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We perform shell-model calculations in *Ne for the summed magnetic dipole orbital strength and spin
strength with a schematic interaction consisting of single-particle splitting, an isospin-conserving pairing
interaction, and a quadrupole-quadrupole interaction. We consider four channels: orbital excitations to
J=1% T=1 states, and then to J =1" T =2 states; spin excitations to J=1* T =1 states, and then to
J=1% T =2 states. For the orbital T— T channel, the summed M1 strength varies quadratically with
the size of the quadrupole interaction x for small values of this parameter when degenerate single-
particle energies are used. Using realistic single-particle splitting does not destroy the quadrupole col-
lectivity. The other three channels respond in different manners. We also consider linear-energy-
weighted sum rules for which analytic results are obtained. The relevance of this work to experiments
on orbital strengths and their relations to quadrupole excitations is discussed.

I. INTRODUCTION

Interest in magnetic dipole orbital modes became very
intense after the discovery of the “‘scissors-mode” excita-
tions in *Gd by Bohle et al. [1]. There was of course
considerable theoretical work previous to this by Lo Iud-
ice and Palumbo [2], Iachello [3], and Dieperink [4], but
only when the orbital strength was actually seen experi-
mentally did the field really take off.

In 1981 one of the authors of this work (L.Z.) in colla-
boration with Halemane and Abbas [5] was also interest-
ed in looking separately at the spin and orbital strength
distributions in nuclei and addressed the specific prob-
lems of the linear-energy-weighted sum rules when a
spin-dependent delta interaction was used to induce
configuration mixing.

In this work we return to the problem of orbital
strength. Instead of considering the detailed spectrum of
171 states, we will mainly focus on the summed orbital
and spin M1 strengths. We will try to make our work
more relevant to subsequent developments, not only the
discovery of the scissors modes, but also their relations to
electric quadrupole excitations. In this regard we consid-
er the works of Ziegler et al. [6] and Rangacharyulu
et al. [7], who have claimed that in even-even rare-earth
nuclei, there is a strong correlation between the summed
orbital magnetic dipole strength below 4 MeV, often
called scissors-mode excitations, and the E2 transition to
the first excited 2" state. Since the 0;f —2;" transition
rate is known to be proportional to the square of the de-
formation parameter (82), they feel that this is also true
for the summed orbital M1 strength. This result is cer-
tainly not a priori obvious—one does not see it in text-
books.

We feel that the definition of a scissors mode is some-
what in a state of flux, evolving in time and being shar-
pened up only as experiments became more precise and
the number of nuclei considered increases. The simplest
definition would be that given by the original picture of
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Lo Iudice and Palumbo [2] of an out-of-phase rotation of
the deformed symmetry axis of neutrons against that of
the protons. However, since the original formulation
leads to much too strong B(M1), one can go to the next
stage of the interacting boson approximation IBA-2
where only the valence nucleons participate [3,4]. This
picture gives a more or less correct B(M1) rate at the
right energy, e.g., B(M1)=~2u% at 3 MeV in !*°Gd.
However, it is noted in the above recent experimental
analysis [6,7] that the IBA-2 predicts a different depen-
dence of B(M1) 1 and B(E2)01+_)21+ on the numbers of

valence protons and neutrons in the open sell (N, and
N,):

orbita

2N +3

B(E2)=C(e,N,+e,N,)? 3 (1.1)
3 8NN,
B(Ml)orbitalzzq;(gv—gﬂ) _QN—_I(,UN) , (1.2)

and therefore the ratio of B(M 1) ;. to B(E2) is not in-
dependent of N, and N, in contradiction with experi-
mental findings [6,7]. Also, the IBA-2 predicts only one
state at an energy of ~3 MeV for 1®Gd. A finer-
resolution (y,y’) experiment by Berg and Kneissl [11]
shows that there is considerable intermediate structure in
the broad (e,e’) peak, which means there are several 17
states close by. It is reasonable then to identify the scis-
sors mode, not with one state, but as sum over several
states which are localized within a small band of energies.

Does this mean that all the orbital strength will thus be
accounted for? The shell model provides a simple
answer: No. In a comparison of the Nilsson and shell
models by Liu and Zamick [8], it was shown that for >*Ne
most orbital strength was located in a few low-lying
states. These states have a significant orbital strength so
that it can be seen experimentally. They also found that
some of the orbital strength was at higher energies, but
completely fragmented, so that any one state had very lit-
tle strength.
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Zamick [9] noted some connections between the shell-
model calculations and the more collective ones. In the
single j shell of protons and neutrons, the B(M 1) rate is
isovector, e.g., proportional to (gj,r—gj,,)z. Also, the shell
model has “antisymmetric” states in the protons and neu-
trons, just as IBA-2 [3,4]. This is especially apparent in
“3T{ where the wave functions are either symmetric or an-
tisymmetric under the interchange of protons and neu-
tron holes and vice versa. Chaves and Poves [10] noted
that the s-d shell offers good examples of scissors-mode
excitations, especially in ?°Ne and **Ne.

It seems then to make the most sense in defining opera-
tionally the scissors modes to include a few low-lying 17
states which exhaust most orbital M1 strength from the
ground state and can be reached by the M1 excitations of
predominantly orbital isovector characteristic from the
ground state. These do not include the 17 states in the
higher-energy region where the fragmentation is very
strong (although one should always be aware of the pres-
ence of this higher-energy region). Of course, our
definition would be of no interest if there were no
significant chunks of low-lying isovector orbital strength.
There are such low-lying states with significant orbital
isovector strength supported by experiments and many
theories, including the shell model that is here being
used.

In order not to lose sight of the collective aspects, we
will be using schematic interactions, just as has been done
in the past for studying E2 excitations. It is important to
see if there is a microscopic justification for the pic-
turesque ideas which the collective models yield.

Before going on the calculations, we should mention a
surprisingly simple problem that occurs when consider-
ing the familiar B(E2)’s in deformed nuclei. What does
the statement “B(E2) is proportional to 8 mean? Does
it mean that a B(E2) vanished at zero deformation? In
fact, there are strong E2 transitions to the first excited
27" states even in vibrational nuclei. So somewhere this
formula must lose its meaning. In microscopic models,
instead of using & as a deformation parameter, we will use
a parameter in our Hamiltonian—the size of the
quadrupole-quadrupole interaction as an indication of the
collectivity.

We will do the calculations for Ne, which is certainly
not a rare-earth nucleus. It is one, however, where a
reasonably good shell-model calculation can be per-
formed, and as we will show, all the necessary features
are present to display the tendencies both for and against
the scissors-mode collectivity. A special feature of light
nuclei is that there are two orbital modes, one in which
the isospin of the 17 states is the same as that of the
ground state and the other in which the isospin is one
unit higher. We shall see that the response of these two
modes to the quadrupole collectivity is quite different.
For completeness we will consider the spin excitations as
well.

II. SUMMED ORBITAL
AND SPIN M1 STRENGTHS IN ?’Ne
WITH SCHEMATIC INTERACTIONS

In this section we evaluate the summed orbital and
spin M1 strengths in ?*Ne as a function of certain param-
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eters of a schematic interaction, the two-body part of
which is an isospin-conserving pairing (V,) plus
quadrupole-quadrupole (V) interaction. The interaction
can be written as

V=V, +V,+xV, . (2.1)

ingle part

The first term in Eq. (2.1) is simply the single-particle
splitting in a major shell. We shall consider two cases.
First, we take the single-particle energies to be degen-
erate. This should enhance the quadrupole collectivity.
Then we will use “‘experimental” single-particle splitting:
€4,,=0,€ =0.87 MeV, and €;, =5.08 MeV. It will

be of interest to see whether or not the single-particle
term destroys the quadrupole collectivity.
The isospin-conserving pairing interaction V, is
defined by its two-body matrix elements:
DTV, 1G 7T
=—G(—1)!""V(@2j+1)2j + 18,87, -

(2.2)

We here use G =5/ A(MeV), which is only half the value
as given in Ref. [12]. This is justified by noting that the
isospin-conserving pairing acts not only between like nu-
cleons, but also between proton-neutron pairs, and for
22Ne, which has 4 valence neutrons and 2 valence pro-
tons, the number of neutron-neutron and proton-proton
pairs is 7, nearly half of the number of nucleon-nucleon
(pp,pn,nn) pairs, which is 15.
The quadrupole-quadrupole (QQ) interaction is

Vo=—X 3 S (—1Hr2Y,,)(r2Y, ), (2.3)
i>jp
with the parameter y given by [12]
_ 240
X=- Ve 2.4)
where the oscillator length b is defined by the equation
_ # 45 25
#fio(MeV)= b? MR (2.5)
For A4=22, #w=12.88 MeV, b=1.795 fm, and

X=—0.1324 MeV/fm*. We may change the strength of
the QQ interaction by varying x. For x =1 our pairing
plus QQ interaction yields the normalized, antisym-
metrized two-body matrix elements (jj|V,|jj);
=—2.912 MeV for J=0, T=1 and —1.017 MeV for
J=1, T=0, where j=ds,,. The corresponding matrix
elements for a universal s-d (USD) phenomenological in-
teraction of Wildenthal [13] are —2.655 and —1.537
MeV.

We shall, with the pairing strength G fixed at
5/ AMeV), study the summed strength as a function of x
from x =0 (pure pairing) to x = . Presumably, as we
increase x, we go toward the rotational limit. At the oth-
er limit x =0, we should remember that the properties of
an isospin-conserving pairing interaction are not the
same as those of a pairing interaction which acts only be-
tween like particles.

In a light nucleus such as ??Ne, we can have both
J=0"T—J=1%T and J=0"T—-J=1"(T+1) transi-
tions. It will be shown that these two channels respond
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differently to the change of the schematic interaction pa-
rameters. We therefore will consider them separately.

We show our results in Table I and in Figs. 1 and 2 for
the summed orbital and spin strengths from the ground
state of 2?Ne. The strengths for the T=1-—T=1 chan-
nel and the T=1—T7T=2 channel are separated. The
B(E?2) for the transition 0;" —2; is also listed in Table I
and Fig. 3. For the fixed pairing strength, we give the re-
sults for various choices of the QQ strength parameter x.
Just to gauge where we are, we also give results for the
Wildenthal interaction (denoted by “Wldnthl” in Table I)
[13], which fits most of the empirical data in the s-d shell
very well.
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energies. For a pure isospin-conserving pairing interac-
tion (x=0), the summed orbital strength, as seen in
column A of Table I, is zero. Of course, since every term
in the sum is non-negative, each individual orbital transi-
tion rate must be zero for this case. This corresponds to
zero deformation. We now turn on the quadrupole in-
teraction qu. As we increase x, we see that for small x
the summed orbital strength is indeed quadratic in x, as
we would expect if B(M1),.:.1 Should be quadratic in the
deformation parameter 6. However, when x is increased
further, a saturation sets in and the summed strength flat-
tens out to reach an asymptotic value of 0.981u3% for a
pure QQ interaction. Note that with the Wildenthal in-

We now discuss four different cases in the following.
A. Orbital strength, T=1—-T=1

teraction [13], we obtain a summed strength of 0.531u%,
not very different from the value of 0.610u% for the
schematic interaction with x =1.0.

We then come to column B of Table I where the
summed orbital strength for experimental single-particle

We consider first the calculations for the T=1—-T=1
channel with degenerate (deg.) in Table I single-particle

TABLE 1. Summed orbital and spin strengths (in u%/) for the M1 transitions from the ground state
of ?Ne and the B(E2) (in e?fm*) for the transition 0; —2;" using the schematic interaction (¥, +xV,)
with different choices of x. Degenerate (deg.) or experimental (expt.) single-particle energies are used.

QQ T=1-T=1 T=1-T=2
size M1 Orbital M1 Spin B(E2) M1 Orbital M1 Spin
x Deg. Exp. | Deg. Exp. | Deg. Exp. | Deg. Exp. | Deg. Exp.
0.0 0 0.094 0 5.032 | 233.7 89.02 | 0.283 0.218 | 3.937 4.942
0.1 0.021 0.101 | 0.006 4.803 | 272.2 167.5 | 0.273 0.201 | 3.010 4.444
0.2 0.085 0.133 | 0.020 4.615 | 308.8 215.6 | 0.260 0.192 | 2.145 3.858
0.3 0.177 0.187 | 0.034 4.435 | 338.8 249.1 | 0.253 0.188 | 1.463 3.246
0.4 0.275 0.254 | 0.041 4.235 | 360.2 275.5 | 0.251 0.189 | 0.994 2.675
0.5 0.361 0.325 | 0.042 4.008 | 374.3 297.0 | 0.250 0.192 | 0.692 2.181
0.6 0.434 0.393 | 0.039 3.761 | 383.5 314.2 | 0.251 0.197 | 0.498 1.778
0.7 0.492 0.454 | 0.035 3.507 | 389.5 327.9 | 0.253 0.203 | 0.371 1.457
0.8 0.539 0.506 | 0.031 3.258 | 393.5 338.6 | 0.255 0.209 | 0.284 1.205
0.9 0.578 0.550 | 0.028 3.021 | 396.4 347.1 | 0.256 0.215 | 0.224 1.006
1.0 0.610 0.587 | 0.024 2.800 | 398.4 353.8 | 0.258 0.220 | 0.180 0.849
1.1 0.637 0.618 | 0.022 2.596 | 399.9 359.2 | 0.259 0.225 | 0.148 0.723
1.2 0.659 0.644 | 0.019 2.409 | 401.0 363.7 | 0.260 0.230 | 0.124 0.621
1.3 0.678 0.667 | 0.017 2.239 | 401.9 367.3 | 0.262 0.234 | 0.105 0.539
1.4 0.695 0.686 | 0.015 2.084 | 402.6 370.4 | 0.263 0.237 | 0.090 0.470
1.5 0.710 0.703 | 0.014 1.942 | 403.2 373.0 | 0.263 0.240 | 0.078 0.414
00 0.981 0.981 0 0 374.6 374.6 | 0.278 0.278 0 0
Wldnthl | 0.531 0.562 | 0.940 3.877 | 337.3 307.5 | 0.388 0.292 | 0.164 0.709
Column A B C D E F G H I J
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FIG. 1. Summed orbital M1 strength (in p%) in 2?Ne as a
function of QQ strength x in the schematic interaction
(V,+xV,). Degenerate (dashed lines) and experimental (solid
lines) single-particle energies are used.

energies is given. Here a very important question to con-
sider is whether or not the simple picture of quadrupole
collectivity for orbital M1 transitions gets destroyed
when we remove the unrealistic constraint of degenerate
single-particle energies. We note of course that there are
differences in columns A and B. As we approach the
pairing limit (x —0), the summed strength in column B
does not approach zero, although the result is small:

Summed spin M1 strength

x (QQ strength)

FIG. 2. Summed spin M1 strength (in u%) in **Ne as a func-
tion of QQ strength x in the schematic interaction (V, +xV,).
Degenerate (dashed lines) and experimental (solid lines) single-
particle energies are used.
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FIG. 3. B(E2)+ ,+ in e*fm* in ?Ne as a function of QQ
174

strength x in the schematic interaction (¥, +xV,). Degenerate
(dashed line) and experimental (solid line) single-particle ener-
gies are used.

S B(M1),i02=0.094u%. However—and this is one of
the most important points in this work—when we in-
crease x toward realistic values, the results in columns A
and B come close to each other. For example, for
x=0.5, the corresponding values are 0.361u3 and
0.325u%; for x =1.0, they are 0.610u3, and 0.587u%; for
x =1.5, they are 0.710u% and 0.703u%. This means that
for realistic values of x (x ~ 1) the quadrupole collectivity
is sufficiently strong so that the single-particle energies do
not play a significant role as far as the summed orbital
strength is concerned, at least in the J=0"T—J=1"T
channel.

However, as clearly seen from Fig. 3, the B(E2) for the
transition from the ground state to the first 27 state is not
quadratic in the QQ strength x even the degenerate
single-particle energies are used. In this case the value of
19(E2)01+_,2]Jr for x =0 is not zero; it is rather 233.7

e?fm*. With some thought the nonzero value is not
surprising. When the deformation becomes small, we ap-
proach the vibrational limit, and it is well known that the
B(E 2)o, s, is quite large in this limit. As we increase x,

the value of B(E2) increases, but not quadratically.
Indeed, the curve B(E2) vs x is concave down, whereas a
quadratic dependence would give a concave-up curve.

As is seen in Fig. 1, whereas the curve for
> B(M1),piaT =1—T=1 starts out quadratically (con-
cave up), beyond x ~0.4 it becomes concave down just as
the one for B(E2) vs x.

Note that the value of B(E2) reaches a maximum
somewhere beyond x =1.5, but it must then decrease
slowly because, for x — o, the B(E?2) is slightly smaller
than that for x =1.5. The decrease may be an artifact of
our model in the sense that we do not allow AN =2 ad-
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mixture.

We now demonstrate that the summed orbital M1
strength for the T'— T channel is dominantly isovector.
We give the summed orbital M1 strengths for the Wil-
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denthal interaction with its self-consistent single-particle
energies and for the schematic pairing plus quadrupole
interaction (x =1) with experimental single-particle ener-
gies as follows:

Interaction Wildenthal Pairing + quadrupole
&(p) gi(n) >B(M1 Jorbital, T—T EB (M1 )orbital, TT
Normal 1 0 0.562 0.587
Isovector 0.5 —0.5 0.539 0.575
Isoscalar 0.5 0.5 0.055 0.045

We see that despite the fact that the bare orbital M1
operator 3,;g;(i)I(i) is half isoscalar and half isovector,
the orbital strength is about 10 times larger than the cor-
responding isoscalar strength.

The reason for this is that configuration mixing brings
the ground-state wave function of ??Ne toward the LS
limit with L =0 [14]. The isoscalar orbital operator is
just 0.5L, i.e., half the total orbital angular momentum
operator. When acting on a state with orbital angular
momentum L =0, the above operator yields zero.

We also note that the summed orbital M1 strength
shown in Table I is exhausted by a few low-lying 1*
states in all cases. In the top portion of Fig. 4, we show
the orbital M1 strength distribution for the T=1->T=1
transitions using the Wildenthal interaction [13] with its
self-consistent single-particle energies. In this case over
65% (0.366u3) of the total (0.562u%) orbital M1
strength goes to the lowest three 17, T=1 states (their

Orbital strength
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FIG. 4. Orbital (top) and spin (bottom) M 1 strength distribu-
tions (in u}) for the transitions 07, T=1—1"%, and T=1 in
22Ne using the Wildenthal interaction with its self-consistent
single-particle energies.

excitation energies are 5.431, 6.660, and 8.584 MeV, re-
spectively) and the rest strength is strongly fragmented
over the other 348 states. Thus, in practice, only the
lowest few states can be seen in the orbital M1 excita-
tions.

B. Orbital strength, T=1—>T=2

As seen in column G of Table I (also Fig. 1), the
T=1-—T=2 orbital strength for the case of degenerate
single-particle energies behaves in a completely different
manner than that of the T=1-—T=1 channel (column
A ). The summed strength is not zero in the pairing limit
(x —0). From x=0 to 0.5 the strength decreases very
slowly from 0.273u3 to 0.250u%. It increases after
x =0.6 very slowly and approaches the value 0.277u3, for
x=co. The summed orbital strength when the experi-
mental single-particle energies are used is slightly smaller
than in the degenerate case, but the results as a function
of x are qualitatively the same.

Thus we see that the association of summed orbital M1
strength with deformation only holds for the lower iso-
spin branch 7=1—-T=1. The upper branch
T=1—T=2 scarcely responds to the onset of deforma-
tion. This is seen clearly in Fig. 1 where the curves for
T =1—T=2 are quite flat as a function of x.

C. Spin strength, T=1->T=1

From column C of Table I, we see that the summed
spin strength in the case of degenerate single-particle en-
ergies is zero for the case of a pure pairing interaction,
and as does its orbital counterpart (column A), it in-
creases quadratically in x for small x. But then it turns
around and approaches zero as x becomes very large, i.e.;
for a nearly pure QQ interaction. More generally, the
summed spin strength would vanish for any spin-
independent central interaction in the case of degenerate
single-particle energies because of SU(4) symmetry. We
see in Fig. 2 that for all values of x considered here, the
summed spin strength is always very small when degen-
erate single-particle energies are used.

When we use experimental single-particle energies, the
summed spin strength becomes very large, e.g., 5.032u%
for x =0. As we increase x, the strength decreases. It is
1.942u% for x =1.5 and it approaches to zero as x — .
Unfortunately, Fig. 2 does not extend enough in x to
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show this.

In contrast to the case of the orbital strength, the
single-particle energies are always a major factor as far as
the spin strength is concerned. In fact, in evaluating the
linear-energy-weighted sum rule for M1 strength, Kurath
[17] took only the one-body spin-orbit interaction into
account—this gives the single-particle splitting between
j=I1+1 and j=I—1; he did not take any two-body in-
teraction into account.

In the bottom portion of Fig. 4, we show the spin M1
strength distribution for the T=1-— T =1 transitions us-
ing the Wildenthal interaction [13] with its self-consistent
single-particle energies. This should be compared with
top portion of Fig. 4, where we show the orbital M1

strength distribution. It is very interesting to see that the

spin strengths to the lowest three 11, T=1 states (espe-
cially the first and third states) are relatively small, in
contrast to the orbital case where the lowest three states
exhaust over 65% of the total orbital M1 strength. In
particular, the calculated orbital strength to the first 17
state is 0.152u%, much larger than the corresponding
spin strength of 0.017u%.

D. Spin strength, T=1—->T=2

The T=1—T=2 spin strength, in contrast to the
T=1-—T=1 case, does not vanish for a pure pairing in-
teraction. It is quite large even in the case of degenerate
single-particle energies (3.937u3 when x =0). That the
T — T spin transition vanishes but the T— T +1 does not
for an isospin-conserving pairing interaction was also
shown by Halse [15]. As we turn on the QQ interaction,
this strength goes steadily toward zero and indeed van-
ishes when x =co. Again, this is a consequence of the
SU(4) symmetry.

When the experimental single-particle energies are in-
cluded, the summed spin strength increases somewhat,
but the qualitative behavior (decrease of the summed spin
strength with increasing x) is the same as in the degen-
erate case. We see that, in general, for the spin excita-
tions there is a fairly complex interplay between the
effects of the single-particle energies and two-body residu-
al interactions.

Thus far, we have discussed mostly the summed M1
strength. Under what conditions, however, is the
strength sufficiently concentrated so that the concept of a
scissors mode is interesting? An answer is given in the
works of Retamosa et al. [16] and Zamick, Zheng, and
Moya de Guerra [14]. Retamosa et al. showed that in
the SU(3) limit there is only one scissors state in *°Ne,
and three in 24Mg. Zamick, Zheng, and Moya de Guerra
also got the same result for 2>Ne by considering the one-
body approach in the LS limit. In that case the deformed
potential is triaxial and the only way to get M1 excita-
tions is to have a transition proportional to w, —®, or
®, —,. It should be remarked that there are no spin ex-
citations in this limit.

J

EwW — 3 + z z
(San )2-body___m<0 |§j(ti_tj)2 >

a=x,y,z

(=1, [UF=17), V1107 ) .
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III. LINEAR-ENERGY-WEIGHTED SUM RULE
FOR M1 EXCITATIONS

It is easier to obtain analytic results by considering
energy-weighted sums. But it should be kept in mind
that for M1 transitions these sum rules are highly model
dependent and should be used for illustrative purpose
only. The linear-energy-weighted sum rule (LEWSR) for
M1 transitions is defined as

SEW :Z%F S (Ep—E )| flulo™ )
7

-3
= 8ﬂ<0+|[y,,[H,p,]]0+) , (3.1)

where |01) is the initial ground state and u is the mag-
netic dipole operator:

p= (g +g.i)s] . 3.2)

The LEWSR for M1 transitions can be divided into a
one-body part and a two-body part as

3
Sf;‘?’=—8;(0+| \p, [ [2 —al;ro,+ 3V ],p] [0*)
i i<
=(S31 1body T (SIY )2 body - (3.3)

The one-body part arises from the single-particle spin-
orbit splitting and can be easily evaluated to yield the
Kurath sum rule [17]
3
(SIEIVIV)1~body=—[(gss—gls)z—i_(gsV_gIV)z]
167
x(0*|S al;-0;l0%) , (3.4)

where gf=gs(p)+gs(n)=1760’ gSVzgS(p)—gS(n)

=9.412, and g7=g,=g,(p)=1.000. Note that
(g7—g’)
“—‘62-:0'008 163,

(3.5)
(g/—g/

and so the one-body part is dominantly isovector. The
expectation value of the one-body spin-orbit interaction
(>.al;;0;) for a given | is equal to
alnj—; 11l —n;=;_1p(I+1)], where n; is the number
of nucleons in the orbit j. The parameter a is 1 MeV if
the spin-orbit splitting between d; ,, and ds /, is 5 MeV.
Since we are interested in the orbital strength, the
two-body part is of greater interest to us. For a spin-
independent central interaction, the two-body part is of
orbital isovector characteristic and can be written as

(3.6)
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For the QQ interaction (xV, ), the above double commu-

tator can be greatly simplified. In fact, we have

S [UF—19,[1E—1, Y2 ()Y, ()]]

a=x,y,z
=(6+2m3)Y2(i)Y%,,(j)
—(6—m*+m)Y2 _ (i)Y, ()

—(6—m*—m)Y2 (i)Y, (). 3.7
Therefore,
S [UE—IO, =IO, [ YA YH()]0]]
a=x,y,z
=18V5[YXi)Y*j)]°, (3.8

and the two-body part of the LEWSR for M1 transitions
is

EW
(S M1 )Z-body

133;—;)((0+| S =D YO Y100 ) .
ij

(3.9)

Except for an isospin factor (¢7—¢; )2, which is nonzero
for neutron-proton pairs only, the above quantity is close-
ly related to the expectation value of the QQ interaction
(x¥,) in the ground state:
(xV,)=(0"] 3 (x¥V,);10%)
i<j
=V5xx(0"| 3 r2r2[YAi)YX(j)1°0") .

i<j

(3.10)

This in turn can be related to the (non-energy-weighted)
summed E2 strength, which can be obtained by inserting
a complete set of 27 states:

Spa= 3 By(E2)
f

=v'5(07| Z!eiejrizrjz[Yz(i)YZ(j)}°|0+> , (3.11)
1’.]
where the E2 operator is defined as
4
QU(E)=3 (er’Y); . (3.12)

i=1
The relations (3.9) and (3.11) are the closest we can
come to establishing a relation between the LEWSR for
M1 transitions and the summed B(E2) strength. The
basic idea is that the expectation value of the commuta-
tor for orbital M1 transitions using a QQ interaction is
proportional to the expectation value of the neutron-
proton part of the QQ interaction.

IV. CLOSING REMARKS

Rather than establishing a direct link between the
summed orbital strength and deformation parameter §,
we tried to correlate the former quantity with the size of
the QQ interaction x by studying the dependence of this
strength on the parameter x. For the orbital strength of
J=0%, T=1—J=1", and T=1 transitions, we find for
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a fixed pairing strength G, a quadratic dependence on x
for small x. We find that for a sufficiently large but nev-
ertheless realistic value of x, the results with experimen-
tal single-particle energies are almost the same as for the
results with degenerate single-particles energies. This in-
dicates that the quadrupole collectivity is not destroyed
by the single-particle splitting.

Ironically, although SB(M1) ;T — T starts out
varying quadratically with x, this is not the case for
B(E2)01+_)21+. Indeed, the latter quantity is nonzero as

x —0. We explained this by noting that in the vibration-
al limit the value of B(E2)O+ ot is substantial. In this
4

regard it might be better to establish a connection be-
tween B(M1) and the quadrupole moment of the 2;
state, as suggested by Chaves and Poves [10]. Beyond a

certain value of x (x >0.4), the curves for B(E2)0+_»z+
1 1

and SB(M1) ;T — T as a function of x look quantita-
tively similar and both curves are concave down.

The other three channels respond differently to the in-
crease of the QQ strength x. The T=1—-T=2 M1 or-
bital strength is nonzero for x=0 (pure isospin-
conserving pairing interaction) and does not vary much
with increasing x.

The case of T=1-—-T=1 M1 spin excitations with de-
generate single-particle energies is interesting. The
summed strength vanishes for both x =0 (pure pairing)
and x—oo. But the above strength is completely
overshadowed by the enormous contributions arising
from the nondegeneracy of the single-particle energies.
The T=1-—T =2 spin excitation strengths are large for
x =0, but they steadily decrease as x is increased.

The closest we come to an analytic relation between
magnetic dipole orbital and electric quadrupole strengths
is the relation between the linear-energy-weighted sum
rule for M1 orbital transitions and summed B(E2)
strength, where the relevant double commutator is evalu-
ated for the quadrupole interaction.

In this work, by limiting ourselves to summed
strengths, we have shown some necessary but not
sufficient conditions for the scissors-mode interpretation
of the orbital magnetic dipole excitations (7— T') in de-
formed nuclei to have been met. The summed orbital
strength vanishes for this channel in the isospin-
conserving pairing limit, it starts to vary quadratically
with the strength of the QQ interaction, and for realistic
values of the QQ interaction, the inclusion of single-
particle energies does not change this sum very much.
Despite the fact that the orbital operator is half isoscalar
and half isovector, we find that the isovector orbital
summed strength is much larger than the corresponding
isoscalar sum, and this is explained as being due to the
fact that configuration mixing tends to produce an L =0
ground state. The above conditions are of course not
sufficient for the scissors-mode concept to be of interest.
As we have noted in this and previous work [8], about
35% of the strength is hopelessly fragmented for ?’Ne.
The fact that 65% is not fragmented, but resides in the
three lowest-lying states, and thus amenable to experi-
mental observation is what makes the scissors-mode idea
interesting. The summed strength that we have calculat-
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ed obviously provides an upper limit to the scissors-mode
strength.

The shell-model approach does not yield the simple
picture of a single purely orbital state. The orbital
strength can be in several states. There can be spin ad-
mixtures. There are states for which the spin and orbit
terms nearly cancel [8], and so one does not see them in
electron scattering. But the orbital strength can be ob-
tained, as indeed experimental groups have shown [6,7,1],
by a combined analysis of electron and proton scattering.
And the final picture is one in which there is a concentra-
tion of low-lying orbital strength which acts like a collec-
tive scissors mode.

We hope that these considerations have shed some
light on the relation between scissors-mode excitations
and electric quadrupole transitions.

Note added in proof. Since the time of receipt of this
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manuscript two works have appeared which relate
B(M1) (scissors) to BE2 (0;,—2,). Using somewhat
different approaches, Hamamoto and Magnusson [18]
and Garrido et al. [19] conclude that in order to get the
orbital B(M1) strength to be proportional to 8% rather
than to & one must include pairing.
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