
dependent corrections in

[1—Xp(r)/po] '—= 1+Ap(r)/po

are derived from a three-body force involving a virtual
b, (33)-isobar, nucleon-hole intermediate state. Applied
to our present problem, this mechanism is shown in Fig.

I I I

aoapb ( p p ) zospb

= 796 MeV

X =- 0.2

I I I I

5.0 IO.O 15.0 PO.O P5.0 30.0

6, (deg)

FIG. 5. Density dependent NRIA calculations with zero-
range (dashed curve) and 6nite-range (solid curve) approxima-
tions for 'Pb elastic scattering at T~ =498 MeV. References
for data are given in the captions for Figs. 1 —4.

I I

5.0 10.0 15.0 20,0 P5.0 30.0

6, (de )

FICi. 6. Same as Fig. 5, but at T~ =796 MeV.
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out

proj ec ti le

target nucleons in

FIG. 9. A typical p term arising from medium dependence
in the interaction. These will generally be accompanied by at
least one additional virtual pion exchange, so our treatment
here is somewhat schematic.

broken symmetry (meson, nucleon) sector. We see that
the arguments of Ref. [2] do give about the correct range
for the needed finite-range corrections. However, this
range of -fi/2m c is appreciable, so we also understand
that our decreased meson masses cannot be directly ap-
plied to few-body systems, but, rather, three-body forces
should be explicitly introduced, as is often done. In a
sense, the arguments of Ref. [2] demystify the relation,
Eq. (1), by explaining the decrease in meson masses in
terms of three-body forces, such as are often employed.

III. THK SPIN-ORBIT INTERACTION

Although the behavior of the spin-orbit interaction is
not central to our problem, we should explain Eq. (7), i.e.,
why we scaled it differently than the central potential.
Also, the spin-orbit interaction is generally of interest,
because until the advent of relativistic theories, the calcu-
lated spin-orbit splittings in nuclei were much smaller
than the empirical ones, and one of the great apparent
successes of the relativistic theories, such as the Walecka
theory, was in removing this discrepancy.

The spin-orbit interaction in relativistic mean field
theory goes as [24]

U, , =—, (S —V).
2m~m~

(10)

Thus, at nuclear matter density po, with our
(mg/m~)=0. 85, we get a factor of 1.63 increase to be
compared with the factor of 1.67 from Walecka mean
field theory with (mg/m&)=0. 6. To get a large enough
density of states at the Fermi surface

As is well known, this is large because S and V are of op-
posite sign. Furthermore, the enhancement from a small
effective mass, m& ~ 0.6m& in relativistic mean field
theory produces a large enough spin-orbit splitting of
valence levels to fit the empirical values. We have a
much 1arger effective mass m&-0. 85m&. However, at
least in mean field approximation, since our mean fields
are increased by the factor (I&/mg ), we find

3

U, , (m~, m*)= U, , (m~, m ) .
m~

IV. THK IMAGINARY PART OF THK OPTICAL
MODEL POTENTIAL

New elements enter into the imaginary part of the opti-
cal model potential which are not properly taken into ac-
count by our increase of the overall optical model poten-
tial by the factor of (1—

A, ) ', which the scaling of the
meson masses effectively does. Whereas we have not
solved this problem, we wish to raise the issue here.

In the nonrelativistic impulse approximation, the imag-
inary potential comes from the imaginary part of the
two-body t matrix

UI = ( Imt )p, (13)

where r (q =0) can be used since the range of q is restrict-
ed by p to be —I/8, with 8 being the nuclear radius.
From the optical theorem,

4~o~~= Imt(q =0), (14)

where o&& is the two-body total cross section. It is ob-
tained, in Born approximation (which should be adequate
for our discussion), by integrating over angles the
differential cross sections

2
do mN

4m%'
(15)

Note that if m~ goes to m~ in the medium, a correction
seldom put in, the do. /dA would be substantially cut
down.

In Eq. (15)

VI,
m, . +q

(16)

where g, and m, are the relevant meson coupling con-
stant and mass (e.g., for scalar and vector mesons). With
the assumption, Eq. (1), that meson masses scale with

density like the nucleon mass, one finds that the ratio R
of in-medium to free two-body differential cross sections
Is 2

R(q)=
m;+q

m~
m +q

(17)

requires m&/m& ~ 1. A significant amount of this large
m& comes, however, from the coupling of the quasiparti-
cles to vibrations, so it is dificult to argue quantitatively.
The m& needed to fit the energy dependence of the
proton-nucleus scattering in the few hundred MeV region
is somewhat smaller [25] than our value of
m&/m& =0.85. In any case, the fact that the cube of
(m/rn') comes into Eq. (11) is generally helpful in ob-
taining a large spin-orbit interaction which seems useful
not only in getting large enough spin-orbit splittings in
nuclei, but also in reproducing the spin observables in
high energy proton nucleus scattering.

p(EF ) =2kF mg, /vr (12)

it is, in general, helpful to have our larger m&, since the
empirical density of states in medium and heavy nuclei

One of the factors m&/m& comes from the in-medium

density of final states and should be present, whereas the
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not yet included the finite-range correction, but for the
relatively small 1=0.3 the eAect may not be large. In
Fig. 13, one can see that the quality of fit to the polariza-
tion observables does not worsen in going from the IA2
results to the ones with density dependent masses. No at-
tempt was made to readjust parameters in this calcula-
tion; the medium dependent meson masses were simply
inserted into the IA2 code. The goodness of fit with our
assumption [Eq. (1)] is probably not an accident. This
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FIG. 13. Results of Tjon and Wallace [26] for the spin ob-
servables, for 500 MeV protons scattered elastically from Ca.
The various lines have the same meaning as in the caption to
Fig. 12.

FIG. 12. Preliminary results of Tjon and Wallace [26] for the
di6'erential cross section of 500 MeV protons scattered elastical-
ly from Ca. The dotted curve gives the IA2 results. For the
solid curve, a linear scaling with density was assumed, with
m *(po)/m =m *(po)/m„= m~ (po)/m~ =0.85. For the
dashed line, m and m were scaled in this way, but m~ was
held constant at its p=0 value.

can be seen from the dashed curve in Fig. 13, where the o.
and co masses are taken to scale with density as in Eq. (1),
but I is taken to be constant. Although p-meson ex-

P
change is generally not thought to be important in Dirac
phenomenology, it is included in IA2, and it can be seen
from Fig. 13 that the fit to the polarization data is
significantly worsened if m does not scale with m„and
m . In these calculations the pion mass (m ) was not
scaled, following the conclusion of Nambu [10] that the
pion mass varies only little with density, increasing only 5
MeV as p increases from 0 to po. Whereas IA2 does not
explicitly include an e6'ective nucleon mass m&, it does
keep positive and negative energy states, in a plane wave
decomposition. In Ref. [28] it was shown that in pertur-
bation theory this was equivalent to use of a nucleon
eftective mass in Walecka mean field theory and in Ref.
[29] this was shown to be quantitatively accurate (beyond
perturbation theory) in the Bonn boson exchange model
in the nuclear many-body problem. The IA2 scalar po-
tential at 500 meV incident proton energy is [30], howev-
er, —210 MeV, which would correspond to an e6'ective
mass of 0.79, so the nucleon eA'ective mass m& is a bit
smaller than the m&/m+=0. 85 used for most of our
figures and, in particular for the IA2 results, Figs. 12 and
13. Our results in Fig. 11 show that we can perfectly well
tolerate mg/m+ =0.80 for acceptable (lack of) change in
the imaginary part of the optical model potential. We
were only able to reduce I&/m& down to 0.80 after
corrections for finite range were made in the NRIA.

In any case, the scaling [Eq. (1)] is only approximate.
This is clear from the derivation of the scaling in the
QCD sum rule approach of Ref. [9]. In the calculations
to date in this formalism, the continuum is approximated
by the perturbative one, and calculations in progress
show that in the case of the nucleon, this is not a good
approximation (although it appears to be in the case of
the vector meson). However, the work of Ref. [11]shows
that there is only one way to introduce a scale in the bro-
ken symmetry mode through breaking the scale invari-
ance in the underlying QCD through the trace anomaly,
so that there is a good fundamental foundation for Eq.
(1). On the phenomenological side, the preliminary re-
sults [26] for the spin observables should be sufficiently
encouraging to stimulate further work.

We are unaware of systematic studies in the relativistic
IA1 or IA2 formalisms employing empirical nuclear den-
sity distributions obtained from electron scattering. To
the extent that many of these calculations employ nuclear
density distributions calculated from Walecka mean field
theory, the nuclear radius discrepancy would not have
been noticed. The unphysically large compression
modulus, K =500 MeV, commonly used in these calcula-
tions would give a thin surface thickness just as do our
density dependent meson masses as discussed following
Eq. (6). Of course, calculations in which nuclear density
parameters were fit in order to reproduce data would also
not have shown this discrepancy. The nuclear radius
discrepancy could probably be fixed up in any given nu-
cleus by a variety of higher-order eff'ects, but we believe it
to be important that following the procedure of Ref. [1)
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where, in K+-' C scattering, higher order efFects are well
under control, we achieve a resolution of this discrepan-
cy.

VI. CONCLUSIONS

Simple estimates, based on nonrelativistic impulse ap-
proximations (but with relativistic kinematics) are
presented in this paper. They suggest that two interest-
ing features might emerge from the density dependence
of meson masses: first, the effective radius of the optical
potential can be altered by a small, but significant
amount; and second, the scalar and vector potentials can
be increased.

With respect to the first feature, we believe our use of
NRIA to be adequate to discuss differential cross sec-
tions. It is clearly inadequate for spin observables. For
these an approach along the lines of the Tjon-Wallace
IA2 should be employed. It is necessary to determine a
new form of optical potential, beginning from the NX t-
matrix, consistently generalized to include the density
dependence of the meson masses. First results of Tjon
and Wallace [26] in this direction indicate that introduc-
tion of scaling masses does not worsen the good agree-
ment of IA2 for the scattering of 500 MeV protons by

Ca. Clearly a more extensive investigation is necessary
to properly assess the quantitative validity of our
scenario. The promising first results of Tjon and Wallace
should stimulate this.

With respect to the second feature, increased scalar
and vector potentials, we note that those commonly em-
ployed in Dirac Phenomenology are ~50% larger in
magnitude than the IA2 scalar and vector potentials. In
a naive approach, in which these mean fields arise as
g /m, where g is the scalar or vector coupling constant
and m is the relevant meson mass, we would expect an in
medium enhancement of the IA2 scalar and vector poten-
tials by the factor (m/m*) . In our case this enhance-
ment is density dependent, entering in a more complicat-
ed way than by an overall factor. Nevertheless, indica-
tions are that such enhanced potentials fit the data well.

Our discussion in this paper was almost completely
phenomenological, but we outlined in the introduction
the conceptual arguments which led to the introduction,
of density dependent effective masses.

After completion of this work we received the preprint
[31] from Hosaka and Toki, "G-matrix elements with
effective masses for mesons and nucleons. " Their con-
clusion is that, "A uniform decrease in various masses
yields G-matrix elements which are rather consistent with
empirical matrix elements obtained by Brown, Richter,
Julies and Wildenthal" [32].

for several helpful discussions. We are also grateful to
Rost, Shepard, and Wallace for providing us with their
relativistic nucleon-nucleus scattering programs. This
work was supported in part by U.S. Department of Ener-
gy Grant Nos. DE-FG02-88ER40388 and DE-FG02-
88ER40405 and the Minnesota Supercomputer Institute.

APPENDIX

Here we examine the effect of density dependent meson
masses in the electromagnetic form factor.

In the text of the article, the effect of density dependent
meson masses on the electromagnetic form factor has
been neglected. If nucleon density distributions are to be
taken from electron scattering off nuclei, corrections
should be made. We shall show here that this correction
is substantially less than that given by the factors of
(m/m*) discussed in the text.

It is known that strength is missing in the longitudinal
form factor for electron scattering from nuclei. Let us
first consider that in this scattering the virtual y-ray al-
ways couples through vector mesons. Thus, the isoscalar
form factor (see Fig. 14) will be

FI=0
VDM (Al)

2 2

1+ q

m
q (A3)

where VDM stands for vector dominance model. If the
in medium modification is described by letting m„—+m„*,
then the difFerence between the modified and unmodified
form factor is

2 2

5FvnM =FvnM(m ) —FvnM(m )=,2
—

2
. (A2)

m~ m~

The expansion is justified, because only q -R ', where R
is the nuclear radius, enter.

Keeping the q dependence in meson prop agators
changes the factor of (m /m ) enhancement in our mean
fields [see Eq. (2) and the following discussion] into

m 1+q /m
m* 1+q /m*

ACKNOWLEDGMENTS

We would particularly like to thank John Tjon and
Steve Wallace for carrying out the calculations shown in
Figs. 12 and 13, and for communicating them to us. We
would like to thank B. C. Clark, M. A. Franey, W. G.
Love, M. Rho, E. Rost, J. R. Shepard, and S. J. Wallace

FIG. 14. In electron scattering, the virtual y-ray couples
through vector mesons in the vector dominance model. Here
the isoscalar coupling, through the co meson is shown. The
large solid dots indicate form factors.



2662 G. E. BROWN, A. SETHI, AND N. M. HINTZ

where m and m * are the free and eImective m.ass of the ex-
changed meson. To the extent that the meson mass is
close to m„, the q-dependent factors in I'vDM and I' can-
cel. In any case, the q-dependent correction is smaller
than the leading one by a factor of
[I—(m*/m ) ](m R)

Brown and Rho [33] point out that for small spacelike
momenta the vector meson in Fig. 14 is substantially o6'

shell. They estimate that, because of this, the y-ray cou-
ples only —

—,
' the time through vector mesons; the other

half of the time it couples, as a y ray, directly to the
quarks in the internal structure (e.g. , little bag) of the nu-
cleon. With this scenario, the q-d.ependent correction in
the electromagnetic coupling A (2) is only —

—,
' that for

the nucleus, e. g. , A (3). In this case, the q correction
can be compensated for by increasing A, a few percent.
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