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Relativistic mean field study of light medium nuclei away from beta stability
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Bulk properties like binding energies, rms radii, and quadrupole deformations of Ca, Ti, Cr, Fe, Ni,
and Zn nuclei are calculated in the deformed relativistic mean field model. Excellent results for the ex-

perimentally known binding energies and radii of nuclei are obtained. The calculation is extended to nu-

clei near the neutron-drip line. Dips in quadrupole deformation are seen for the known closed-shell

configurations and enhanced deformations are obtained for specific neutron numbers.

I. INTRODUCTION

The properties of nuclei away from the valley of P sta-
bility is a topic of much current interest [12,13,15]. The
study of such exotic nuclei can serve to put constraints
on the parameters of the effective nuclear interaction,
which is responsible for the binding of such nuclei and
their other properties, such as their radii, shapes, and de-
formations. Estimates of the masses of such nuclei can be
made by extrapolation of various mass formulas [19]. At
a microscopic level the binding energies of nuclei can be
calculated using effective interactions of the Skyrme type
[20]. Recently attempts have been made to study the
effective interactions in finite nuclei using Dirac-
Hartree-Pock equations starting with boson exchange
two-nucleon interactions [28,29].

In recent years great progress has been made in gaining
a microscopic understanding of various nuclear proper-
ties starting with interacting nucleon and meson fields in
a relativistic framework [2,16,17,21—23]. Solutions of the
self-consistent relativistic mean field (RMF) equations for
nucleons and mesons (in the relativistic Hartree-Fock ap-
proximation) provide a basis for studying the nuclear
ground-state properties. A distinct advantage is that,
with proper relativistic kinematics and with the mesons
and their properties already known or fixed from the
properties of a small number of finite nuclei [4], the
method gives excellent results for the binding energies
and other properties of not only the spherical nuclei, but
also of some well-known deformed nuclei. The parame-
ters sets also describe the nuclear matter properties well.
The quality of agreement with the known binding ener-
gies of nuclei is better than that obtained in mean field
calculations using Skyrme-type effective interactions.
Another attractive feature of the relativistic mean field
approach is that the spin-orbit interaction and the associ-
ated nuclear shell model come out naturally as arising
from meson-nucleon interactions [2,25].

Relativistic mean field (RMF) models thus have some-
thing useful to say about the binding energies and other
bulk properties of known nuclei [2,5] and it would be in-
teresting to extend the RMF calculations to nuclei near
the neutron-drip line. Also the investigation of the rms
radii of neutron-rich nuclei and possible neutron halos

[12,13,15,36] remains a current experimental and theoret-
ical topic and RMF studies can help to enhance our un-
derstanding of this aspect.

In this work we have undertaken a study of some of
these quantities for the even-even Z =20—30 nuclei using
the RMF theories developed by Walecka, and others
[1,2,3,6, 18]. The modification suggested by Boguta and
Bodmer [6] is to add nonlinear terms to the potential in
which the o. meson moves. This gives a better value for
the bulk compressibility modulus in nuclear matter than
the original Walecka model. In this paper we work with
the nonlinear model of Boguta and Bodmer. Recently
Zimanyi and Moszkowski [8] have proposed a derivative
scalar coupling model to account for the effective mass
and the compressibility modulus.

Some of these Z =20—30 even-even nuclei may not be
spherical and we use the deformed relativistic mean field
method given by Gambhir, Ring, and Thimet [5] and
Price and Walker [7]. The deformed mean field method
is general enough that both deformed and spherical nu-
clei can be studied. We study chains of isotopes of a
given Z till the neutron-drip line using 0., co, p, and the
photon as the bosons mediating the interaction among
nucleons. It is known that the p meson (an isovector)
couples to the isospin of the nucleons [3,4]. The p meson
is thus important for the binding of neutron-rich (or
proton-rich) nuclei (i.e., nuclei with finite isospin quan-
tum numbers in the ground state) and hence for the loca-
tion of the neutron-drip (proton-drip) line.

The RMF has in-built the right spin-orbit interaction
and hence the nuclear shell effect and the symmetry ener-

gy term of the nuclear binding (coupling with p meson)
and can give reliable predictions of various nuclear prop-
erties (binding energies, shape, and sizes) and the
neutron-drip (proton-drip) lines starting from interacting
mesons and nucleons. This is important if one is calculat-
ing for nuclei far from the valley of stability (as we are
doing here for nuclei near the neutron-drip line), where
extrapolation of mass formulas may not be very reliable.

The paper is organized as follows. In Sec. II we
present the equations for the nucleon and meson fields
used in this work and the method of solution of these
equations. The properties of the various mesons and
their couplings are briefly given in Sec. III. In Sec. IV we
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present the results of our calculation for the binding ener-
gies, radii, deformations, and the sheH closures and com-
pare these with experiments and other theoretical studies
wherever possible. Predictions for the neutron-drip line,
quadrupole deformation, rms radii, spin-orbit splitting,
and deformed configurations in traditional spherical
closed-shell nuclei are given in this section. The conclud-
ing remarks are given in Sec. V. In the Appendix we dis-
cuss about the tensor coupling of vector mesons and
show that it does not contribute to the mean-field equa-
tions of even-even nuclei.

II. RELATIVISTIC LAGRANGIAN
AND RMF APPROXIMATION FORMALISM

The relativistic Lagrangian density is given by [2,5]

z=q, [ty~a„M]y—, + ,'a~~a„-~ U(~—)

try the vector (spatial) parts of the vector potentials V
and p, and of the electromagnetic potential A vanish.
The charge conservation implies that only the third com-
ponent of the isovector vector field po contributes to the
interaction with nucleons. Under this condition the
Dirac equation for the nucleons and the Klein-Gordon
equation for bosons become [2]

[ ia.—V'+PM(r)*+ V(r)]g, (r)=E;f;(r) . (4a)

We have neglected the contribution of antiparticles [2].
Here M(r)* =M +g, cr(r) is the effective mass of the nu-
cleon, which is significantly smaller and space dependent
because of the o-meson Geld. The equations satisfied by
the boson Gelds are

d o(r) 2 dcr(r)+— —m o(r)=g,p, (r)+g2o (r)
cjr

g, f;P—;cr —
—,'0""0,+—,'m V"V„gf,y—"g, V„

4B "'Bf v+ 2m pp pp gplay rApp

(1—r3;)'F"'F ——eP y" — g A4 pv l P

The Geld for the o. meson is denoted by o., that of the cu

meson by V„, and of the p meson by p„. The arrow in the

p Geld denotes its isovector character. A" denotes the
electromagnetic field, which couples to the protons.
are the Dirac spinors for the nucleons, whose third com-
ponents of isospin are denoted by ~3. We use the conven-
tion that the eigenvalue t; of ~3; for a neutron is +—,

' and
for a proton it is —

—,'. Here g„g, g, and e /4m are the
coupling constants for o, ~, p mesons, and photon, re-
spectively. M is the mass of the nucleon and m, m
and rn are the masses of the o., co, and p mesons, respec-
tively.

According to Boguta and Bodmer [6] the o mesons
move in a nonlinear potential with interaction among
themselves. Therefore the potential of o field U(cr ) is ex-
pressed as

+g3cr (r),

—m„Vo(r) = g„p—,(r),

—m po(r) = —g p (r),

Here

p, (r) = g g;(r)g;(r)

is the Lorentz-scalar density,

p, (r) = g g, (r)y g, (r)

the baryonic density,

pz(r)= g g;(r)y r3;g, (r)

d Vo(r) 2 dVo(r)+
dr 2 r dr

d po(r) 2 dpo(r)+-
Jr~ r dr

d Ao(r) 2 dAo(r)+— = —ep, (r) .
r dr

(4b)

(4c)

(4d)

(Sa)

(5c)

U(cr)= —,'m o + —,'g2cr + ~~g3o (2) the isovector density, and

B'=a~p. a.g g, (p»&p —), —
n~ =a~v —a.v~,
r~ =a~~ —a.~~.

(3a)

(3b)

(3c)

To describe the ground-state properties we need a stat-
ic solution of the above Lagrangian. For this case the
meson and electromagnetic Gelds are time independent,
whereas the nucleon wave functions oscillate with single-
particle energy E;. Further due to time-reversal symme-

In the original Walecka model the bulk modulus K was
found to be 560 MeV, whereas the empirical value is
210+30 MeV [43]. With the above nonlinear sigma po-
tential, the bulk modulus was found to be K =212 MeV.
(Other properties using nonlinear sigma model are given
in Sec. III.) We use this nonlinear model in this work.
The Geld tensors for the vector mesons and the elec-
tromagnetic Geld are defined as

A (1 —r3, )
p, (r)= g P, (r)y

'
P, (r)

i=1

the proton density

(1—r3)
V(r)=g Vo(r)+g r3po(r)+e Ao(r) .

2

(5d)

(5e)

(i) Spherical nuclei
The densities and the potentials have spherical symme-

try and the single-particle wave function f; in a central
parity conserving Geld is written as

f;(r)P( J ~
P;(r, t)= tg (r)Q Xt,(t).

1,.j,.m,.

where l =j+ ,', l =j + —,
' and f;(r)—and g, (r) are the upper

and lower components of the Dirac spinor, respectively,
and the Y are the spin-angle functions [34].
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Substituting the value of g; of Eq. (6) in the s««Eq.
(4) the Dirac equation splits into two first-order
difterential equations, and the p's are written in terms of
f;(r) and g;(r):

T

(M'+ V)f;++.a, ;++ a„i+,. =E,f,+. ,

(1 la)

[M(r)*+V(r)]f;(r)+ a„— g, (r)=&,f, (r), (7a) (M*+ v)f,
——a,g,

—
a„,— g,"=&;f;

k;+1—[M (r)*—V(r ) ]g, (r) — a„+

and the densities become

f, (r) =E,g, (r),

(7b)

(1 lb)

(M*—V), +a,f,.+ a„,+ 0+1/2 f;= E. ..—,

(1 lc)

(M*—v)g; a,f; —+ a„i— f; = E;g;—Q —1/2

p, (r) =& n;(2j;+1)[lf;(r)l —Ig;(r)l ], (&a)

(1 ld)

p„(r ) =g n,.(2j,. +1 ) [ fI,. ( r ) I
+

I g; ( r }I ], (gb) and the Klein-Gordon equations become

p, (r) =&2';&;(2j;+1)[lf;(r)I'+ Ig;(r) I'], (Sc)
2a„irma„i —a, +m„„,„g(boson(ri, z ) }

=source terms . (12a)
p, (r) =& &;(-,' —t; )(2J;+ 1)[ If, (r) I

+ Ig;(r) I )

x =I"g cos+,

g =I'g slQQ,

(9a)

(9c)

The projection of angular momentum along the symme-
try axis is a good quantum number. Hence Dirac spinor
g, can be written as

f; (z, r~)+ expi (Q, —
—,
'

)q&

g;(r, t)= 1

2m-

f, (z, ri) expi(Q, + —,
' )q&.

ig;(z, ri)+ expi(Q, —
—,')p y, (&) .

ig, (z, ri) expi (Q, + —,')p

Substituting the value of g; from Eq. (10) in Eqs. (4) we
get

where k;=+(j;+—,') for j;=i,. + —,
' and, the occupation

number n; = 1 for occupied level, 0for unoccupied level
(ii) Deformed nuclei and symmetries of the mean field
For deformed nuclei, the potentials in which a nucleon

moves are not spherically symmetric. Though spherical
symmetry is absent, we assume that the potentials and
densities have axially symmetric shapes. In this situation
the source terms in the Dirac and Klein-Gordon equa-
tions are not spherically symmetric, but are deformed
(with axial symmetry). Hence for deformed nuclei we
have to modify the above equations taking into account
the axiaHy symmetric shapes. In this case the rotational
symmetry is broken and therefore j is no longer a good
quantum number, but the densities are still invariant with
respect to a rotation around the symmetry axis. We have
to work with the cylindrical coordinates [5]

In Eq. (12a) we have, in the source terms, the densities

p...(ri, z)=2 & n;[(If;+I'+lf; I')+(lg;+I'+Ig; I')],
i&0

(12b)

p,(ri, z)=4 & ~;[(lf I'+lf; I')+(lg I'+Ig; I' )]t;,
i&0

p, (ri,z)=2 y ri,.[(If,+I~+ lf, I~). .

i &0

+(Ig;+I'+Ig; I')](-,' —&;) .

(12c)

(12d)

f;(r)= g f„'R„i(r),
n=1

(13a)

max

g, (r)= X g„'R„,.(r) .
8=1

(13b)

For deformed nuclei with axial symmetry we expand the
spinors f;* and g,.

— in terms of a deformed harmonic-
oscillator potential basis, taking volume conservation into
account. The frequencies A'coj and A'm, can be expressed
in terms of a deformation parameter Po as

The nucleons occupy degenerate +m orbits, leading to
intrinsic states for even-even nuclei which are symmetric
under time reversal.

For the case of spherical symmetry the large and small
components f;(r) and g;(r) of the Dirac spinor g; can be
expanded separately in terms of the radial functions
R„i (r) of a spherical harmonic-oscillator potential

l

V„,(r)= ,'Mro r with the os—cillator frequency iiicgo and
oscillator length

bo =QA'/Meso,

max
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fico, = iricoo exp( —+5 /4npo),

fico~=Rcoo exp( ,'&—5/4mpo) .

(14a)

(14b)

Q„(g 2r, Pz(cos8; ) )„ (1Sa)

Q =Q„+Q~ =&16ir/5(3/4m AR P),
where R =1.2A '

(15b)

p, =&5~
3ZR

(15c)

We solve the set of Eqs. (11) and (12) self-consistently in
the cylindrical coordinates with 0 (the projection of the
total angular momentum on the symmetry axis) as a good
quantum number. In numerical calculation the wave
functions are expanded in a deformed harmonic oscillator
potential basis with the maximum oscillator shells
N „=8 for nucleons and N,„=10 for the bosons.
From these converged solutions we obtain the various
physical quantities for the deformed nuclei. The quadru-
pole moment Q and deformation parameter p of the sys-
tem are calculated from the formulas

E =fd'rP(Vcr)'+U(cr)],

E = —f d r[ ,'(V—VO) + —,'m Vo],

Ec= —f d r ,'[(—VAo) ],

(20b)

(20c)

(20e)

Ep„,= —G g u;u;
i&0

E = ——'4l Ac.m. 4

(20f)

(20g)

In Eq. (19) E „, is the energy of the particles moving
in the field created by the mesons. E, E„,Ep aIld Ec
are the energies of the meson fields and the Coulomb
field. E „, is the pairing energy with the pairing force
strength G and the occupation and unoccupation proba-
bilities U; and u; =1—U;. E, is the center-of-mass
correction and here we have approximated it by its value
in a nonrelativistic harmonic-oscillator potential [5,9,24].
We follow the procedure of Gambhir, Ring, and Thimet
[5] to evaluate the pairing energy; the pairing gaps b.
and A„are taken from the experimental even-odd mass
difFerence [14]. The chemical potentials k and A.„are
determined by solving the number equations:

3XR

The charge radius is given by

r, = 1/r +0 64, .

(15d)

(16)

JV=g n, =g u,
2

2
l1—

Q(E, —X)'+a'
(21)

while the rms matter radius r, , is defined as

(r,', ) = fp(r„z)r'dr .=1 (17)

The summation in Eq. (21) and in Eq. (23) (below) extends
up to 2A'coo(2X41A '~

) above the Hartree-Fock Fermi
energy [5]

Analogous definitions of proton and neutron radii are

(r') =—fp„(r„z)r'd7-2 =1
u;=1 —

u,
2 — 2

E„,= —b, gu;u, .
i &0

(22)

and

(r„)=—fp„(ri,z)r„dr„,1

respectively.
The energy of the system is given by the expression

E=f d r&(r)

Epzlt +E~+E~+Ep+E& (18)

(19)

E~„,=gu; f d rg, [ —cz.V —cc.V.

+PM" + V(rj, z)]g;, (20a)

To Eq. (18) we have to add the pairing energy and energy
correction due to center-of-mass motion [5,24]. Thus

We have solved the equations given in this section itera-
tively following the numerical procedure of Gambhir,
Ring, and Thimet. In Sec. III we present the results of
calculation of various physical quantities for even mass
Ca, Ti, Cr, Fe, Ni, and Zn nuclei.

III. PROPERTIES OF MKSONS
AND CHOICE OF PARAMETERS

The field corresponding to the isoscalar-scalar 0-

meson, which is a very broad two-pion resonance state
(s wave), provides strong scalar attraction at long dis-
tance ()0.4 fm). The isoscalar vector meson co, which is
a 3m-resonance state, gives the strong repulsion at short
distance. Similarly, the field due to the isovector vector p
meson (p-state 2~ resonance) is important for proton-
neutron asymmetric systems, because it couples to the
isospin current. Here we have considered the scalar
(nonlinear) o field and the vector coupling of co and p.
The tensor couplings of the vector mesons co and p (i.e. ,
Po„QQ" and gr cr„gR pv) do not contribute for even-
even nuclei in the RMF approximation used, because of
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time-reversal symmetry and parity (see appendix). The
fields corresponding to m mesons are not considered be-
cause these do not contribute in this RMF approximation
for the Hartree states having good parity.

In this paper, we have presented the results, taking the
parameter set NL1 of Table 1. In Table 1 we give the pa-
rameters for the linear set L1 and the nonlinear sets NL1
and NL2 (Refs. [37,4,33]). Some results of calculations
for finite nuclei using the parameter sets L1, NL1, and
NL2 are given in Table II. The set L1 consistently yields
overbinding and hence results in smaller values of rms ra-
dii. Therefore, we do not present in detail the results of
this parameter set. However, to illustrate this point ex-
plicitly, results for specific cases only ( Ca, Ti, Cr,
56Fe 56Nj 60Nj 62Nj 64Nj 66Nj 68Nj and 64Zn) usjng the
parameter set L1 are presented.

Further, inspection of Table II reveals that the results
for the set NL2 give rather large underbinding and those
for the set NL1 agree much better with experimental
binding energies. The set NL1 also gives a more reason-
able nuclear compressibility (Table I).

To see the sensitivity of the results to the p-meson cou-
pling strength, we have presented in Table III the results
of some observables of our RMF calculations with
diff'erent p-meson coupling constants (g varying from
4.9755 to 4.0). The change of nuclear radii and quadru-
pole deformations (P) with the coupling strength of the p
meson is negligible. The sensitivity to the total binding
energy is about 1%, when g changes from 4.9755 to 4.0.
Thus the results are not very sensitive to a reasonable
variation in the p-meson coupling strength [39].

Recently Toki et al. [40] have studied the properties of

infinite nuclear matter and spherical nuclei using a linear
sigma version relativistic Hartree theory. Their aim is
not to reproduce the experimental observables of nuclei
around the stability line. Rather, they intend to study
the qualitative aspects of the effect of p-meson 6eld on the
properties of nuclei far from stability line. In their calcu-
lations, they found that the neutron and proton radii are
insensitive to the p-meson coupling strength, but the
neutron-drip line shows some sensitivity to the p-meson
coupling strength without changing the other general
properties signi6cantly. It is to be pointed out that Toki
et al. varied g over a very large parameter range to
study the sensitivity to p-meson coupling.

The present paper has a different aim, namely, to study
the equilibrium properties of 6nite nuclei using relativis-
tic mean field theory having nonlinear o terms. The non-
linear terms are given by the parameters g2 and g3 of Eq.
(2). The mass of the p meson m is fixed to the corre-
sponding meson mass (I =763 MeV) in an OBEP [4,41].
The other parameters of the nonlinear set NL1 are least-
squares fitted with respect to total binding energies,
diffraction radii and surface thickness in eight spherical
nuclei [4], namely, ' 0, Ca, Ca, Ni, Zr, " Sn, and

Pb. Results for other nuclei are obtained as predic-
tions of the model. The values of g„g„,g~, g2, and g3
and masses of cr and co mesons (m and I ) thus ob-
tained constitute the nonlinear parameter set NL1 of
Table I. (Note that the definition of g here is difFerent
from that of Refs. [3] and [4] by a factor of 2.) The
effective mass at the center of the nucleus and also other
properties of NL1 are given in Table I.

The nonlinear parameter set NL1 of Table I gives the

TABLE I. Various parameter sets for the Lagrangian [Eq. (I)] and the corresponding derived quanti-
ties. The masses, compressibility K, and symmetry energy coefFicient a,~ are in MeV, saturation densi-
ty po is in fm, and g2 is in fm . The other coupling constants are dimensionless. The quantities in
the last five lines are obtained from the model.

Parameter

m

m~
m

Rs

gCO

gp
Ã2

L1'

938.0
550.0
783.0

10.3
12.6

0.0
0.0

NL1

938.0
492.25
795.359
763.0

10.138
13.285
4.9755

—12.172
—36.265

NL2'

938.0
504.89
780.0
763.0

9.111
11.493
5.507

—2.304
13.783

Empirical
Value

938.0

783+5
773+77

asym

po
BE/A

0.53

626.3

(nucl. matter)

0.57

211.7
43.6
0.1542

16.43 MeV

0.67

399.2 210+30"

0 17'
15.68' MeV

'Reference [37].
"Reference [4].
'Reference [38].
Reference [43].

'Reference [48].
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TABLE II. Some representative observables using various parameter sets. The total binding energy
BE is in MeV and rms charge radius r, is fm.

Nuclei Set
BE

(cale. )

BE
(expt. ) (calc.) (expt. )

48Ca

4'Ti

52Cr

56Fe

Ni

Ni

62Ni

64Ni

66Ni

68N1

Ll
NL1
NL2

Ll
NL1
NL2

Ll
NL1
NL2

Ll
NL1
NL2

Ll
NL1
NL2

L1
NL1
NL2

Ll
NL1
NL2

L1
NLl
NL2

L1
NL1
NL2

Ll
NL1
NL2

L1
NL1
NL2

436.470
412.171
404.508
443.153
414.679
410.798
491.890
453.674
445.539
531.450
489.362
481.984
536.398
483.448
473.402
569.362
522.888
515.897
583.703
540.864
534.642
599.078
558.349
550.197
611.792
576.115
571.204
623.447
589.833
578.678
599.669
555.331
548.583

415.993

418.702

456.350

492.260

483.993

526.848

545.265

561.760

576.834

590.431

559.100

3.240
3.513
3.499
3.313
3.577
3.564
3.366
3.632
3.692
3.448
3.677
3.776
3.460
3.677
3.784
3.515
3.737
3.862
3.534
3.774
3.870
3.553
3.811
3.865
3.573
3.848
3.871
3.584
3.877
3.896
3.618
3.909
3.929

3.481

3.670

3.818

3.847

3.866

3.920

3.933

TABLE III. Variation of observables of Ni with gp. The experimental binding energy of ' Ni is
590.431 MeV. The binding energy BE is in MeV, rms radii (neutron r„, proton r~, matter r, „and
charge radius r, ) are in fm, P„, P~, and P are the deformation parameter of neutron, proton, and total
deformation, respectively.

gp

4.9755
4.75
4.7
4.6
4.5
4.4
4.3
4.2
4.1

4.0

BE

589.833
591.395
591.788
591.102
593.390
594.264
595.790
596.874
596.852
596.978

n

4.072
4.067
4.066
4.064
4.061
4.059
4.057
4.055
4.052
4.050

3.793
3.795
3.795
3.796
3.796
3.797
3.798
3.799
3.799
3.800

rrms

3.960
3.957
3.957
3.956
3.954
3.953
3.952
3.951
3.950
3.949

3.877
3.878
3.878
3.879
3.880
3.880
3.881
3 ~ 882
3.883
3.884

—0.000 11
—0.000 10
—0.000 07
—0.000 09
—0.00006
—0.000 05
—0.00005
—0.000 04
—0.000 04
—0.00003

—0.000 00
—0.000 00
—0.000 03
—0.00001

0.000 04
0.000 05
0.000 04
0.000 05
0.000 05
0.00005

—0.000 07
—0.000 06
—0.000 03
—0.00005
—0.000 02
—0.00001
—0.00001
—0.000 01

0.000 00
0.00000
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nuclear matter binding energy per particle BE/A = 16.43
MeV and the saturation density po=Oe1542 fm . The
symmetry energy coefficient a,„~ comes out [4] to be 43.6
MeV, which is a bit too high compared to a, =35 MeV
as assumed by other authors [3,42]. The compressibility
E using NI. 1 parameter set is 211e7 MeV, whereas the
empirical value [43] is 210+30 MeV.

IV. RESUI.TS

In this section we present the results of our calculation
for a number of isotopes of Ca, Ti, Cr, Fe, Ni, and Zn.
Some of the results of our calculation are given in Tables
IV—VIII along with some known experimental quantities.

A. Binding energies and neutron-drip lines

Empirically it is known (see, e.g. , Ref. [14], Chap. 2)
that some of the most stable nuclei occur in the A =56
region, where the BE/A (binding energy per nucleon)
curve shows a peak. In Fig. 1 we have plotted the bind-
ing energy per nucleon obtained in our RMF calculation
against neutron number for the even-even isotopes with
Z =20-30.

The agreement of our calculation with the experimen-
tally known binding energies is remarkably good (Tables
IV and V). For example, we get for Ca BE/A of 8.515
MeV (experimentally 8.551 MeV); for Ca our calcula-

tion gives BE/A of 8.598 MeV (experimentally 8.617
MeV). On the whole the agreement of the calculated
binding energies with the experimental ones is
significantly better than the prediction of mass formulas
or predictions of Skyrme interaction calculations. From
Fig. 1 we see that the largest BE/A for Ca isotopes
occurs near %=26. The point of maximum BE/A shifts
to large neutron numbers for higher Z isotopes. The
point of maximum binding energy clusters around X =28
for Z values up to Ni. For Zn the maximum binding en-
ergy per particles occurs at X =40. Our calculation for
neutron-rich nuclei should be more reliable than the mass
formula extrapolations, because we take into account the
coupling with p meson and other mesons at a microscop-
ic level. We have calculated the binding energies, rms ra-
dii, etc., for nuclei up to the neutron-drip line. In Fig. 1

the neutron-drip line is indicated as dashed line. In Table
VIII we have compared our RMF calculation results for
the neutron-drip lines in even Z =20—30 with those pre-
dicted from mass formulas. In general we find a larger
number of stable isotopes (before reaching the drip line)
than predicted by the mass formulas.

B. Spherical shell e8'ects

One of the advantages of the relativistic mean Geld

description of nuclei is that all the relevant properties of

TABLE IV. Comparison between calculated results of binding energy per particle (BE/2), charge radius r, with experimental re-
sults and total deformation parameter P with Moeller and Nix prediction for Ca, Ti, and Cr. BE/3 is in MeV and radii are in fermi.

Nuclei

Ca 16
18
20
22
24
26
28
30

BE/A
(calc.)

7.843
8.247
8.515
8.S98
8.605
8.615
8.587
8.SSO

BE/3
(expt. )

7.816
8.240
8.551
8.617
8.658
8.669
8.656
8.479

(calc.)

3.508
3.507
3.501
3.503
3.513
3 ~ 515

rc
(expt. )

3.480'
3.510'
3.S20'
3.501'
3.481'
3.480

PThix work

—0.006 45
—O.OOS 47

0.001 21
0.007 57
0.012 76
0.01640
0.006 25
0.002 74

PMoell er Nix—
—0.148 420
—0.024 210

0.003 158
0.003 158
0.003 158
0.010526
0.003 158
0.010526

22Tj 20
22
24
26
28
30

8.307
8.460
8.541
8.639
8.695
8.615

8.260
8.534
8.656
8.723
8.756
8.692

3.586
3.578
3.577

3.S90'
3.590'
3.570'

0.000 37
0.007 22
0.032 96
0.067 59
0.005 24
0.028 29

0.003 158
0.017 895
0.024 211
0.038 947
0.017 895
0.046 316

24Cr

'Reference [33].
Refernece [10].

'Reference [32].
dReference [31].
'Reference [30].

20
22
24
26
28
30
32

7.911
8.206
8.512
8.654
8.725
8.711
8.638

7.950
8.304
8.572
8.701
8.776
8.778
8.636

3.650
3.632
3.649

3.680'
3.670'
3.710'

0.000 39
0.205 85
0.272 72
0.236 85
0.145 00
0.183 69
0.193 82

0.003 158
0.031 579
0.223 160
0.145 263
0.024 210
0.137 895
0.166 316



RELATIVISTIC MEAN FIELD STUDY OF LIGHT MEDIUM. . . 2559

TABLE V. Same as Table IV for Fe, Ni, and Zn.

Nuclei

24
26
28
30
32
34
36

BE/A
(calc.}

8.309
8.541
8.713
8.739
8.710
8.680
8.644

BE/A
(expt. )'

8.354
8.610
8.736
8.790
8.792
8.756
8.693

(calc.)

3.649
3.677
3.725

"c
(expt. )

3.700'
3.743'
3.780'

prhis work

0.245 52
0.217 49
0.049 95
0.158 76
0.19068
0.175 75
0.132 71

Moeller —Nix

0.137 895
0.116842
0.024 211
0.124 211
0.173 684
0.194737
0.158 947

26
28
30
32
34
36
38
40

8.363
8.633
8.712
8.715
8.724
8.724
8.729
8.674

8.392
8.642
8.732
8.781
8.795
8.778
8.740
8.683

3.695
3.737
3.774
3.811
3.848

3.781'
3.818'
3.847'
3.866'
3.920

0.045 15
0.013 84
0.018 31
0.081 64
0.064 94
0.047 25

—0.006 59
—0.000 07

0.024 211
0.010526
0.031 579
0.060000
0.074 737

—0.088 421
—0.038 947
—0.003 158

3pZn

'Reference [10].
Reference [33].

'Reference [15].
Reference [31].

26
28
30
32
34
36
38
40
42
44
46

8.072
8.385
8.526
8.615
8.677
8.679
8.686
8.699
8.645
8.600
8.531

8.119
8.394
8.583
8.679
8.736
8.760
8.756
8.730
8.692
8.642
8.582

3.909
3.926
3.941
3.953

3.933'
3.9S4'
3.971'
3.989'

0.171 83
0.009 62
0.181 11
0.205 56
0.202 92
0.171 74
0.11955
0.002 89
0.022 27
0.157 90
0.188 05

0.151 579
0.031 579
0.158 950
0.180000
0.180000
0.180000
0.145 260
0.202 110
0.145 260
0.151 579
0.145 263

nuclei can be obtained starting with the interacting nu-
cleons and mesons. It turns out that the all-important
shell efFect (including spin-orbit interaction) arises from
the solutions of self-consistent RMF equations of in-
teracting nucleons and mesons without any ad hoc as-
sumptions. The spherical shapes for N=20, 28, 40, and
50 are evident in the P„value plots in Fig. 2 for Cr and

Ni nuclei. This tendency for spherical shape at N=20,
28, 40, and 50 is present for Ca, Ti, Fe, and Zn nuclei
also. The Hartree-Fock orbitals show large gaps for neu-
tron numbers 20, 28, and 50, corresponding to the well-
known shell gaps for these magic numbers. N =40 nuclei
do not have large energy gaps but have spherical shapes
corresponding to Zp&i2 subshell closure. These trends are

Nuclei

TABLE VI. Calculated result of r„, r„r „p„,p„, and the total deformation p of the Ti nuclei. Radii are in fermi.

~rms

2pTI 20
22
24
26
28
30
32
34
36
38
40
42
44

3.381
3.452
3.526
3.578
3.642
3.722
3.808
3.905
3.989
4.066
4.139
4.194
4.267

3.506
3.497
3.496
3.487
3.486
3.495
3.511
3.549
3.587
3.627
3.663
3.681
3.708

3.447
3.475
3.511
3.S37
3.574
3.628
3.690
3.769
2.841
3.911
3.976
4.025
4.089

0.000 46
0.007 15
0.037 46
0.077 73
0.005 68
0.035 17
0.000 18
0.042 56
0.027 36

—0.01103
—0.002 20

0.049 98
0.126 80

0.000 37
0.007 22
0.032 96
0.067 59
0.005 24
0.028 29
0.000 15
0.031 94
0.018 98

—0.005 74
—0.001 40

0.017 65
0.078 28

0.00041
0.007 19
0.035 31
0.073 08
0.005 49
0.032 26
0.000 17
0.038 34
0.024 18

—0.009 09
—0.001 91

0.038 87
0.11063
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Nuclei Pn

TABLE VII. Same as Table VI for Zn.

3pZn 26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

3.560
3.564
3.715
3.812
3.894
3.964
4.025
4.079
4.143
4.211
4.263
4.309
4.360
4.390
4.466
4.535
4.600
4.658
4.751

3.746
3.692
3.766
3.799
3.826
3.843
3.859
3.871
3.893
3.920
3.939
3.949
3.957
3.949
3.976
3.998
4.021
4.043
4.105

3.661
3.630
3.741
3.805
3.862
3.909
3.953
3.991
4.040
4.095
4.138
4.174
4.213
4.234
4.297
4.355
4.411
4.463
4.550

0.161 84
0.007 90
0.175 01
0.203 70
0.201 64
0.166 84
0.11067
0.004 61
0.020 11
0.153 40
0.185 75
0.162 05
0.040 58
0.100 56
0.183 92
0.200 46
0.201 04
0.189 18
0.194 58

0.18048
0.01123
0.187 21
0.207 56
0.204 36
0.177 62
0.13080
0.000 60
0.025 28
0.164 52
0.19158
0.16993
0.044 92
0.093 14
0.150 67
0.160 55
0.154 30
0.146 98
0.174 92

0.171 83
0.009 62
0.181 11
0.205 56
0.202 92
0.171 74
0.11955
0.002 89
0.022 27
0.157 90
0.188 05
0.165 08
0.042 21
0.097 85
0.172 04
0.186 54
0.185 11
0.].75 11
0.188 17

consistent with experimental systematics and also with
the results of Hartree-Fock calculations using Skyrme in-
teractions [27]. For Ca and Ti isotopes we find a sharp
dip in the neutron quadrupole deformation (p„) at N =32
(Fig. 2 and Tables VI,VII) indicating a preference for
spherical shape for Ca and Ti, associated with the p3/2
subshell closure for N=32 [11]. For Cr, Fe, Ni, and Zn
no such dip in quadrupole deformation is found for
N =32.

C. Systematics of quadrupole deformation

Apart from the magic shell closures at N =20, 28, 50
and the subshell closures at N =32 and 40 discussed in
Sec. IVB, the majority of nuclei studied in the present
work show a tendency for quadrupole deformation. The
neutron and proton quadrupole deformations p„and p
are plotted as a function of neutron number for Ca, Cr,
Fe, and Ni nuclei in Figs. 2 and Tables VI,VII. Besides
the dips in deformation near shell closures (or subshell
closures), one sees some spectacular peaks in deformation
for some specific neutron numbers (N =24, 32,46).

On the whole Ca isotopes are the least deformed and
Cr isotopes are the most deformed of nuclei studied in
this work. In Ni we find the prolate minimum

(P=0.014) to be the lowest in energy. The spherical
minimum, with f7/p proton and neutron shell closures, is
found to be about 1 MeV above the prolate minimum. It
may be remarked that in conventional Hartree-Pock cal-
culation [26], Ni is also found to be a deformed nucleus.

D. Systematics of charge and matter radii

Recently there has been speculation about neutron
halo in neutron-rich light nuclei [13]. Actually the nuclei
considered by Myers [13] are I.i and Be, with consider-
ably smaller charge numbers than the nuclei we are con-
sidering here. Even then it is worth investigating the sys-
tematics of neutron and proton radii for possible halo
effects. From Figs. 3(a), 3(c) and Tables VI,VII we find
that the neutron rms radii and the matter rms radii in-
crease considerably as the neutron number is increased
(about 30% increase in these radii as neutron number in-
creases from 20 to 60). While this increase is substantial
and implies the presence of more and more neutrons near
the surface, the increase is not large enough for neutron-
halo-like e5'ects. In contrast to the neutron and matter
rms radii, for the proton rms radii [Fig. 3(b) and Tables
VI,VII] the increase with neutron number is more gradu-
al. In Figs. 3(a)—3(c) we notice a tendency for decrease of

TABLE VIII. Comparison with mass formula results for the neutron-drip line with this calculation. '

Nuclei

2pCa

22T1
24Cr
26Fe
28N1

3pZn

Expt.

32&
32&
34&
37&
41&
50&

Comay-Kelson

38
42
46
51
55
58

Techibana
et al.

38
42
47
51
55
59

Masson-Janeke

38
42
46
51
55
58

Moeller
et al.

38
40
43
51
54
56

Moeller-Nix

38
40
43
51
54
56

This work

42
44
50
50
60
62

'Reference [10].
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FIG. 1. Plot of binding energy per particle (BE/A) vs neutron number for Ca, Ti, Cr, Fe, Ni, and Zn nuclei. The dashed line at
the right indicates neutron-drip line.
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FIG. 2. (a) Plot of deformation parameter of neutron P„vs neutron number for Ca, Cr, Fe, Ni, and Ti. (b) Plot of deformation pa-
rameter of proton f3 vs neutron number.
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the radii near the spherical neutron shell closures N =28
and 50. This is specially so for the higher Z nuclei like
Ni and Zn. The neutron-drip line is beyond X =56 for
Ni and Zn. For these two isotopes the rate of increase in
radii slows down near %=56. Such isotope effect near
%=56 is known [35] for nuclei like Mo.

K. Spin-orbit splitting

In RMF calculations, the spin-orbit force comes out
automatically when the Dirac equation is solved. Apply-
ing the Foldy-Wouthuysen reduction of the single-
particle Dirac equation [Eq. 4(a)] for nonrelativistic nu-
cleons moving in the potential generated by the scalar
and vector fields allows one to identify the effective
single-particle spin-orbit splitting [3,44] as

1 d~o(") do(r)
V, .(r)=, g +g,2M'r

= —a(r)1.s .

Gambhir, Ring, and Thimet [4] studied the single-
particle spectra of ' O, Zr, and Pb as typically
representative of spherical nuclei. For ' O they found
that the single-particle spectra for neutrons and protons
are in reasonable agreement with experiment and are also
close to those of Skyrrne-II calculations. In particular,
the gap at the Fermi surface between the last occupied
and the first unoccupied levels is well reproduced for

both neutrons and protons. Similarly, the NL1 is able to
well reproduce the single-particle spectra of other nuclei
as well.

Using NL1 we have calculated the single-particle spec-
tra of Ca and we get the spin-orbit splitting as 6.8 and
4.8 MeV for Od and Op orbits, respectively, whereas the
experimentally observed values [45] are 8.0 and 4.7 MeV
for these orbits, respectively. On the whole the nonlinear
o model (NL1) used here gives a proper description of
the spin-orbit splitting in finite nuclei.

V. MSCUSSION

The relativistic mean field theory provides a micro-
scopic model for the gross properties of nuclei. In this
work we have studied the gross properties of about 100
even-even nuclei with Z =20—30 using the deformed rel-
ativistic mean field model of Walecka with the nonlinear
corrections of Boguta and Bodrner for the o. meson.
Cxood agreement is obtained for the binding energies and
rms radii between our calculation and some experimen-
tally known nuclei. The quadrupole deformation param-
eters calculated in the present work show overall agree-
ment with those in the calculation of Moeller and Nix.

We have done the relativistic mean field calculations
for the neutron-rich species of these isotopes till the
neutron-drip line. The results for the neutron-drip line
conform overall with those of extrapolation of various
mass formulas, although our calculation predicts a few
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more nuclei than the mass formula extrapolations. The
results indicate that there remain a considerable number
of neutron-rich nuclei still to be discovered in this mass
region and such nuclei should be looked for in experi-
ments. Of course these nuclei are stable against decay by
neutron emission, but would in general be subject to P de-
cays.

The results of our calculation for rms radii show good
agreement with known experimental results. The rms ra-
dii and the quadrupole deformation parameters, calculat-
ed in the RMF formulation, show characteristic shell clo-
sure effects. The quadrupole deformation parameter has
maxima for neutron numbers 24 and 46. For X =32, the
quadrupole deformation shows minima for Ca and Ti
corresponding to spherical subshell closure, while for the
other isotopes Cr, Fe, Ni, and Zn, we see maxima in de-
formation parameter. In general Cr nuclei are the most
deformed of these nuclei. Also Fe and Zn nuclei have
substantial deformation.

Thus the RMF, while giving excellent results for the
experimentally known binding energies and radii in the
Z =20—30 region, gives valuable insight into the shape
and isotope effects in these nuclei and the neutron-drip
hne.

Many of the nuclei studied in this work are deformed
(Tables IV—VII). In principle, to get the spectra for these
nuclei, states of good angular momenta should be ob-
tained from the deformed intrinsic states using the angu-
lar momentum projection operator [46]. Here we deal
with nucleon and meson fields simultaneously and hence
one has to project angular momentum for all these fields
in a relativistic formalism. However, in this work we are

concerned with binding energies, nuclear deformations,
and the average properties of the intrinsic states and not
the spectroscopy of the bands in these nuclei. Hence we
have not considered angular momentum projection in
this work. Angular momentum projection for relativistic
mean field models remains an interesting problem for fu-
ture investigations.

We thank Professor S. P. Misra, Professor Y. K.
Gambhir, Professor M. A. Nagarajan, and Dr. J. A.
Sheikh for many stimulating discussions.

APPENDIX: TENSOR COUPLING OF VECTOR MESONS
AND SYMMETRIES OF THE MEAN FIELD SOLUTIONS

The tensor coupling of a vector meson (co or p meson)
with nucleons involves coupling of the type

Pcr„QQi'

Here

(A 1)

(A2)

0
—o. 0

(A3)

and Q"" is the field tensor defined in Eq. (3b) for the vec-
tor field V. With
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0
0 —1

expression (A 1) becomes [47]

tt( cr—H+iy y E)g,
where

H=VXV
is the equivalent of the "magnetic" field and

BVE= — —VV0

(A4)

(A5)

(A6)

(A7)

is the "electric" field of the vector meson. cr =(o -) is
the relativistic generalization of the nucleon spin.

The expectation value of o in expression (A5) for a
many-nucleon configuration having time-reversal symme-
try (even-even nuclei) vanishes and hence the first term of
expression (A5) does not occur in the mean field equa-
tions. Similarly the ( y4y ) expectation value vanishes for
states having good parity and hence the second term of
expression (A5) also does not contribute in the approxi-
mation used here. Thus the tensor coupling (Al) does
not contribute to the mean field solution of even-even nu-
clei.
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