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Isospin character of the giant quadrupole transition in ' Sn
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Use has been made of the interference between the nuclear and Coulomb amplitudes in the scattering
of 84 MeV/nucleon ' 0 ions by ' "Sn to study the isospin character of the giant quadrupole transition.
The data are well described by assuming the transition is "isoscalar, " i.e., M„/M~=N/Z. This is in

disagreement with the results of m+/m scattering on " Sn and recent (e, e'n) measurements on " Sn.
Cross sections for excitation of the 2+ state at 1.132 MeV, 3 state at 2.614 MeV, and giant monopole

resonance are included with corresponding coupled-channels calculations.

I. INTRODUCTION

Discrepancies relating to the isospin properties of the
giant quadrupole resonance (GQR) persist. Recently, we
have reported on the excitation of the GQR in " Sn by
inelastic scattering of ' 0 ions, and found that this transi-
tion is well described by assuming an isoscalar character,
i.e., M„/M =N/Z [where M„=fp„(r)r + dr] [1].
The diff'erential cross sections do not show a minimum
predicted at 0, = 1.9' resulting from a coupled-
channels calculation which uses the GQR parameters re-
ported [2] from inelastic sr+/~ scattering on " Sn. Al-
though analyses of both the pion and heavy-ion data
yielded about the same strength for excitation of the mass
GQR [i.e., 56% EWSR (energy-weighted sum rule) and
60% EWSR, respectively], the deduced B(E2)l's differed
by more than a factor of 2. For the pion scattering,
B(E2)1=0.0676 e b which corresponds to
M„ /M =2. 38, whereas the heavy-ion (i.e., isoscalar)
value is B(E2)l'=0. 181 e b . A recent study [3] of the" Sn(e, e'n ) reaction reports a B(E2)$ which is compa-
rable to that deduced from pion scattering on " Sn [i.e.,
corresponds to about 34% of the energy weighted
B(E2)$ sum rule]. Both of these results disagree with
small-angle (i.e., 8=0') measurements [4,5] of the"Sn(a, ct') reaction at E —125 MeV where the GQR is
observed to exhaust —100% EWSR, although they are in
better accord with the -48% EWSR reported [6] from a
measurement at E -400 MeV. The centroid of the giant
monopole resonance (GMR) is located at 17.9+0.9 MeV
in the (e,e'n) measurement [3], while the three alpha
scattering works place it at —15.7 MeV.

A continuum random-phase-approximation (RPA) cal-
culation for the GQR and GMR in ' Sn was found to
reproduce the " Sn(e, e'n ) results for the GMR but to
overestimate the GQR by about a factor of 2 [7]. Like-
wise, an open-shell RPA calculation for " Sn also over-

predicts the GQR strength by about a factor of 2 [8].
Since the agreement [9] between the (e, e'n ) data and
RPA calculations for Pb is quite good, Miskimen et al
[3].suggest the need for more theoretical work for the tin
nuclei. However, since the open [8] and closed [7] shell
RPA calculations for the GQR in the tin isotopes are in
excellent agreement, we decided to repeat our heavy-ion
scattering measurements on another tin isotope, and
chose ' Sn. We present the results of these measure-
ments in this article.

II. EXPERIMENTAL

The measurements were made using a beam of 84
MeV/nucleon ' 0 ions provided by the Grand
Accelerateur National d'Ions Lourds (GANIL) in Caen,
France. The scattered ions were detected and analyzed
with the energy-loss spectrometer SPEG [10]. The detec-
tor system consisted of two multiwire chambers located
behind the focal plane, each capable of determining x,y
position, an ionization chamber for providing a AE sig-
nal, and a plastic scintillator for both E and time-of-Aight
information. For recording inelastic data, the elastic
peak was stopped by a beam block which could be moved
along the focal plane. The target was a 1.0-gm/cm self-
supporting foil of ' Sn enriched to 96.0%. The overall
experimental energy resolution was -700 keV.

Data were taken with SPEG set to an angle of 2.47'
with respect to the incident beam. The left horizontal en-
trance slit of SPEG was used to stop the incident beam.
This slit is not a Faraday cup, and a correction factor was
determined by comparing elastic-scattering data for
several targets with DW optical model calculations. In
order to fit the calculated curves, the elastic cross sec-
tions based upon the entrance slit beam current deter-
mination had to be renormalized by a factor of 1.5. Cali-
brations of both in-plane (0) and out-of-plane (P) angles
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were accomplished by means of a slotted plate. Absolute
calibration of the 0 angle was done by moving the left-
hand slit out until the current reading was reduced by a
factor of 2 which established the incident beam direction.
The presence of a peak in the elastic spectra which was
due to scattering from a small hydrogen impurity in the
target served as a check of the 8 calibration.

The elastic data were measured over an angular range
OL=0. S5—4.66' and for the inelastic 0~ =1.14—3.64'.
Angle bins of 60=0. 1 were used to determine
differential cross sections.

III. DATA ANALYSIS AND DISCUSSIl3N

A. Elastic scattering

The elastic data were fitted using the computer pro-
gram PTOLEMY [11] and an optical model potential with
Wood-Saxon form factors, i.e.,

nomial above an excitation energy of 16 MeV which was
matched to a Guassian peak centered at 16 MeV. The
low-energy side of the Gaussian has an energy-dependent
amplitude which tends toward zero at the neutron sepa-
ration energy. The parameters that describe the polyno-
mial were determined by fitting the data above E =45
MeV. The results are shown for an inelastic spectrum for
8, =2.26' in Fig. 2(a). The spectrum that results after
subtracting the continuum is shown in Fig. 2(b).

The photonuclear data of Fultz et al. [12] were used to
generate the shape distribution for the giant dipole reso-
nance (GDR). Because of the strong Q dependence of the
Coulomb excitation, the shape distribution of the GDR
varies markedly with angle. The photonuclear cross sec-
tion [12], o (E ), was converted to an effective 8(E1)$
per unit energy by the relation

b~, (E„)= ' or(E )/E e b/MeV .
0.09hc

16~

with

V(r ) = —Vf (x, ) i Wf (—x ),

f(x, )=(1+e ') ', x, =(r —R;)/a, ,

A, =r (A' +2,' ),
and i = V, 8'. The Coulomb potential was taken as that
between a point charge and a uniform charge distribution
with radius R, =1.20(A ' + A,' ) fm. The real and

imaginary geometrical parameters were set equal.
The fit to the elastic data as shown in Fig. 1 was at-

tained with V=SO. O MeV, 8 =49.465 MeV, r=1.0641
fm, and a =0.7429 fm. These parameters are similar to
those obtained by fitting the " Sn data [1].

B. Inelastic scattering

The inelastic data were analyzed in a similar manner as
is described in our " Sn paper [1]. At each angle, the nu-

clear continuum was parametrized as a third-order poly-
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FIG. 1. Optical model fit to the ratio of the differential elas-
tic cross section to Rutherford cross section vs 0, for the
' "Sn(' 0, ' 0')' Sn reaction at 84 MeV/nucleon. The optical
model parameters are given in the text.

This expression was used to calculate double-diff'erential
cross section d o. /dO, dE for the GDR at several excita-
tion energies assuming only a Coulomb interaction and
using the optical model parameters given above which
were obtained from fitting the elastic data. This calcula-
tional procedure has been shown to reproduce measured

Pb(' 0, ' 0'y) cross sections for the GDR [13]. The
GDR shape distribution at each angle was then deter-
mined by averaging the double-diA'erential cross section
over the corresponding center-of-mass solid angle defined

by the software cuts. The GDR shape distribution and
the experimental spectrum resulting after subtraction of
the continuum for 0, =2.26 are shown in Fig. 2(b).
Note that the eft'ect of the Q dependence is to shift the
GDR shape distribution toward lower energy.

The spectrum resulting from subtraction of the contin-
uum and the GDR is shown in Fig. 2(c). This spectrum
(as well as those at other scattering angles) was decom-
posed using Gaussian peaks with energies and widths
given in Table I. The peaks at 1 ~ 132 and 2.614 MeV cor-
respond to excitation of the well-known first 2 and 3
states, respectively, in ' Sn. The peaks at 4.20, 4.90,
6.20, and 7.85 MeV are located in the region dominated
by the low-energy octupole resonance (LEOR) reported
by Moss et al [14]. In this excitation energy region, an
underlying broad structure was observed upon which
were superimposed some narrow peaks which had other
than an I.=3 angular distribution [14]. This is similar to
what we observed for " Sn [1]. The peak at 12.50 MeV
corresponds to the GQR, and that at 15.25 MeV to the
GMR. In the following we will be concerned with only
the 1.132-, 2.614-, 12.50-, and 1S.25-MeV peaks whose
difterential cross sections are shown in Fig. 3, plotted
with our total experimental uncertainties.

Inelastic differential cross sections were calculated us-

ing the deformed potential model [15,16] and the pro-
gram PToLEMY [11] to solve the coupled channels
(ground state to one excited state) equations exactly. De-
tails of the interaction potential and form factors can be
found in Refs. [1], [15],and [16].

In the calculations for the 1.132-MeV, 2+ state cross
sections, we used the adopted [17] B(E2)1'=0.166 e b
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FIG a 2. Inelastic spectrum of 0 ionsions from the
Sn(' O ' O')' Sn reaction at 0, =2.26' plotted as a func-

tion of excitation energy of the targ . ( )et. (a) The thin solid curve
represents t e assume unh d derlying continuum to be subtracted

m and thefrom the data. (b) The continuum subtracted spectrum an
calculated GDR response function. (c} The spectrum resu ting
from subtraction of the continuum and GD an e e
Gaussian distributions. The fixed energies and wi s owidths of the
Gaussians used in the fit are given in a eTable I.

FIG. 3. Comparison of di6'erential inelastic cross sections
with coupled-channels calculations for excitation of states in

Sn by ' 0 ions at E =84 MeV/nucleon. (a) The first 2+ state
1 132 MeV. The solid curve assumes an isoscalar excitationat a ~

(M, /M~ =1.48) and the dashed curve M„/M~ =1.78. b e
first 3 state at 2a614 MeV. The calculated curve is for an iso-
scalar transition, (c) the CJQR. The solid curve is for an isoscal-
ar transition, whereas the dashed curve used the parameters
from m /m. scattering. (d) The GMR. The calculated curve
represents exhaustion of 125%%uo EWSR.
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E (MeV)

1.132
2.614
3.250
4.200
4.900
6.200
7.850

10.00
12.50
15.25
23.00
32.00

I (Me V)

0.700
0.700
0.700
0.700
0.700
1.60
1.60
1.60
3.80
3.80
8.00
8.00

Comment

2+
3

GQR
GMR

or 5 =0.5703 fm for a uniform charge of radius
1.202'~ fm. The curves shown in Fig. 3(a) correspond
to M„/M =N/Z=1. 48 (solid) and M„/M =1.78
(dashed), i.e. , 5H =6 and 5H = 1.126, respectively. The
latter value was predicted from a no-free parameter
schematic model [18,19], and is close to a value of 1.71
predicted [8] by a nondegenerate RPA calculation for the
1.23-MeV, 2 state in " Sn. As can be seen in Fig. 3(a),
the calculated differential cross section for the first 2+
state in ' Sn is not very sensitive to the ratio of M„ /M
for the ' Sn(' 0, ' 0')' Sn reaction at 84 MeV/nucleon.

Comparison of the coupled-channels calculation with
the cross section for the 2.614-MeV, 3 state of ' Sn is
shown in Fig. 3(b). The transition was assumed to be
pure isoscalar, and from normalization of the calculation
to the data we deduce B(E3)l' =0.051+0.013 e b . This
value is about 30% smaller than that reported by Jonsson
et al. [20] from a Coulomb excitation experiment. For" Sn our' deduced B(E3)1 for the 2.327-MeV, 3 level
was about 15%%uo smaller than the Coulomb excitation
value [20].

The data for the GQR are compared with coupled-
channels calculations which assume M„ /M =N /Z
(solid curve) and the parameters deduced from pion
scattering [2] on " Sn (dashed curve) in Fig. 3(c). From
normalization of the isoscalar calculation to the data, we
find that the GQR exhausts 60+15%%uo of the EWSR. The
pion parameters give 56% of the EWSR with
B(E2)1=0.0676 e b . As can be seen in the figure, the
data do not indicate a minimum near 0, = 1.9 as pre-
dicted by calculations using the parameters deduced from
pion scattering. This is similar to what we have found in
the case of " Sn [1].

TABLE I. Energies and widths (FWHM) of Gaussian distri-
butions which were held fixed in the analysis of

Sn(' 0 ' 0')' Sn spectra.

Our results for the GMR are also similar to those ob-
served [1] for " Sn, i.e., normalization of the coupled
channels calculation to the data gives 125% of the
EWSR. This comparison is shown in Fig. 3(d).

The similar characteristics of the GQR and GMR in
Sn are consistent with expectations from the nu-

clear structure calculations [7,8]. Reasons for the small
B(E2) I values reported for the GQR in the pion [2] and
(e, e'n ) [3] reactions are not clear. Recently, the validity
of using Coulomb-nuclear interference and the deformed
potential model for bound states in ' Pb has been
examined [21]. It was found that the model deduced
M„/M values in good accord with theory, even for the
first 2 states of ' Pb which have considerable isospin
mixing [21].

Our parametrizations for the GQR in ' "Sn differ
somewhat from those reported in the most recent small
angle (a, a') study [5]. Sharma et al. [5] give
E =13.02+0. 13 MeV, I =2.80+0.30 MeV, and
127+31% EWSR. For the GMR, these authors give
E„=15.35+0. 16 MeV, I =3.40+0.35 MeV, and
108+22 % EWSR which are in better agreement with our
values.

IV. CONCLUSIONS

We have studied the ' Sn(' 0, ' 0')' "Sn reaction at 84
MeV/nucleon and find that the GR region is excited in a
manner similar to what we observed for " Sn. In partic-
ular, we find that the cross sections for exciting the GQR
and GMR can be well reproduced by assuming the tran-
sitions are isoscalar and exhaust 60% and 125% EWSR,
respectively. The difFerential cross section for the GQR
does not exhibit a minimum at 0, —1.9 as is predicted
by coupled-channels calculations employing the parame-
ters reported for " Sn from a study [2] of m. +/~ scatter-
ing. The qualitative agreement between the (e, e'n ) data
[3] for " Sn and the pion results [2] for " Sn are some-
what disconcerting in light of our " ' Sn studies. Based
upon our previous results [13,22] for the GQR in Pb
and the bound states [21] in ' ' Pb, we believe that
the determination of M„ /M with heavy ions is a valid
technique.

Although the GQR has been a subject of investigation
for almost twenty years there remains considerable
disagreement pertaining to its salient characteristics as
deduced from studies using difFerent probes.
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