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Deviation of the SU~(2) prediction from observations in even-even deformed nuclei
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The validity of the quantum group SUq(2) expression for the nuclear rotational spectrum is investigat-
ed thoroughly. Analysis [inc!udiug the Mallmann plots, the relations for the I(I+1) expansion
coefficients, energy spectra, etc.] definitely display a systematical deviation of the Su (2) prediction from
the experimental data available for the even-even rare-earth and actinide nuclei. Only within a limited
range of angular momentum the Suq(2) expression is suitable for rotational spectra. A significant angu-
lar momentum dependence of the q-deformation parameter is found. The q deformation is directly relat-
ed to the nuclear softness.

I. INTRODUCTION $2H= — C)+E2g(o)
(6)

or equivalently in terms of y = lnq,

[x]= e ~"—e ~~ sinhyx
slnh+

(3)

In the limit q ~ 1 (i.e., y ~0), [x ]~x and the SU (2) is
reduced to the usual SU(2). The irreducible representa-
tion of SU (2) may be determined by the highest weight
state ~(IM=I ) with /+ ~II) =0 and (II~II) =1, and the
basic states ~IM ) (I)M ~ I ) are exp—ressed as

Recently, the quantum group or the q deformation of
the universal enveloping algebras [1—3] has been attract-
ing much interest in physics [4,5]. In Refs. [6,7], it was
suggested that the spectra of rotational nuclei can be de-
scribed by a Hamiltonian proportional to the second-
order Casimir operator of the quantum algebra SU~(2).
Therefore, it is worth checking to what extent the experi-
mental data available on the even-even deformed nuclei
can be reproduced by the quantum group.

SU (2) is a q deformation of the Lie algebra of SU(2)
[1—6] and is generated by the Hermitian operators, J
Jp and J+, which obey the commutation relations

[J(),J+ ]=+J+, [J~,J ]= [2J()],
where [x ] is the q number defined as

X X

where J( ' is the moment of inertia for q = 1 (y =0) and
Ep the bandhead energy which is chosen as zero for the
ground-state band of an even-even nucleus. 9 and Eo(p)

are regarded as constants in the model. Therefore, the
rotational energy spectrum can be expressed as [6]

))1 sin(Iy~) sin[(I+1)~y~]
2g(o) sin'/y

i

where a pure imaginary y( —= lnq ) =i ~y ~
is assumed.

The purpose of this paper is to examine systematically
the validity of the q-deformation expression (7) for nu-
clear rotational spectra. In Sec. II the q-deformation ex-
pression is analyzed by using the Mallmann plot [8]. In
Sec. III the relations for the I(I+ 1) expansion
coefficients of Eq. (7) are investigated and compared with
the results obtained by using the least-squares fitting for
the rotational spectra observed in the rare-earth and ac-
tinide nuclei. The comparison of the calculated energy
levels with the experimental data is given in Sec. IV. The
results show that only in a limited range of angular
momentum the SUe(2) expression is suitable for rotation-
al spectrum. Also the variation of q-deformation param-
eter ~y~ with angular momentum is investigated. In Sec.
V the connection of Eq. (7) with the variable moment of
inertia (VMI) model [9] is addressed.

II. MALLMANN PLOTS

[I+M ]!
! [2I]![I—M]!

1/2

JI M iII)—
The second-order Casimir operator of SUe(2) is

C)=J J++[J()][J()+1]
with eigenvalue [I][I+1].

A q rotor is a system with Hamiltonian

(4)
Many years ago Mallmann [8] pointed out that the

plots of Rt=(Et Eo)/(Ez Eo) (or rt Rt —Rt 2) vs-— —
R4 showed a remarkably smooth trend. The advantage
of the Mallmann plot was emphasized in Ref. [10] and
was used to test the applicability of each recipe of the
two-parameter VMI model (including the Harris two-
parameter formula as a special case). For each two-
parameter formula of rotational band, the Mallmann plot
is unique and does not depend on the parameter values

2545 1991 The American Physical Society



2546 J. MENG, C. S. WU, AND J. Y. ZENG

3.30 '3.30

11.0

(C)

9.0—

3.25

FIG. 1. The Mallmann plots for the SU (2), AB, aP, ab, expressions. The experimental values (taken from Ref. [14] and the refer-
ences therein) are denoted by closed circles for the actinide nuclei and open circles for the rare-earth nuclei. (a) I=12. (b) I=16. {c)
I=20.
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involved. The Mallmann plot can be compared directly
with the experimental data of rotational spectra over the
entire range of nuclei. Thus, the Mallrnann plot can give
a clearcut picture of the relative success of each formula
for rotational spectrum.

From Eq. (7) we have

sinI
I y I

sin(I + 1 ) I y I

sin2I y I
sin3 Iy I

from which the Mallmann plot for the q rotor can be con-
structed. As illustrative examples the Mallmann plots for
I=12, 16, and 20 are given in Figs. 1(a)—(c). For com-
parison, also given are the corresponding plots for the
other two-parameter expressions of nuclear rotational
spectra, namely, the two-parameter I(I+ 1) expansion
[11]

E = AI(I+1)+BI (I+1)
the Harris two-parameter co expansion [12]

mation. However, from the analyses of the abundant
data on nuclear spectra, all the observed points (except
one) lie on the left-hand side of the Mallmann plots for
SU (2), that is, for given R4 (i.e., given Iy I ) the calculat-
ed rr's by using SU (2) expression (8) are systematically
smaller than the observed values. Therefore, the
Mallmann plots for the nuclear rotational spectra
definitely provide rather convincing evidence that, statist-
ically speaking, the SUq(2) rotor prediction deviates from
the abundant observed data and needs further improve-
ment.

III. RELATIONS FOR THE I(I+ 1)
EXPANSION COEFFICIENTS

On the basis of symmetry consideration, Bohr and
Mottelson [11]pointed out that the rotational energy of
an even-even deformed nucleus can be expanded in
powers of I(I+ 1):

E =ac@ +Pro (10)
E= AI(I+1)+BI (I+1) +CI (I+1)

and the Wu-Zeng two-parameter closed expression [13] +DI (I+1) + (12)

E=a [+1+bI(I+ 1)—1]

derived from the Bohr Harniltonian under certain ap-
proximation. These expressions are briefly referred to as
the AB, aP, and ab ones, respectively.

All the data now available for the ground rotational
bands of even-even actinide and rare-earth nuclei (with
band-crossing angular momentum I, ~ 16) are displayed
in the figures. The data are taken from Ref. [14] and the
references therein. It can be seen that, as expected, the
Mallmann plots for the SU (2) expression (7) are better
than those for the AB expression (10) because the higher
power I(I+1) terms have been included in Eq. (7) [see
Eq. (14) below]. Physically, this fact perhaps implies
that the effects of the vibration and other degrees of free-
dom may be accounted for, at least partly, by the q defor-

AC
4B

A D =1.
24B

(13)

For the SU (2) expression, expanding the functions in the
numerator of the right-hand side of Eq. (7) and collecting
together the terms of the same power of I(I+1), one
may get

However, because only two parameters appears in Eqs.
(7), (10), or (11), only two coefficients in their I(I+ 1) ex-
pansion are independent and a series of relations among
the coefficients are expected. Just as pointed out by Mot-
telson [15], the investigation of the relations for the
I(I+1) expansion coefficients is helpful for providing a
test on the expression of rotational spectra. For example,
if the Harris (aP) expression (10) is expanded up to the
I"(I+1) term, we may get

[jo( Iy I
)I(I+1)—Iy IA(Iy I )I'(I+1)'+ ', Iy I'Jz(Iy I)I'(-I+1)'——,

'
Iy I'ji(Iy I )I'(I+1)'+ ],1

2g(0) [ ( I I
)]2

(14)

TABLE I. The relations of the I(I+1) expansion coeKcients in various expressions for rotational
spectra.

AC
4B
A D
24B

Ac AD
4B 24B

'Reference 14.
"Reference 11.

SUq(2) expression

1 2
10 525 ly I

+

1 1

280 3150
27 11

280 3150

ab expression'

1

2

5

24

7
24

aP expression
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FICJ. 2. The relations for the I(I+ 1) expansion coefficients. The coefficients are determined by the least-squares fitting of the ro-

tational energy levels {below 2'' for actinide nuclei and 16k for rare-earth nuclei). {a) 2C/4B, {b) 3 D /24B, {c)
AC/4B —A D/24B .
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where j„(IyI) is the n-order spherical Bessel function.
The relations among the first four coefficients in the
I(I+ 1) expansion are given in Table I. For comparison,
the similar relations for the aP expression (10) and the ab
expression (11)are also shown there.

Now the data on the ground rotational bands of even-
even deformed actinide and rare-earth nuclei (I, ~ 16) are
employed to determine the first four coefficients in the ex-
pansion (12) by using the least-squares fitting. Thus the
"experimental" values of AC/4B and A D/24B and
their differences can be obtained. The results are shown
in Figs. 2(a), (b), and (c), respectively. It can be seen that
the SU (2) values of AC/4B and A D/24B are sys-
tematically smaller than the experimental values. To ac-
count for this fact, the values of higher coefficients in the
I(I+1) expansion, C and D, should be larger relative to
those predicted by the SU~(2) theory Isee Eq. (14)]. It is
interesting to note that the observed results can be ac-
counted for quite well by the ab expansion (11), which
may provide some useful indication for further improve-
ment of SU~(2) deformation theory.

cation to reveal such a tendency.
In fact, when I approaches I,„, the calculated results

using the SU~(2) expression (7) deviate farther and farther
from the experimental values. As shown in Fig. 4(a),
when I &20, the calculated transition energies for U
decrease with increasing I, which is definitely opposite to
the observed behavior. A similar discrepancy can be
found in other well-deformed nuclei. For example, see
Fig. 4(b) for ' Hf.

Furthermore, for an ideal q rotor, the value of IyI
should be a constant independent of angular momentum.
The value of I y I

can be derived directly from the ob-
served Rz value by using Eq. (8). In Fig. 5, the IyI
values for four typical actinide nuclei are plotted against
the angular momentum. The situation is similar for oth-
er deformed nuclei. As shown in the figure, the q-
deformation parameter

I y I definitely is not a constant,
but varies, sometimes sharply, with angular momentum.
The I dependence of Iy I implies that some other effects
have not been considered in such a simple model Hamil-
tonian, (6). Therefore, to account for the observed data,

IV. ENERGY SPECTRA

Now the SU (2) expression (7) is applied to fit the ob-
served rotational spectra of well-deformed nuclei to see
how well the experimental data can be reproduced. As
two illustrative examples, the calculated results for U
and ' Yb are displayed in Fig. 3, where for comparison,
are also given the AB and ab fits by using Eqs. (10) and
(11), respectively. The analyses for other deformed nuclei
are similar but omitted here to save space. It is found
that, as expected, the SU~(2) fit is better than the AB fit,
because the higher power I(I+1) terms have been in-
volved in the SU (2) model. The deviation,
bE—:IEf

" ' Ef "I, is les—s than 22 keV for U (I ~26)
and 8 keV for ' Yb(I ~20). However, the SU (2) fit is
worse than the ab fit.

It is well-known experimentally that within a rotation-
al band, not only the energy Ez, but also the y transition
energy between the adjacent levels, E~(I)=Ez Ez z is- —
a monotonic increasing function of angular momentum I.
From Eq. (7), we have

—J0

f2
E~(I ) =

&0~
cot

I y I
sin(2I —1 ) I y I

(15)

Therefore, to account for the observed rotational spectra,
the following requirement has to be imposed:

10-

0 ~ ( 2I —1 ) I y I
& n /2,

i.e., the SU~(2) expression (7) is suitable only for I ~ I
(16)

a6

I,„=integer part of
4lyI

+— (17)
AB

For the well-deformed even-even nuclei, IyI -0.03—0.06,
hence I,„-28—16. When ~/2~(2I —1)IyI ~sr, E~(I)
becomes decreasing with I. Furthermore, when
m ~(2I —1)I@I ~2m, negative values of E&(I) would be
obtained. However, experimentally there seems no indi-

FICx. 3. AE& =E&"'—Ez" ' vs I for two typical well-deformed
nuclei. (a) U, (b) ' Yb.
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it appears that an additional residual interaction needs to
be introduced into Hamiltonian (6), or another kind of
quantum algebra than SU (2) should be considered.
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V. MEANING QF PARAMETERS
IN SUq (2) EXPRESSION

In this section we shall discuss the physical implication
of the parameters in SU (2) expression (7).

According to Eq. (7), the rotational energy deviates
from the simple I(I+ 1) rule valid for a rigid rotor. This
deviation, as pointed out by Bohr and Mottelson [11],
may be viewed as a dependence of the moment of inertia
on the rotational angular momentum.

As usual in the cranked shell model, the nuclear mo-
ment of inertia is defined as [16]

a&I(I+1)

600—

400—

with

1 dE
& d&I(I+1) (19)

200—

1

10

(b)

1

20

From Eq. (7), one may get

(2I + 1 ) sin
I y I

lyl»n(2I+1) yl
' (20)

which means that the nuclear moment of inertia is an in-
creasing function of I

(2I+1)sinlyl
sin(2I+ 1)Iy I

(21)

FIG. 4. The variation of transition energy, Ey(I), with I.
The curves stand for the calculated SUq(2) results and the dots
for the e~perjrnental data. (a) U, (b) ' Hf.

where J'o is the ground-state moment of inertia

&~&~ smly I (22)0
yl

which differs from J' ' by a reduction factor of
sin

I y I /I y I
due to q-deformation. When I y I

~0,
The numerical calculation shows that whenI-I,„[i.e., (2I+ l)lyI-~/2], (Sl —So)/Jo-0. 7,

which seems to be smaller than the observed results [17]
(Ji —J'z)/Zo-1 for I-20—30.

Another interesting quantity is the softness of nucleus,
which is defined as [9]

2.""4j
242 p

4 Ci 333

1

dI

From Eq. (20), we have

~ =2(1 —
I y I

cot
I y I )

=-,'lyl'(1+ —,', lyl'+ —,'„lyl'+ . )

=-' yl'

(23)

(24)

FICx. 5. The variation of the q-deformation parameter, Iyl,
with the angular momentum.

Therefore, the q-deformation is directly related to the
softness of the nucleus. For the usual value of
Iyl-0. 03—0.06 o ranges from 6X10 to 2.4X10
These values seem rather smaller than those adopted in
the usual VMI model [9].
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