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We present the numerical details for performing static Hartree-Fock and time-dependent Hartree-
Fock calculations using a spline collocation method. Calculations are performed on a three-
dimensional Cartesian lattice without any symmetry assumptions and quantal degeneracies. The
three-dimensional Hartree-Fock calculations are compared with the solutions of the corresponding
radial equations. The results demonstrate an unprecedented accuracy for relatively coarse meshes.
We also present a zero impact parameter, time-dependent Hartree-Fock calculation for the 0+ 0
system.

I. INTROI3UCTION

The mean-field formalism has been a successful ap-
proximation to the nuclear many-body problem for re-
producing the principal properties of nuclei throughout
the periodic table. The details of these calculations sug-
gest that the Pauli principle plays an important role in
simultaneously building up a mean field and suppressing
the strong N-N interaction terms. The time-dependent
mean-field formalism has proven to be a valuable tool
for studying a variety of nuclear phenomena, e.g. , fusion,
fission, deep-inelastic scattering, and nuclear molecular
resonances. A comprehensive review of the previous ap-
plications can be found in Refs. [1—4].

From the numerical standpoint, new techniques have
been developed to handle the solution of the Hartree-
Fock equations on a space-time lattice. In particular,
equations of motion were obtained via the variation of
the lattice representations of the constants of the mo-
tion, such as the total energy [5—8]. In this variation
after discretization approach, resulting equations exactly
preserve the constants of the motion. The lattice tech-
niques are important because the alternative basis ex-
pansion approach requires the optimization of basis set
parameters due to the finite cutofF in the number of ba-
sis states. This procedure becomes very inefficient for
large-scale calculation of, say, multidimensional energy
surfaces using realistic density-dependent interactions.
Due to their extensive computational requirements most
numerical calculations have employed low-order, finite-
difFerence discretization techniques with accuracies ap-
propriate for studying the gross features of heavy-ion
collisions. For example, time-dependent Hartree-Fock
(TDHF) calculations have been performed with imposed
spin-symmetry, no spin-orbit interaction, and using an
axially symmetric geometry. Recently, we have shown
that the relaxation of the spin-symmetry is an impor-
tant consideration for the dissipation of the relative ki-
netic energy in low-energy heavy-ion collisions [5, 9—11].

With the advent of new supercomputer technologies, it
has become feasible to carry out more extensive nuclear
structure and reaction studies without resorting to the
symmetry assumptions employed in the earlier applica-
tions. Typical calculations would include the study of
highly excited deformed systems, e.g. , multidimensional
energy surfaces and superdeformations, and nuclear fis-
sion. Calculation of nuclear properties away from the
ground state are important in establishing the detailed
form and parametrization of the effective interaction em-

ployed in these calculations. Most realistic effective in-
teractions, such as the Skyrme (SkM*) force, are fitted to
reproduce the ground-state properties of a few spherical
nuclei. An exception is the SkM* force which also approx-
imately reproduces the one-dimensional fission barrier of
240 Pu [1g]

In order to be able to perform such calculations and
to obtain a more detailed comparison with data it is nec-
essary to exploit higher-order interpolation techniques.
This is due to the fact that precise nuclear structure stud-
ies would re uire overall accuracies which are a fraction
of a MeV. Co sidering the fact that such small numbers
arise from the cancellation of large attractive and repul-
sive parts, the calculational accuracy of each part should
be better than 0.1%. Along these lines a series of Hartree-
Fock (HF) and HF-BCS calculations have been carried
out for medium-heavy nuclei using seventh and ninth-
order finite-difFerence discretization of the differential op-
erators [13—17]. These calculations were performed on a
three-dimensional Cartesian lattice with imposed parity
and z-signature symmetries [13, 14]. Discretization of
the energy functional on a spline collocation lattice pro-
vides a highly accurate alternative to the finite-difference
method. One significant advantage of this technique is
that in comparison to the finite-difFerence method the
same level of accuracy can be attained with a smaller
number of lattice points. The structure of the result-
ing lattice representation is highly suited for vector and
parallel supercomputers, and the method allows a highly
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modular programming where the order of the splines can
be defined as an input parameter. Further details of the
spline collocation method are published elsewhere [18,
19]

In this paper we present three-dimensional, HF and
TDHF calculations with no imposed symmetries, using
the spline collocation method. In Sec. II we briefly intro-
duce the basic HF and TDHF equations using the Skyrme
interaction. In Sec. III we obtain a collocation-lattice
representation of the HF equations. This section also
contains the methods for solving the resulting systems
of equations. Section IV presents the results for static
and dynamic calculations, and in Sec. V we present a
discussion of the results.

II. FORMALISM

In this section we will outline the static and dynamic
Hartree-Fock equations using the Skyrme effective inter-
action.

In practice 4o(t) is chosen to be a Slater determinant

1

¹' det~P), (r, t) ~,

where Pg(r, t) are the single-particle states with quantum
numbers A. If the variation in Eq. (3) is performed with
respect to the single-particle states P&, we obtain a set of
coupled, nonlinear, self-consistent initial-value equations
for the single-particle states

h((P„})Pg= ihgg, A = 1, ..., N .

These are the fully microscopic time-dependent Hartree-
Fock equations which preserve the major conservation
laws such as the particle number, total energy, etc.

Static equations can be obtained from Eq. (5) by tak-
ing out a trivial phase from the single-particle states

A. Formal equations

Given a many-body Hamiltonian containing two- and

three-body interactions

N N

H = ) t;+) vz+ ) vza,

For time-dependent calculations the initial single-particle
states can be constructed from the static solutions by
multiplying them with an appropriate phase factor (or
boost)

the time-dependent action S can be constructed as [20]

dg & e(~)ia —itch, ie(~) & . (2)

Here, C (p) denotes the time dependent, many-body wave

function which, for a system of fermions, is commonly
approximated by a Slater determinant. Variation of the
action yields the most probable time-dependent path be-
tween the points t~ and t2 in the multidimensional space-
time phase space

This corresponds to multiplying the static Slater deter-
minant by a plane wave exp(ik K), where K = P, r;
and leads to a translating solution due to the Galilean
invariance of the equations of motion.

B. Skyrme potential

As the eAective two-body interaction, we employed the
Skyrme potential with a generalized density-dependent
term [12, 21—24]

v~ &(r1, rq) = $0(l+ zoP )b(r1 —rq) + —[b(r1 —r2)k + k' b(r1 —rq)]+ &2k' b(r1 —r2)k
2

+—(1+zsP )p (R)b(r1 —r 2) + lf4(D1+ oz) . k' x b(r1 —r2)k, (8)

where

In Eq. (8), the term proportional to ts is a density-dependent term which has the same expectation value as a local
three-body interaction for n = z3 ——1. The term with coeFicient t4 is the spin-orbit, interaction used in earlier
calculations.

The expectation value of H with the above interaction can be written in terms of the energy density 'H(r) as [21,
22]

E =(
i i@6)H= f d*r R(r) .

The energy density is commonly decomposed into various groups as given below
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and

12 s, 1, 3, 35'" "pp(r), pp(r ) ——' —
~ [pp(r )]3

~r —r'( " (12)

ds / exp( —(r —r'(/a} VU
( ) ( /)

l L lU) ( ) ( /)

&v=& or

—(t2 —3tg)pV' p+ —(t2+ 3tg)) pqV' p, .2 1

The finite-range form of the 'Hy term [7] is usually pre-
ferred in dynamical calculations because of its numerical
stability and better surface properties. We also note that
the Coulomb term 'Hc contains a Slater exchange contri-
bution in addition to the direct term. Various quantities
used in the energy density are written in terms of the
spin-up and spin-down components of the single-particle
states

(14)

pq(r ) = ) .n~ {l@~(r) I'+ l@~ (r )I')
A&q

&q(r) = ) .&~(l&@p (r) I'+ l&&g (r)I')

jq(r) = ) np Im g~+ (r)V'g~+(r)+ g„(r)V'g„(r)
Agq

A&q
PP =+

Here, the subscript q = n, p denotes the isospin quantum
number and the total density is simply p = p„+pz (same
for all other quantities as well). The quantities n~ are the
occupation numbers for the state A.

C. Hartree-Fock Hamiltonian

Using the Skyrme effective interaction and the one-
body kinetic energy term, the Hartree-Fock Hamiltonian
can be written as

h'
hq

——V V + Uq + Ug + Uc
2mq r

1+—(V Iq+ Iq . V) —iBq (V x /r) .

Various terms in the above expression are given by

h 6 1 1+ -(ti + t2)p+
8

(t2 —ti)p„
1 1I, = ——(tg + t2)g ——(t2 —tg)J„
1 k4

Bq = ——(tg —ty) Jq + —V(p+ pq) )

and

~o 1
U =to 1+—p —

l

—+» l p +-(ti+t2)~ —-(t~ —t2)~q
2 (2 ) 4 8

Z3 a+1 t41+—[a+2]p ———+» np
— ) p +2p p, l

——[V.J+V.J,].12 2 12 2
I

' q) 2

The Yukawa and Coulomb contributions are
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~&=~ or (18)

~(t& —3t&)V'p+ ~l(t, + 3t, )V'p„

The first term in the definition of B& is neglected in
practical calculations. Table I lists the parameter values
for various forms of the Skyrme force used in our calcu-
lations.

III. SPLINE IMPLEMENTATION

TABLE I. Parameter values for various parametrizations
of the Skyrme force used in our calculations. The BKN force is
from Ref. [27], the SkM' force from Ref. [12]. The subscript
Y indicates that the V' p terms are replaced by the Yukawa
form.

Force

tp (MeV fm )
ti (MeV fm )
t2 (MeV fm )
ts (MeV fm )
t4 (MeV fm )
Sp
X3

V~ (MeV)
Vr, (MeV)
a (fm)

—497.726
0.0
0.0

17270.0
0.0
1.0
1.0
1.0

—363.044
—363.044
0.45979

—2645.0
410.0

—135.0
15595.0
130.0
0.09
0.0
1/6

(SkM') ~
—1784.692

410.0
—135.0
15595.0
130.0

0.19302
0.0
1/6

—660.7470
—395.7221

0.45979

Currently, most HF and TDHF calculations are per-
formed using low-order finite diA'erence lattice tech-
niques. It is desirable to investigate higher-order inter-
polation methods which result in the improvement of the
overall accuracy and reduction in the total number of lat-
tice points. The lattice solution of de'erential equations
on a discretized mesh of independent variables may be
viewed to proceed in two steps: (1) Obtain a discrete
representation of the functions and operators on the lat-
tice. (2) Solve the resulting lattice equations using itera-
tive techniques. Step (1) is an interpolation problem for
which we could take advantage of the techniques devel-
oped using the spline functions [25, 18]. The use of the
spline collocation method leads to a matrix-vector rep-
resentation on the collocation lattice with a metric de-
scribing the transformation properties of the collocation
lattice.

A. Splines

Given a set of points or knots denoted by the set (z,},
a spline function of order M, denoted by BM, is con-
structed from continuous piecewise polynomials of order
M —1. These splines have continuous derivatives up to
a (M —2)nd derivative and a discontinuous (M —l)st
derivative. We only consider odd-order splines or even-
order polynomials for reasons related to the choice of
the collocation points. The ith spline is nonzero only in
the interval (z;, z;+M). This property is conunonly re-
ferred to as limited support. The knots are the points
where polynomials making up the spline join. In the in-
terval containing the tail region, the splines fall oA' very
rapidly to zero. The explicit construction of the splines
is explained elsewhere [18]. We can also construct exact
derivatives of splines provided the derivative order does
not exceed M —l.

A continuous function f(z), defined in the interval(x;„,z „),can be expanded in terms of spline func-
tions as

f(x) = ) B; (z)c', (20)

where quantities c' denote the expansion coe%cients. We
can solve for the expansion coef5cients in terms of a
given, or to be determined, set of function values eval-
uated at a set of data points more commonly known as
collocation points. There are a number of ways to choose
collocation points [18,25]; however, for odd-order splines
a simple choice is to place one collocation point at the
center of each knot interval within the physical bound-
aries

&a+M —1 + &a+Af
Z~

2 (21)

f = ) B;c',

w'here f = f(z~), and Bo,; = B~(x~). In order to solve
for the expansion coefBcients, the matrix B needs to be
inverted. However, as it stands, the matrix B is not a

Here, zM ——z;„,@~+M ——z, and N is the number
of collocation points. Note that collocation points are
denoted by greek subscripts. We can now write a linear
system of equations by evaluating (20) at these colloca-
tion points
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One can trivially show that all local functions will have a
local representation in the finite dimensional collocation
space

f(z)
The collocation representation of the operators can be

obtained by considering the action of an operator 0 onto
a function f(z)

&f(z) = ) [&B; (z)]c* . (25)

If we evaluate the above expression at the collocation
points z~, we can write

Substituting from Eq. (23) for the coefficients c', we ob-
tain

square matrix, since the total number of splines with a
nonzero extension in the physical region is X+ M —1.
In order to perform the inversion, we need to introduce
additional linear equations which represent the boundary
conditions imposed on f(z) at the two boundary points,
zM and zM+~. The essence of the lattice method is to
eliminate the expansion coe%cients c' using this inverse
matrix. The details of using the boundary conditions
and inverting the resulting square matrix are discussed
elsewhere [18]. Following the inversion, the coefficients
are given by

c'=) B f

where we have defined the collocation space matrix rep-
resentation of the operator 0 by

O&= & [nB].; B-'*' (28)

B. HF Equations in collocation space

In order to obtain a set of lattice equations which pre-
serve the conservation laws associated with the continu-
ous equations, it is essential to develop a modified vari-
ational approach. This goal is achieved by performing a
variation to the discretized form of a conserved quantity,
i.e. , total energy. Consequently, the resulting equations
will preserve all of the conserved quantities on the lat-
tice. For the TDHF equations, we consider a general
discretized form of the action (static HF is obtained by
using a trivial time-phase for the single-particle states)

Notice that the construction of the collocation space op-
erators can be performed once and for all at the beginning
of a calculation, using only the given knot sequence and
collocation points. Due to the presence of the inverse in
Eq. (28), the matrix 0 is not sparse. In practice, the
operator 0 is chosen to be a differential operator such
as d/dz or d /dz . By a similar construction, it is also
possible to obtain the appropriate integration weights on
the collocation lattice [18].

p = f pt ) pv p~ 1c(ape) — ~'h) cpt(app) "(app)
app

(29)

where indices n, P, and y denote the lattice points in
three-dimensional space, and LV p~ is the correspond-
ing infinitesimal volume element. Due to the presence
of derivative operators in the Hamiltonian, the explicit
form of these expressions will depend nonlocally on the
lattice indices. The general variation, which preserves
the properties of the continuous variation, is given by

The details of the discrete variation for the finite-
difference case are given in Refs. [5, 6]. Below we outline
a procedure for using the spline collocation method for
the numerical solution of HF and TDHF equations.

Since the detailed derivation of the representation
of the TDHF equations involves many terms that are
present in the energy functional, we will only illustrate a
few terms. The three-dimensional expansion in terms of
splines is a simple generalization of Eq. (20)

gg(z, y, z) = ) c~'"B;(z)B,(y)Bg(z) .

The knots and collocation points for each coordinate can
be diRerent. With the appropriate definition of bound-
ary conditions, all of the discretization techniques dis-
cussed in the previous section can be generalized to the
three-dimensional space. The details of this procedure
are given in Ref. [18].

As an example for a local term, let us consider a part
of the to contribution to the total energy

1 + — tU 6) tU P O.' P ) 32
~pe

where on the right, -hand side we have written the dis-
cretized form on a collocation lattice with integration
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TABLE II. A comparative study of HF results for O. The force used is the BEN. We also
include the direct and exchange parts of the Coulomb interaction and consider separate neutron
and proton densities.

EHF (MeV)
Ey& (MeV)
rp (fm)
r„(fm)
E.(n) (MeV)
E„(n)(MeV)
E,(p) (MeV)
Ep(p) (MeV)

Radial
N =5oo

4 = 0.025 fm

—119.641
249.734
2.6263
2.5970

—30.120
—16.949
—26.237
—13.361

Spline, M = 3
N =22

A =0.9 fm

—113.849
250.416
2.6491
2.6202

—30.181
—16.702
—26.351
—13.167

Spline, M = 5
N =22

4 =O.9 fm

—119.135
249.809
2.6284
2.5993

—30.160
—16.954
—26.282
—13.372

Spline, M = 7
N =22

A =O.9 fm

—119.674
250.070
2.6254
2.5961

—30.148
—16.975
—26.265
—13.386

weights denoted by tv. Here, o., P, and p represent the
collocation points in z, y, and z directions, respectively.
In order to be able to perform the variation with respect
to the single-particle states g&, we rewrite Eq. (32) ex-
plicitly

in z, y, and z directions (they can be difFerent although
the notation does not make this obvious) calculated as
described in the previous section. Finally, the HF equa-
tions can be written as matrix-vector equations on the
collocation lattice

1+—p o.' (34)

where we have rewritten a summation as the total den-
sity. The same procedure can be carried out for the non-
local terms in the energy density. A typical term is illus-
trated below

(&~i ) ~~ = ) .D &i (&'») &+ ) .Dp &~ (~P'v) &

+ ) .Dp @)+(~&V')»

1 + — 0) tD

aPp pv

Using Eq. (30) in the variation of Eq. (33), we obtain
(after replacing the primed indices with unprimed ones)
the contribution

(35)

C. Solution of the discrete HF equations

The solution of the HF Eqs. (35) is found by using the
damped relaxation method described in Refs. [26, 4]

y"„+'= Og"„—oD(E )(h" —s"„)y"„], (36)

The essence of this construction is that the terms in the
single-particle Hamiltonian h are matrices in one coordi-
nate and diagonal in others. Therefore, b need not be
stored as a full matrix, which allows the handling of very
large systems directly in memory. The details of this
procedure are discussed below.

where the matrices D denote the first derivative matrices where 0 stands for Gram-Schmidt orthonormalization.

TABLE III. A comparative study of HF results for O. The force used is the SkM'. We also
include the direct and exchange parts of the Coulomb interaction and consider separate neutron
and proton densities.

EHF (MeV)
rrms (fm)
E,,i, (n) (MeV)
E„,i, (n) (MeV)
Ep, i, (n) (MeV)
E,,i, (p) (MeV)
E„,i, (p) (MeV)
E„,i, (p) (MeV)

Radial
N = 5oo

4 = 0.025 fm

—127.73
2.6822

—33.307
—19.882
—13.551
—29.739
—16.477
—10.270

3D, M=3
N=22

&=0.9 fm

—122.20
2.7179

—33.038
—19.249
—13.452
—29.523
—15.908
—10.226

3D, &=5
N =22

6=0.9 fm

—127.18
2.6872

—33.305
—19.814
—13.515
—29.741
—16.415
—10.242

3D, M=7
N =22

A =O9 fm

—127.69
2.6826

—33.311
—19.873
—13.540
—29.743
—16.468
—10.260

3D, M=9
N =22

2 =O.9 fm

—127.73
2.6821

—33.308
—19.880
—13.545
—29.740
—16.474
—10.265
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TABLE IV. A comparative study of HF results for ' O. The force used is the SkM'.

EHF (MeV)
r, . (fm-)

E,,q, (n) (MeV)
Ep,), (n) (MeV)
Ep, ), (n) (MeV)
E,,~, {p) {MeV)
E„,), (p) (MeV)
E„,~, (p) (MeV)

Radial
N = 500

A = 0.025 fm

—127.73
2.6822

—33.307
—19.882
—13.551
—29.739
—16.477
—10.270

3D, M=7
N =12'

A = 1.667 fm

—127.36
2.6872

-33.119
—20.131
—13.551
—29.584
—16.718
—10.284

3D, M=7
%=22

A = 0.909 fm

—127.69
2.6826

—33.311
—19.873
—13.540
—29.743
—16.468
—10.260

3D, M=7
N =33

A = 0.606 fm

—127.73
2.6822

—33.307
—19.882
—13.551
—29.739
—16.475
—10.269

The damping operator D is chosen to be [26, 4]

T
D(EO) = 1+

Q i

- —1

+

where T denotes the kinetic-energy operator. In practical
calculations we have used the damping scale value x0 ——

0.05 and the energy cutofF EQ ——20.0. As a convergence
criteria we have required the fluctuations in energy

to be less than 10 . This is a more stringent condition
than the simple energy difFerence between two iterations,
which is about 10 when the fluctuation accuracy is
satisfied,

The calculation of the HF Hamiltonian also requires
the evaluation of Yukawa and direct Coulomb contribu-
tions given by Eqs. (18) and (19). The evaluation of
the three-dimensional integrals is very costly; instead,
we solve the corresponding difFerential equations

(
1

W~ (r ) = —4mapq(r ),a2

9' Uc(r) = —4vre pp(r) .

Details of solving the Helmholtz and Poisson equations
using the splines are given in Ref. [18].

gether with the solution of the radial Schrodinger equa-
tion for the spherical 0 nucleus, using the Bonche-
I&oonin-Negele (BKN) force [27]. Three-dimensional cal-
culations result in a spherical nucleus with a quadrupole
moment on the order of 10 fm . We have used
22 points in z—, y—, and z—directions in interval

(—10, +10) fm. Radial calculations had converged to
two significant digits. As we see from Table II, an in-
crease in the spline order M leads to a significant im-
provement in all quantities. The error in binding energy
for M = 7 is 0.03%. The energies were calculated using
the Koopman's formula with corrections for the density-
dependent three-body term and the Coulomb exchange.
We also correct the energy for the center of mass mo-
tion using the approximation E, = P,. p2/2Am. The
three-dimensional calculations involve 16 single-particle
states each with a spin-up and a spin-down component.
Due to the absence of the spin-orbit interaction in the
BKN force, the 6 p states for neutrons and protons are
degenerate in energy. In Table III we repeat the ~sO

calculations using the SkM" force. The table shows the
same level of convergence for this force even though the
SkM includes the complicated spin-orbit interaction. In
this case the numerical computation of the parity and
the third component of the total angular momentum us-

ing equations

d'r &i(r)4~( —r)

In Table II we have tabulated the results obtained from
the solution of the three-dimensional HF equations to-

are within 1 part in 10 of the exact spherical value.
We also note that the 1p splitting for the ~sO is accu-
rately reproduced as 6.15 MeV. Each HF calculation for
~sO on a (22) lattice consumed 15 min on a Cray-2 su-

TABLE V. A comparison of radial HF calculations with three-dimensional spline results for the
Ca nucleus. The force used is the SkM' interaction. VVe have used a spline order M = 7 with a

(24) lattice and 0.9 fm spacing.

Radial
3D

EHF (MeV)
—341.11
—341.00

r, , (fm)

3.4016
3.4023

20

0
2x10
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TABLE VI. A comparison of radial HF single-particle energies with three-dimensional spline
results for the Ca nucleus. The force used is the SkM' interaction. We have used a spline order
M = 7 with a (24) lattice and 0.9 fm spacing.

Radial —43.813

1P3(g
—32.671

1P~]g
—28.563

1D5]
—21.373

2Sg(p
—16.743

1D3
—14.323

3D —43.815 —32.668 —28.563 —21.364 —16.735 —14.316

Radial —36.326 —25.394 -21.379 —14.334 —9.744 —7.477

3D —36.330 —25.394 -21.381 —14.328 —9.739 —7.473

percomputer. The computer time for heavier systems is
somewhat linearly proportional to their mass number. In
Table IV we have repeated these calculations for a fixed
order of splines, M = 7. The number of lattice points in-
creases from (12)s to (33)s showing the clear convergence
of all quantities as a function of the number of colloca-
tion points. From these results, one may conclude that
with M = 9 a lattice dimension between (12) and (22)s
is generally adequate.

Tables V and VI show similar calculations for the 4oCa

nucleus using the SkM' force. The calculations used a
spline of order M = 7 and a (24)s lattice with 0.9 fm lat-
tice spacing in each direction. We observe from Table V
that the numerically computed value of the quadrupole
moment is 2 x 10 4 which could be improved by demand-
ing a stricter convergence criteria. In Table VI we com-
pare the single-particle energies between the radial and
three-dimensional calculations. We observe that the re-
sults are strikingly accurate. These results could fur-
ther be improved by performing calculations with M = 9
which require the same amount of computer time due
to the use of nonsparse derivative matrices. These cal-
culations involve 40 single-particle states each having a
spin-up and a spin-down component represented on the
three-dimensional Cartesian lattice.

lim f(n)
A+ —a,n

where A and b are constants and f~ denotes the con-

12.

For larger systems, such as the Pb, which involves
208 single-particle states each with spin-up and spin-
down components, the calculations on a Cray-2 require
a modest amount of computer time. We have performed
one such calculation for the ~ Pb system using M = 9
and a (22)s lattice. The calculations were stopped after
110 iterations which took 10 CPU hours on the Cray-
2. At the last iteration the binding energy was —1636.0
MeV, which should be compared with the exact spherical
value of —1636.4 MeV. The convergence of other observ-
ables were commensurate with this result. The rate of
convergence for large systems is relatively slow towards
the end of a calculation when the results have converged
to better than one percent in accuracy. However, there
exists powerful extrapolation methods for dealing with
such slow convergences [32]. One can show that the
asymptotic expansion for the binding energy and the nu-
clear radius have the form
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FIG. 1. A plot demonstrating the search for the extrap-
olated value of the HF energy. Notice that the curve with

f~ = 1636.4 MeV is quite close to being linear.

FIG. 2. Comparison of three-dimensional, spline TDHF
calculations (solid line) with symmetric three-dimensional re-
sults (dotted line) and axially symmetric calculations (dot-
dashed line).
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we obtain

y(n) = logioA b logio( ) . (4o)

For every guess of f we find constants A and b which
produce the most linear y(n) vs logio(n) curve. A typical
search is graphed in Fig. 1. We note that the most linear
curve corresponds to 1636.4 MeV, same as the radial HF
result.

At this time we have also completed one TDHF calcu-
lation for the 0+ 0 system at E~ab = 64 MeV using
the BKN force with an impact parameter 6 = 0.0 fm. We
have used a time step of Bt = 0.4 f m/ cand followed the
reaction for 850 time steps. These numbers are commen-
surate with the few restricted three-dimensional calcula-
tions available in the literature [28—31]. At the end of the
calculation the discrepancy in energy was 3'2 keV out of
the total energy of 193 MeV, an error of 0.02%. During
the collision the overall normalization was conserved to
better than 1 part in 10 . In Fig. 2 we show the dis-
tance between the two nuclei calculated using the spline
method in unrestricted space (solid line) for E~ b = 64
MeV and for a head-on (zero impact parameter) collision.
The other curves show the symmetric three-dimensional
calculations of Ref. [28] (dotted line), and the cylindri-
cal calculation (dot-dashed line). The reduction of the
TDHF equations to axial symmetry is exact for head-on
collisions. These calculations provide a test of our re-
sults for very low-energy collisions and for using forces
that are fitted to reproduce the data. The generaliza-

verged result. For finite data sets this is actually non-
linear in f~ and requires a search for f . Rewriting
Eq. (38) as

f( ) f — =10'( l
A

tion to higher energies, interactions, and nonzero impact
parameters are being presently calculated.

V. l3ISCUSSION

We have performed three-dimensional HF and TDHF
calculations with no simplifying assumptions. The use
of the spline collocation method results in an unprece-
dented accuracy for relatively coarse meshes. The evolu-
tion of nuclear HF and TDHF calculations have closely
paralleled the advances made in computer technology.
With these new numerical methods and the technology
available today it is possible to perform static HF calcu-
lations with accuracies comparable to more phenomeno-
logical models. In the near future we will incorporate
constraints into the HF program which will enable us
to perform energy-surface calculations for heavier sys-
tems. Similarly, unrestricted dynamical calculations will
help us correctIy address the questions about the amount
of mean-field dissipation present in heavy-ion collisions.
But, perhaps more importantly, the development of such
numerical technologies and programs wi11 Lead to spin-
ofI's for addressing many other problems in physics.
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