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Projection of the six-quark wave function onto the NN channel and the problem
of the repulsive core in the NN interaction
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A modification of the resonating-group method (RGM) is proposed which includes the multiquark
shell-model configurations in the nucleon overlap region. The instanton, gluon, and ~, o exchange is tak-
en into account, the interaction constants being consistent with the baryon spectrum. This enables one
to cover a wide interval of NN scattering energies up to E&,„=2CieV. The projection of the six-quark
wave function onto the NN and other baryon channels is discussed in detail in our approach and in other
RCxM versions as well, and in this context the problem of repulsive core in the NN forces is discussed.

I. INTRODUCTION

The problem of the quark effects in the XX interaction
is being widely discussed (see the reviews [1—5], and
references therein). If, as usual, we restrict ourselves to
energies E„b ~0.3—0.5 GeV, we shall fail to reveal any
striking manifestations of the quark effects in the NN sys-
tem (even if we consider in addition the deuteron elec-
tromagnetic form factors). A good description of this re-
gion, given in a number of papers [6—12], can be con-
sidered only as indirect evidence for the consistency of
the quark notions with the NX data. No wonder that
much consideration is given to alternative models such as
the Skyrme model [13],meson models with the virtually
excited baryons [14], the model with the phenomenologi-
cal repulsive core in the NN forces [15), etc.

Meanwhile, an important feature of the quark ap-
proach, which has not as yet been appraised at its true
worth, is the simplicity in the interpretation of intricate
phenomena which in the traditional approach would re-
quire the introduction of the multimeson and baryon con-
tributions. For example, the repulsive core in the XX in-
teraction and the suppression of the quark effects in the
deuteron magnetic form factors were very easily ex-
plained through the destructive interference of the quark
configurations s and s p in the XX-system wave func-
tion at low energies (including the deuteron) [16]. At
higher energies this simple model makes predictions at a
qualitative level. As the energy increases, the contribu-
tion of the excited configuration s p to the S-wave NX
scattering gets larger, leading to changes in the short-
range XX interaction. At intermediate energy it becomes
more appropriate to describe the XX interaction using,
instead of the commonly used phenomenological repul-
sive core, the deep attractive potential containing one ex-
tra bound state which is regarded as forbidden (the bound
OS state would correspond to the configuration s which
is suppressed in the present case).

The potential (optical) model of the NN interaction
[17], which employs the deep attractive potentials with
forbidden states (FSP) [18,19], describes well the cross
section and the polarization of the NX scattering in the

hitherto unexplored, in the potential models, energy
range from zero to E&,b =5—6 GeV. At the same time it
is here confirmed, in accord with the idea of forbidden
states in the S and I' waves, that the S and I' phases are
large, start at low energies of ~ and even 2m. and reach
the Born region at energies E&,b =4—S GeV, and the oth-
er phases (L ~2) are small at any energies. This is likely
to be indicative of the decisive role of the quark
configurations s p and s p in the S and I' waves, respec-
tively. It is important to elucidate the degree of con-
sistency of this conclusion with the quark microscopic
treatment.

In the present paper these problems are studied on the
basis of the Hamiltonian

proceeding from the assumption about the two-particle
interaction of quarks. The role of the configuration s
and s p in the S-wave NX scattering in a wide energy
range 0&E&,b ~ 1 —2 GeV was considered. We extended
the energy range and made a number of improvements in
the model with the pair qq interactions (the interactions
of constituent quarks with the m- and o-effective fields
and the form factors at the ~qq and o.qq vertices were
taken into account, in some variants we introduced the
contact four-fermion interactions of different operator
form, etc.). This enabled us to describe simultaneously
the baryon spectrum with allowance for one- and two-
quantum excited states (N, b, , N*, N**) and the NN-
scattering data in a comparable energy interval.

The quark microscopic approach itself is formulated in
an unusual way, i.e., through the quark shell
configurations [22,23], which contain a very capacious in-
formation about the inhuence of the antisyrnrnetrization
upon the BB system (NN, b, b, , Nb, , etc. ), rather than
through the resonating-group method (RGM) [20,21].
For example, the question as to the virtual baryons B
B* with one or two oscillator quanta of internal excita-
tion in the %% interaction is answered with ease in terms
of the configurations s, s p, s p, s p, etc. Note that
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these excited states can be observed as real particles in
the quasielastic knock-out of a nucleon from the deute-
ron, d (e, e'p)N* or A (d, N*)X [24], where N* is the ex-
cited nucleon spectator, and can give valuable indepen-
dent information about the presence of the configuration
s p in the deuteron.

In connection with all these problems the projection of
the six-quark wave function onto the NX channel and
other baryon channels is discussed in detail in our ap-
proach and in other RGM versions as well [7,25,26].

II. FQRMUI. ATION GF THE VARIATIQNAI. PROBI.KM

Just as in the standard RGM approach [20,21], we
derive the equations of motion proceeding from the
Hulthen-Kohn variational principle. The trial function is
written as an expansion in the two-center shell
configurations S+(R)S (R) [21,26] which for the Lth
partial wave is written as

—FL~(r)u6 (k, r;p, gip2$'2X)=g I Xf(k, R)[Nf(R, R)] '~ ~S+(R)S (R) [fx] [fcs]LST)R dR . (2)

It is implied that the complete six-quark wave function of NN scattering at energy irl k /mdiv is expanded as

f 6q(r„. . . , r ,6k)= g i (2L+1)e sin6LPL(k r)—u6q (k, r;p, g', p2g'2X) .
L=0

1 R
Xexp — r, +-

2b

2

X(C;,S;,T; ) (3)

Thus, R is a generator coordinate [21] and the other vari-
ables in (2) are Jacobi coordinates,

In the representation (2) the summation is made over all
the Young schemes [fx], [fcs], satisfying the Pauli ex-
clusion principle, in the coordinate (X) and color-spin
(CS) space which is briefly designated from here on by a
syinbol f. S+(R) denotes the quark OS orbitals, centered
at points +R /2,

and the Young schemes [fxcsT]=[1 ] [fx] [fcsT]
=[fx], [fcs], [fc]=[2 ], [fs], [fT] are invariants of
these subgroups. The method of construction of the basis
and the calculation of the Clebsch-Gordan and fractional
parentage coefficients (the method of scalar factors [4,27])
were described by us in Refs. [23,27,28] (see also Refs.
[26,29]). In the representation (2) the expansion is per-
formed over the functions, normalized to unit at any fixed
value of R,

(S+ (R )S (R )[f]LST~S+ (R ')S (R ') [f ')L 'S'T' )

~ff '~LL '~SS'~ TT'Nf
3 6

r=
3

I';
3

r.
i =1 j=4

6
X=—,

' gr;,
i —1

since the basis two-center functions in (2) are completely
antisymmetrized. They are constructed, using the
Clebsch-Gordan coefficients of the groups SU(n) from the
reduction chain of subgroups

SU( 24)xcsT D SU( 2 )x X SU( 12 )csT

SU(12)csT &SU(6)cs X SU(2)T

DSU(3)c XSU(2)s XSU(2)T

(4)

Pl rl r2 kl ( l+ 2) r3

etc. In the expression (2) we do not need to use the an-
tisymmetrization operator with respect to permutations
of quarks from different nucleons,

1 3 6

1 —g QPf10,. ). 4
'~

where

NL (R R')=2(2L+1)e " +~ ' 'b
fx

3RR' . RR'
lL +K lLL 4~2 f~ L

ref =9 at [fx]=[6] and vf = —1 at [fx]=[42]. The

convenience of the normalized basis consists in that at
R ~0 the basis vectors [Nf(R, R)] ' ~S+S [f]LST)
change over to usual shell configurations [26]
~s p "[f]LST),m +n =6. Considering that for even L
the Young scheme [fx] takes on in (2) two values, [6]x
and [42]x, we get in the channel under study L =0,
S = 1, T =0 (instead of the limit R ~0 we record the in-
tegral of the 5 function)

Xf R R ' 2S+ R S R L=OS=1T=O RdR

)s [6]x[2 ]csL =OS =1T=O) if [fx]=[6],
~s p [42]x[f]csL =OS =1T=O) if [f ]=[42],
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where [fcs]= [42], [321], [2 ], [31 ], [24 ] are all the possible Young scheme from the Clebsch-Gordan series for the
inner product [2 ]c [42]s.

As it has been noted, the configurations s and s p are the most essential components of the IVX-system wave func-
tion in the internal region and, therefore, in our modified RGM approach we recorded the trial functions yf (k, R ) in (2)
as an expansion

gf(k, R)=af (k) + Uf [Cf (k, R)+cot51(k)Sf (k, R)] .5(R)
(7)

The expansion (7) includes only the "basis" internal states 5(R)/R and the asymptotic states Sf (k R) Cf (k R),
X X

which in the limit r ~~ describe the free motion of 3q clusters:

Sf (k, R)
lim QUf J '

L k [Nf (R'R)] '~
lS+ (R)S (R)[f]LST )R dR

P~OO f 0 f

where

sin(kr nL /2—)

PN (Plf1)NN (P242)YLM( k (k —L /2) F 00
ST

(8)

Sf (k,R)

Cf (k, R)
sin( kR vrL /2)—

[Nf (R R)]
k (/R L/2)

B,BIn the expressions (7) and (8), Uf are elements of unitary matrix Uf
' ' which realizes in the CST space the transfor-

mation from the baryon quantum numbers B&(S& T, C& )B2(S2T2C2) to the quantum numbers of the 6q system —the
Young schemes [fx ] and [fcs ] (see Table I). g~'(p, g', ) is the nucleon wave function in the form of the ground state of
the translationally invariant shell model (TISM) [30] (see, also, [31])

PIv'(pi4i) —= ls'[3]xLi =0Si =
l Ti = —,')nsM

' 3/2
3

2mb
exp

1 1 2 2
Pf+ 4i I[1 ]c[21]csS,= —,'T, =

—,
' ) (10)

Here y„&(x) are everywhere the harmonic-oscillator wave functions, for example, goo(x)=(orb p) ~ exp( px /2b —),
where x is the Jacobi coordinate and p is the corresponding reduced mass; b is the rms ground-state radius. The
coeflicients af and cot5L in (2) and (7) are variational parameters. The trial functional of the Hulthen-Kohn variational
principle:

g2k2 cot5L
OFF ([af],cot51 )=

3
+jYL~(r) u6 (k—, r;p~ ' ' 'X)(Hq E)

3m LM q

XY'IM(r)u6 (k, r;p, . X)d r d p, . d X

is quadratic in af, cot5I, and we get from the stationary conditions BPz /Oaf =0, BPz /8 cot5I =0 a set of linearLST L LST

algebraic equations for [af ] and cot51,

BjB2

TABLE I. Matrix U&'

Ci C, C2C) C2C2 C3C3

[~]x[& ]cs
[42]x f.4&]cs
l. 42]x [3&I ]cs
[42]x[2 ]cs
[42]x[31 ]cs
[4&]x[&1']cs

+1/9
—&9/20

—&1/18
0

—&4/45
0
0

&16/45
0

&2/9
&1/10
&8/45
&1/18
&4/9

0

&4/9
&1/5

—~1/45
v'1/9

—&2/9
0

&1/45
+1/4
&4/9

+1/180
&5/18

0

—+1/9
0
0

Q4/9
0

—Q4/9
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g2
( ss+Q ss) ot5 +y( —5+Q 5) L — + ~ (=sc+Q sc)v cot ~ vf. f. af. ——— v

f
(vf'+Qf')cot5L g(vff, +Qff, )af, = —(vf +Qf )'+'f (12)

SS SS
The coefficients of these equations, v, Q, vf, Qf', vff, Qff. are convolutions (in the generator coordinate R and in-
dices f) of the matrix elements of potential (v) and kinetic (Q) energy with the "basis functions" of the representation
(7), 5(R)/R, U S (k, R), U C (k R).

= SS ~ r TNNrrNN SS —6s ~ UNNVs
V —~uf CJfs Vff', Vf —Z fs Vffs

ff' f'

Q
SS ~UNNUNNQSS Q5s y UNNQs5

vff f R dR f R 'dR 'Sf (k, R)[ Vff (R,R ') —25ff (QNl VlfN )If (R,R ')]S i (k, R ')

Qff' 5ff' f R dR f R 'dR 'Sf (k, R )[Kf (R,R ')— fi kA+ I (R,R')]S, (k, R'),
4

q

It

vff, =f R dR f R'dR'Sf' (k, R)[Vf'f. (R,R ) 25ff (Q—NlV QN)If (R, R )]

5R'
vff f R dR f R 'dR '

[vff (R,R ') 25ff'( QNl v—lqN»f (R,R ')]

(14)

In (11)E is the complete energy of the 6q system.

k A 15 A kA3 fi k A'

( ()l
l

()) 15 i)i k fi

4m' 3m ' 4 mg2 3m
q q q q

and for the purpose of simplifying the kinematics we use the mass of the constituent quark m =
—,'mN.

The kernels of kinetic 5ff.Kf and potential Vff energy and, also, the overlap kernel 5ff If are defined by the stan-
X X

dard relations of the generator coordinate method

Vff (R,R')

. 5ff Kf (R,R'), =[Xf (R,R)X, (R', R')]
X

5ff If (R,R')

V;

p2
X(S3+(R)S' (R)[f]LSTl —g ls3+(R'}S' (R')[f']LST) .

2mq
(16)

Note that the first two integrals in (14) contain singular
terms proportional to the 6 functions. However, it is easy
to see that in the combination (Kf EIf ), where—

X X
E =—"A /m b +k A' /3m the singularities are canceled
in pairs. A more fine moment is the cancellation of
singularities in the combination ( Vff.

25ff'( qN'l VIXEN' »f ). This can be demonstrated if we

express the interaction matrix elements through the
Casimir invariants of group SU(n), considering that
V=+;(JVJ,

3+- +3m2mb
q

V; contains the operators A, , A, o.;crj 7 Tjo cTj cT oj,
r, r, etc. , invariant with respect to the group SU(6)cs,
SU(4)sT, SU(2)s, SU(2) T, respectively.

III. THE CONCRETE DEFINITION
OF THE INTERACTION AND THE SOLUTION

OF THE VARIATIONAL PROBLEM

In the quark-cluster approach to the nucleon-nucleon
interaction, it is usually assumed that the Hamiltonian (1)
describes not only the hadronic system but also the in-
teraction of hadrons as quark clusters [7]. This makes
possible a comparison between different quark interac-
tions and a wide range of experimental data.

It is known that the splitting in the spectrum of light
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1

3 Si(p)
mgp

(17)

S,, (p) =3(cr;p)(oip) —o;o, ,

Vconf ' &(o p V )IJ 4 c 0

{18}

but in this case the constants o,z, a„m should be con-
sidered as phenomenological parameters. This "renor-
malization" of the QCD constants merely imitates the
nonperturbative contributions and is inconsistent even on
the NN system where the interaction (17), (18) leads to
the short-range repulsion and fails to account for the mu-
tual attraction of nucleons in a medium range
0.5 ~ r ~ 1.5 fm. Though it is not a priori clear that the
universal potentials, describing both the 3q and 6q sys-
tems, are existent, the construction of the phenomenolog-
ical potentials V;., which take into account the nonper-
turbative dynamics, is quite justified and led to certain
positive results [6—12]. In the framework of the "naive
nonperturbative" models [8,11],allowing for the n and cr

exchanges at the quark level, the success was achieved
due to introduction of new parameters (such as m, g
etc.) which were fitted directly to the NN data. However,
the fitting of the parameters cannot lead to a better un-
derstanding of the dynamics. In the present work we did
not fit parameters of the chiral interaction H, h especially
to the XX data or the baryon spectrum but we used the
constrains upon the mqq and o.qq interactions which fol-
low from known models of the spontaneous breaking of
chiral symmetry (SBCS) [33—35] in QCD vacuum. Ac-
cording to known Nambu —Jona-Lasinio results [33] the

I

hadrons are well described by the color-exchange poten-
tials carried over from the charmonium spectroscopy [32]
(the spin-orbital forces are omitted)

Vo (p)=a@ —— (1+ ', o—;cr )5(p)OGE ~r ~J 1

g

H,h--m gP+g, hF(Q )g(o+iy5~m. )g, (20)

where m~=m~(0), g,h=m~/f, F(Q )=mq(Q )/
m~(0). The expression (20) differs from the Hamiltonian
of the linear o model [37] only in that the vertex constant
g,i, is reduced by the form factor g,h ~g,hF(Q ).

The form factor F(Q ) from [34] was approximated
here by the analytic expression

+m
F(Q )= 1+ g Ci, (21}

Q +Ai,

The convenience of (21) is in that it enables us to record
immediately the ~- and o.-exchange potentials, generated
by the Hamiltonian (20)

effective fields interaction is of the chiral-invariant form,
H,h-g, hf(cr+iy5rm)g. ; the constrains upon the masses
of the effective fields —pseudoscalar (m), scalar (o ), and
fermion (in our case it is the constituent quarks with the
mass m~=mz/3) are m =0, m =2m . Besides, wefol-
lowed Refs. [34,35] and kept in mind that the description
of the interaction in terms of the efFective fields (m, o, q)
makes sense only at distances greater than the charac-
teristic size p, of the instanton fluctuations responsible
for SBCS (according to Refs. [34—36], p, =0.3 fm). In
the presence of the instanton fluctuations of the gluon
field, the light QCD quarks (m„d =0) acquire the dy-
namic mass m (Q ) which depends on the momentum
transfer Q [34,35]. At large momenta, when

Q ~ Q, =p, ', this mass m~(Q )~m„d =0 and only at
small momenta Q~O it equals the constituent mass
m (0)=m =m&/3. The interaction with the e ffecti ve
chiral field P(x) can be recorded in the form, suggested in
Refs. [34,35]:

lV,&=m (Q )/exp(iy~vg/f )g .

At Q ~Q, =0.6 GeV/c the interaction is automatically
switched off. We used the expression (19) in the
linear approximation in m =Pf sin(P/f ) and
o =f [cos(P/f ) —1]

Ch AI, n

,J (p) ——achm~ .v;r/rr;rr& Yo(m~p)+ g Clc
&

Yo(Agp)+ 1+ g Ci
&

5(p)
m mI

—3

Yo{x}=e /x ~ Y2(x) =(3/x +3/x +1)Yo(x)

3n

+~;r)SJ(p) Yo(m p)+ g Cl, Yo(Ai, p)
m

4m m m —m
2

1+ g CI, 2 z Yo(m p)+ g CI,
m m I, =) A~ —m Ic =1

r

A~ —m
Yo{AIp)

A', —m'

(22)

The fact is that after the form factor (21) has been in-
troduced, the pion propagator takes the form typical of
the Pauli-Villars regularization

(23)

where Ai (k =1,2, . . . , n) are masses of the subtracted
fields (m «Ai &A@« A„). As a rule, the authors
of Refs. [7,8, 12] use the regularization (23) with one sub-
traction {n =1) and the constant A, is fitted to the data.
In our case 2n parameters CI„AI, are used merely to pro-
vide the best description of the function m~(Q )/m~(0)
from Ref. [34]. We understand that the authors of Ref.
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n n 2

QCk= —1, QCk
k=1 m'.

Ak
3

g Ck
m~

n= —1, gC„
(24)

but the most stringent requirement is the one upon V "in
the region p r„„f. Note that the scale r„„f= 1 fm is not
used in Refs. [34,35] and the introduction of this scale
leads to the form factor F (Q ) which is somewhat
different from the function m (Q )/m (0) of Ref. [34] in
the region I/r„„f~Q ~1/p, . All these conditions are
satisfied only at n =8—10. Table II lists the values of the
parameters Ck Ak at n =10.

Combining the potential V" with the color-exchange

[34] discussed a kind of idealization in which the nonper-
turbative effects were reduced only to the contributions
of the instanton fluctuations. In fact, there exist in addi-
tion some other contributions, for example, the constitu-
ent mass includes the relativistic energy of current quarks
in it, etc. Besides, the confinement forces, which were
not studied in [34,35], are essential. Therefore, proceed-
ing from the natural physical requirements (see below),
we imposed in our work additional restrictions upon the
constants Ck, Ak. First of all, we studied the problem of
the stability of the observables (baryon spectrum, NN
scattering phase shifts) with respect to variations of the
parameters Ak, Ck. If we require that starting with the
distances of the order of the confinement radius,
p-r„„f=1 fm the potential (22) should go over to the
usual m and 0. exchange potential in the region p ~ r„„f,
then all the observables become stable and depend criti-
cally only on one parameter —the minimum mass A& in
the expression (23). Choosing A, —1/p„we set the
boundary p-p„at which the potential begins to die out
rapidly at p~O. In accord with the fact that mq(Q )~0
at Q ~ 1/p, and the interaction (19) becomes zero at
p~O, it is necessary to require that the potential (22)
should satisfy the conditions VJ"(0)=0, dV~"/dp=O at
p=0. These conditions are equivalent to the relations

TABLE II. Parameters of approximation of the form factor
(21).

1

2
3
4
5

6
7
8
9

10

6.4
7.3
8.9

11.0
13.6
21.5
28.58
36.5
42.5
48.5

—0.961 036 32
4.264 053 03

—12.485 067 2
26.493 8104

—30.817 173 9
29.724 046 9

—29.720 098 3
20.299 925 3

—9.394 768 24
1.596 308 15

m =
—,'m&, m =140 MeV, m =2m (26)

and are not adjustable parameters, just as is not the con-
stant a,„=(g,„/4m. )(m~/4m~), which is normalized to
known constant of the pseudo scalar ~NN coupling
g2&&/4rr=14. 2 (see, for example, [7,8])

; =0-0284o'ch
5 4 4

(27)

The adjustable parameters of the interaction (25) were,
as usual, only the constants a„a,h, and Vo, which were

interactions V;. and V '", we get a potential model,

V VoGE+ Vconf+ Vch (25)
/J 1J lJ IJ

which uses in fact different types of interaction in three
different regions 0 &p ~p„p, ~p ~ r„„f and

r„„f p & ~. Hence, this model has two characteristic
scales: p, and r„„fand gives stable observables as other
model parameters are varied.

It has already been noted that the masses of the
effective fields (q, ~, o. ) in our model are fixed

TABLE III. Parameters of the qq interaction.

No. (fm)

a,

(MeVyfm) (Mev) &ch &ea

I
IB

II
III
IV
V
VI
VII
VIII
IX
Exp.

0.55
0.475
0.525
0.50
0.525
0.50
0.49
0.50
0.475
0.45

1.33
0.97
0.78
0.57
1.03
0
0.82
0.48
0.22
0

411.35
246.4
161.78
253.74
506.36
293.75
316.1
195.25
222.07
254.06

300.6

94.44
231.46
445.31
404.97
237.08
186.31
265.25
343.24

0
0
0.0284
0.0284
0
0
0.0284
0.0284
0.0284
0.0284

0
0
0
0
1

8.08
0
1

1.778
2.25

0
0
0
0
0
0
0.05
0
0
0

'From Ref. [7].
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TABLE IV. The nucleon excitation spectra for variants I—IX of parameters from Table III.

No.

I
Ia
II
III
IV
V
VI
VII
VIII
IX
Exp.

m~
(MeV)

939
939
939
939
939
939
939
939
939
939
939

mz
(Mev)

1234
1232
1235
1232
1234.3
1225
1234.7
1235~ 8
1237.1

1236.9
1232+2

m~( J 2

(MeV)

1412
1497
1500
1362
1495
1458
1512
1584

1440+40

1848
1884
2089
2010
202 8

1874
1907
1953

1710+30

1345

1426
1483
1379
1 159
1499
1398
1412
1443

1540+20

m*(J = —' )

(M V)

1501

1628
1682
1533
1202
1701
1590
1596
1612

1 650+30

1951

2077
2092
1832
2204
2014
2098
22 13
2 100(~)

(MeV)

2188

2157
2181
2227
2078
22 10
2 172
2185
2 192

('7)

X
1
[1'],[»]„s=, T=, &

(28)

etc. (see Ref. [31]).
The oscillator radius b was chosen such that the lowest

configurations, s [3]» and sp [3]», be minimally mixed
in the nucleon wave function. To this end we imposed an
additional condition,

&y, ~a, ~y, & =0 (29)

which plays here the same role as does the known
minimum condition of the nucleon mass, calculated in
the zeroth order approximation

dms ' Idb =0, mg ' = ( go ~ H'i ~ $0 & (30)

Table IV lists the results of the calculation of the
baryon spectrum with the neglect of the tensor forces (in
what follows in the scattering calculation we neglect-
ed the tensor forces). For the splitting N b., N N**,N-

which were of particular importance to us, the tensor
forces do not play the significant role. The inclusion of
the tensor forces leads only to a small renormalization of
the parameters a„a„VO, etc. , and to small (0.5 —1.5 Vo)

admixtures of the D waves in the lowest states of the

chosen to provide the best description of the nucleon
mass, the 6 isobar, and the masses of the nucleon excited
states of positive and negative parity N', (1535) N"*+

1/2 1/2
(1440), etc. (Tables III and IV). In the calculation of the
baryon spectrum, the TISM basis was used. It included
the excitations up to three oscillator quanta —the
configurations s [3]», sp [3]», sp [21]», sp [1 ]»,
s p[21]», p [3]»,p [21]», L =0, 1, 2; S = —,', —,'; T= —,', —',
[see the expression (10)]:

A= ls'[3]»[»]csL =0 & =
—,
' T= ,' &T,sM, —

Pl = Isp'[3]»[21]cs& =o ~ =
—,
'

&3/4 1 — +
ab 3b 2 b2

1 7 7
V~""(p)= —x (p, mi )

3 ~,.~
X 1+— (1+3o,o. ) 5(I ) . (31)

8 3rn,'
(2) The interaction connected with the exchange of the

effective heavy "gluon bunch" [39] which is approximat-
ed by the contact term

6 ~l~j
VJ =aG (1+2o, o ) 5(p) .

4 m b m
q

(32)

(3) The chiral-invariant combination of the scalar and
pseudoscalar four-fermion interactions of Ref. [33],
which corresponds to the contact term

I b I (33)

If we vary the phenomenological parameters x, a&,
cx ff we can verify the stability of the results to changes in

spectrum.
For the sake of comparison, we present the results of

the variant in which the m- and o.-exchange interactions
(22) (variant I, a,h=0) were neglected. We see that in the
nonrelativistic approach at V "=0 it is impossible to ob-
tain even an approximate degeneracy of the levels corre-
sponding to the lowest resonances of positive and nega-
tive paraity, N*, *+ (1440) and N', (1535).

For the sake of completeness we also considered, along
with the principle, in our model, interaction (25), some
variants of the effective four-fermion interactions, dis-
cussed in the literature on the hadron spectroscopy
[38,39]. In the context of our work they could be con-
sidered as residual interaction. Therefore, the constants
of four-fermion interactions of different operator form
(see below), x, ao, a,~ are considered here as phenomeno-
logical parameters, which are 6tted to the baryon spec-
trum, rather than as the fundamental constants.

(1) The interaction, induced by the instantons [40],
which in the sector of u and d quarks leads to the contact
term [38,41]
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the interaction at small distances p p„which is essen-
tial for the XX scattering at intermediate energies.

The inclusion of the interactions (31)—(33) does not
change qualitatively the baryon spectrum (Table IV). An
optimal set of the parameters corresponds to variant VI
which has but a slight advantage over variant III, ob-
tained with no account of the interactions (31)—(33). But
in the S,-wave phase shifts of the XXscattering (with no
account of the tensor forces) the diff'erence between vari-
ants III and VI is not felt. Hence, the obtained results
are stable to changes of the interaction (31)—(33).

The S,-waves phase shifts of the XN scattering were
calculated in the energy interval E»b =0—2 GeV for all
the interaction variants from Table III. The results ob-
tained above the Ah threshold, E»b ~ 1.2 GeV, lie in the
energy above the range of applicability of the model and
are presented here to demonstrate qualitatively the tran-
sition of the S, phases into the Born region when the ab-
solute value of the phase shifts starts to decrease.

It will be noted first of all that the coincidence of our
results for variant Ia with the results of Ref. [7] for the
same variant (in the standard RGM calculation with the
channel coupling XX+b, b, +CC) indicates that the
chosen approximation (7) is adequate. Figure 1 shows
the phase shifts for variants I, Io., II, III, and VI. From
the comparison between the results for variants I, II, III
one can see that the ~- and o.-exchange interaction V,

'"
3

EJ

leads to the required nucleon attraction ( S, phases be-
come negative each time when the interaction V" is
neglected). Despite the fact that the model parameters
were not especially fitted to the XX data, we obtained a
not bad description of the S,-phase shifts in the whole
energy interval 0(E»b ~ 1 GeV which supplied the reli-
able phase-shift data [42]. (The underrated values of the
S& phases at E»b ~0.2 GeV can be accounted for by the

fact that the calculation did not include the tensor forces
and the S, - D, mixing. ) The best description of the
phase shifts in the region 0 & E»b 1 GeV is obtained for
variants III and VI, i.e., for the cases when the baryon
spectrum is described most accurately.

The results for variants II, III, VI at low energies

Ei,b ~0.3 GeV are rather close to the RGM calculations
[8,11,12] where the o. exchange was included at the nu-
cleon or quark level but the coupling constant g
(g») and the mass m were fitted to the XX data. In
our model the constant at the o.qq vertex coincides with
the mqq constant and no o.-exchange parameters whatev-
er were fitted especially. If we go over to the nucleon lev-
el and calculate the e6'ective o.XXconstant, averaging the
o.XXvertex in the quark wave functions, we shall get

4m =5 1
2m~

which is close to 5 —8 used in the OBEP models [9,14,15].
However, the form factor at the crt% vertex (the same as

3S

-60 I-

Il i i i i l i » I l i i i s 1 i i i

0.8 0.5 1.Q 1.5

E1 b ( GeV)

FIG. 1. 5&-wave phase shifts. The calculated results for vari-
ants I—III, VI from Table III: I (long dashed line). Ia (dashed
line), II (dot-dashed line), III (solid line), VI (dotted line); the re-
sults of the phase-shift analyses [42] (circles). The results from
Ref. [7] are shown by crosses.

at the md% vertex. ), connected with the quark structure
of the nucleon, automatically appears in our approach.
This enables us to make progress in the NN interaction
description, without introducing new parameters, from
low energies, E»b ~0.3 —0.5 GeV to intermediate ener-
gies, E&,b=1 GeV, where the form factors at the ~XX
and aXN vertices play the significant role.

In a wide energy range 0. 1 —0.2~E»b ~1—1.5 GeV
the S& phases in each variant we considered, I—X, have
approximately the same negative slope. In the present
model this behavior is undoubtedly determined by the
color-exchange interactions (17), (18) which are most
essential at r e„„f. In Sec. V we analyze this
phenomenon using the rich information about the six-
quark wave functions obtained in the calculation. It will
be recalled that for imitating the negative slope of the S-
and P-phase shifts in "realistic" NX potentials [43] it is a
common practice to use the phenomenology of the repul-
sive core. To understand just to which type of nucleon
interaction there corresponds to the results of the quark
calculations, it is necessary to have, first of all, the unam-
biguous procedure of projection of the six-quark wave
function onto the i'd% channel. This problem is discussed
in Sec. IV.

IV. PROJECTION OF THE SIX-QUARK FUNCTION
ANTE THE NN CHANNEL

Compare the approach which employs the quark shell
configurations (see Sec. II) with the multichannel RGM
variant [6—8] where the trial wave function is written as

$6q(r„. . . , r6;k) = A [X(123)X(456)y~~(r)]sr+ A [6(123)b(456)yea(r)]sT

+ 2 g A ICs T (123)Cs T (456)yc, c,(")]sr .
~i "i~2 T2

(34)
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In the RGM the relative motion function of baryons y (r) in the channels a=NX, hh, CC satisfy the set of coupled
equations

g f [& p(r, r') —EJV &(r, r')]y&(r')d r'=0,
P

where

(35)

& &(r', r")
JV p(r', r")

H'= f d p, d g, d p2d $2d rA I5(r —r')B (pi/i)B (p2g'2)] I
'A IQ(r —r")B (p g' )B (p g' )] (36)

Here the functions y are normalized by the relation

5(E E'), —E &0,g f fy*(r)W &(r, r')y&(r')d r d r'= '1 (37)
aP

The RGM representation (34) has a number of disadvantages when it is used in the overlap region of nucleons. The fact
that the terms, entering in (34), are nonorthogonal to each other, is not, as a matter of fact, very essential —we know ex-
amples when the nonorthogonal basis proves to be versatile and effective [44]. What is worse is that in the very impor-
tant overlap region of nucleons these terms merely repeat each other. We can illustrate it based on a more universal
and powerful concept of quark configurations. For example, the configuration s can be represented as the OS state in
any RGM channel.

ls [6]+[2 ]csL =0 S =1 T=O~TIsM i 9A [4N (plklWN ( p242)V o(o)r] sr

+45 ~4 A [C'(pi4'i WN (p202)9 00(r) ]sr

=&9~2A [4c,'(pili%'c, '(pz42)moo(r)]sr= ' ' ' (38)

The second, more pithy example is the configuration s p with a whole set of the states with different Young schemes
[f]cs, each of which can be represented as a superposition of RGM channel, for example,

Is p [42]+[42]csL =0 S =1 T=O) TMis= /81~16A [4x fx Ao(")]sr v'9/8A [0a 4a &2o(")]sr

+&9~4A [4'c,'0'c,'V 2o(&)]sr+v'45~16A [&'c",&'c",+2o(")]» (39)

Here

C, =
I [21]cS=

—,
' T= —,':[1 ]c»] ~

Cz= [[21]cS —,
' T= ,':[1 ]csr] . —

The terms on the right-hand side of (39) are not orthogo-
nal to each other and, therefore, the coefficients are not
unambiguous. Besides, on the right-hand side of (39), one
could use also the channel with orbitally excited baryons,
N*, N**, 6*, etc., which have never been taken into ac-
count in the RGM. Thus, by multiplying the number of
bound channels in the RGM, we merely repeat one and
the same shell component rather than improve the quali-
ty of the many-particle wave function, when the question
concerns the overlap region of nucleons. The attempts to
make difFerent baryon channels [different terms in (34)]
orthogonal to each other [25] are completely ineffective
in the indicated region since this reduces, to a consider-
able extent, to orthogonalization of the many-particle
wave function to itself. These attempts lead only to an
arbitrary redistribution of the weights of different quark
configurations in the ROM channels regardless of the
cluster dynamics of the system. For example, after this
"orthogonalization " the node in the XN channel can ap-
pear or not in a completely arbitrary manner [25].

Of course, in the outer region, where the antisymmetri-

% 6q(1, 2, . .. , 6)= g I z z Pii z (r)B (123)B (456)
f J

(40)

For example, the configuration s p [42]+[42]cs,
which was first discussed in Refs. [22,23] is expanded in
the orthogonal basis

I

zation effects are small, the difference between the baryon
channels has the definite meaning and we use this fact in
our combined approach [see Eqs. (6)—(8)].

We solve the problem of the projection of the six-quark
wave function onto the X% channel (and other baryon
channels) by means of the fractional parentage technique
(or Racah's method) [4,45] which is employed as a rule to
calculate the cluster spectroscopic factors S, widely used
in nuclear physics for the analysis of the direct reactions
on light nuclei [46]. Unfortunately, this technique is not
well known among the theorists who are indirectly con-
cerned with the problems of cluster spectroscopy. The
paraodoxical, at first sight, detail of this method, which
was long ago mentioned by Racah [45], is that the com-
pletely antisymmetrized wave function (for example, a su-
perposition of the configurations s, s p, etc.) is expand-
ed as a finite series in the nonantisymmetrized, but or-
thogonal basis consisting of the product of clusters with
fixed quark numbers:
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Is P [42]x[42]csL =0 S =1 ?'=0)T,sM

=&1/25 {N ( 123 )N (456 ) j sr y20( r )

+V2/225 {C, (123)C,(4S6)}sT)pro(r) —v'4/225 {C~(123)Ci(456) }sT)p20(r)

—&1/45{Ci(123)Cz(456) jsTy2O(r) —v'I/100{N**(123)N(456)}sTqroo(r)
—&1/450{C f*(123)C,(456) jsTyoo(r)+&I/225[C*, *(123)C,(456) jsTpm(r)
—&1/180[C2" (123)Cq(456) jsT))))oo(r)+&I/50[N(123)N**(456) jsTy(r)
+V1/225 {C, (123)C*, *(456)j sTyoo(r) —i/2/225 [ C, (123)C2 * (456) j sTyoo(r)
—& I /90{ Ci(123)C2 * (4S6) j sT))))00(r) —v'8/225 [ C', (123)C*,* (456) j sTpoo(r)
—&32/225[ C'&(123)C2* (456) jsTy~(r) &1/50—[ [N*(123)N(456) jsTy»(r) jL
—O'I/225 [ {C*, (123)C,(456)}sr',)(r) }I + v 2/225[ {Cz (123)C,(456) }sr)p»(r) j I
+i/I/90[ {Cz (123)C2(456)}sT@»(r) j I + i/8/225[ {C f (123)C

&
(456) }sTy&)(r) j I

+v'32/225[ [C2 (123)C', (4S6)}sTy»(r) }I+&2/225 [N*(123)N*(456)}1sT)poo(r)

+&1/225{C) (123)C~ (456) }LsTqroo(r) &2/225[C~ (123)C~ (456) j LsTyoo(r)

—&I/90[CD (123)C2 (456) }1sT))))oo(r)+i/4/225[C& (123)C', (4S6) jisT)poo(r)

+&16/225 [ C2 (123)C)*(4S6) j LsT))))oo(r)+ i/1/9{ C2' (456) j isTp~(r)

+&9/100{5*(123)h*(456)jlsr)poo(r) Vl/50{ Ci (123)C3 (456)}LsTgroo(r)

—i/2/25{ C3 (123)C4 (456) }lsTyoo(r) —i/1/20{ C4 (123)C& (456) j LsT))poo(r) . (41)

@~g (r) =&6!/3!3!2{(B;(123I (B.(456)I jsr

X I/6 (123 45)6) . (42)

The combinatorial factor on the right-hand side of (42)
takes into effective account the identity of quarks of
different baryons and leads to correct normalization of
the function N~ ~ to the "effective number" of clusters

J
8;, B in the 6q system. It is just this normalization that
is usually used in the cluster nuclear physics [46].

However, formally the expression (42) is inadequate
since a probability density can only be calculated by pro-
jecting on states which are normalized to unity (5 func-
tion ). But it needs a minimal modification for us to in-
terpret this overlap as the wave function for relative
motion. To calculate the normalization corresponding to

Here X, X*,X*,6', C;, C;*, C;*, C are baryons pos-
sessing difFerent spin-isospin and color structure (the
number of asterisks corresponds to the number of the os-
cillator quanta of excitation; the complete enumeration of
quantum numbers would occupy much space). In (41)
the generalized fractional parentage coefficient is the
function of relative motion of baryons ()poo(r), y2p(r), . . . ),
multiplied by the fractional parentage coefficient (fpc) in
the XCST space. In the general case, it is a certain func-
tion C&~ ii (r) which describes the relative motion of

l J
baryons B;(123) and B (456). In accord with the above
mentioned it seems that it should be determined by the
relation

a bra in Eq. (42) we can restore the antisymmetrization
operator

6
A, = 1 —g gP; [1 P,4P2, P36]—, A =A

i =1j=4

(43)

in Eq. (42) and rewrite Eq. (42) in the form
' 1/2

6
fd pd gd pd gd r'@~~ (r)=

3

XA [5(r—r')B;(p,g, )BJ(p2$'i)}*'

X+6q (k, r';p, g,p2$2) (42')

The normalization of the bra in Eq. (42') is
1/2 1/2

6 6
A {5(r—r')B,B, j A [5)r—r")B~BJ)l

=5(r' —r")—k (r', r"),
where

6
k(r', r")=

3 (5(r r')B, BJ IP)4I5(r —r—")B,BJ)

is the exchange kernel [47].
The modification of Eq. (42) which we look for consists

in the inclusion of the renormalization factor (1—k )
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in Eq. (42') (see, Ref. [48]). We omit the antisymmetriza-
tion operator A since A 46 =46 and rewrite Eq.
(42') in the form

1/2
6

~'s s (r) =
3 fd'pid'g, d'p2d'g2d"'

XB (Pili)B (P242)(1

X'P6, '«r' pi4ip242) . (42")

Further we mean that the kernel (1—k )„„' of the opera-
tor (1 —k) '~ is included in the overlap (42). In our
case (quark configurations s, s p, etc. , as wave func-
tions %6s ) the inclusion of the kernel (1—k)„„',~ into
the overlap (42) leads to a nonessential modification of
both Eqs. (42) and (42'). To see it we express the kernel
(1—k)„„'~ in terms of harmonic-oscillator wave func-
tions y„i (see, e.g., Ref. [49]) and obtain for L =0

=v 9/100'00(r)moo(r')

+&81/82y20(r)y20(r')+ . (4S)

This expression almost coincides with the analogous ex-
pansion of the unit operator

t

q 00(r)q ~(r')

Fourier transform of the function (42)

C&s s (k)=(2') ~ J@ii s (r)e' 'd r (48)

(see the Appendix). Its normalization integral provides
us with the corresponding "effective number" of baryons,
mentioned above.

On the contrary, the RGM channel functions Xzz(r),
yz~(r), etc. , do not have such a simple relation with the
observed cross section (likewise the renormalized func-
tions X =N'& g&, p=NN, bb. , etc. [7,25]). The expres-
sions (40) and (41) show that the configurations s, s p,
etc., carry a lot of information about the quark degrees of
freedom in the system. For example, if the inclusive [such
as d ( A, N*)X] or exclusive [such as d(e, e'p)N'] experi-
ments detect as particle spectators the excited nucleons
N*, N*', etc. , with the characteristic momentum distri-
butions, this will be a direct indication to the presence of
the excited quark configuration s p in the ground state
of the system.

Of course, the number of shell-model configurations
used in calculations cannot be very large and at the peri-
phery of the system it is more convenient to represent the
wave function in terms of RGM baryon channels —just
as is done in Eq. (7). After these general comments we
proceed to analyze our calculation in its di6'erent ver-
sions.

+P20(r) P20( )+ (46)

(47)

which is the consequence of a small value of permutation
matrix elements (44) in the CST space. If we substitute in
Eq. (42") fpc expansions of the type (41) for F16 and the
expansion (45) for (1—k )

~ we obtain that in the case
of quark configurations s, s p, etc. , the Fliessbach's for-
mula (42") differs from Eq. (42') only in the factors
&9/10 or &81/82 instead of the unit.

The functions @ii 2i (r) are quite analogous to the func-

tion of relative motion of cluster and residual nucleus, for
example, in the quasielastic a-particle knock-out
2 (p,p'a)( A —4) [46]. Namely, we can write Eq. (41) for
the six-quark deuteron by the general form, commonly
used in the low-energy nuclear physics [4,28,46]

1/2
6

C'aa (r)=
3 I a'

a.
'

0am (r) . . .

Here, I ~ z are the fractional parentage coefticients in the
CST space, calculated using the scalar factors of the
Clebsch-Gordan coefficients of unitary groups (4) (see
Refs. [4,26—29]). The quasielastic knock-out experiments
d(e, e'p)N* and the deuteron fragmentation reactions
A (d, N*)X at the intermediate energies (see, for example,
Refs. [24]) offer an excellent possibility of the immediate
experimental observation of individual terms in the ex-
pansion (41), as far as the high value of the final-state rel-
ative momentum k & 1 GeV/c makes the final-state quark
antisymmetrization not essential (k »b, where b =0.S
fm is the characteristic size of the three-quark system).

Here, the spectator N* momentum distribution (i.e.,
the initial-state momentum distribution of the B,B2 mu-
tual motion) is described, ideally, by the square of the

V. THE NN-SYSTEM WAVE FUNCTION ACCORDING
TO THE QUARK CALCULATIONS

By definition, these components are orthogonal to each
other ( u 6 ~s [6]»[2 ]csLST ) =0 and the component
u 6 consists of the asymptotic part of wave function (8)
which will be written in what follows as 3 I g&/zan„(r)],
without specifying the form of X„(r) and the superposi-
tions of the remaining five states of the shell
configuration s p [42]»

u 6q
'=

graf ls'p'[42]»[fcs ]LST&

&cS

+ ~ [fx&X-(4)] . (50)

Here the coefficients af di6'er from the calculated af.
The coefFicients af include the correction for the overlap
of the configurations s and s p [42]» with the asymptot-
ic part of the wave function [hence, the first and second

Using the technique of projection onto the NN and
other BB channels (42), we show in Figs. 2(a) —2(e) the
N¹cattering wave functions for different energies
E&,b=5, 200, 1000, 1500, and 2000 MeV for variant III
which brings the phase shifts close to the experimental.
(The results for the other optimal variant VI do not differ
from variant III). Figures 2(a) —2(e) show in the form of
projections onto the NN channel the complete wave func-
tion u6 sT and its components: (1) the shell component
s6[6]»[22]cs which is symmetric in the x space; (2) the
additional component u 6 which belongs to mixed sym-
metry in the x space

(49)
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FIG. 2. Projections of the six-quark wave functions onto the NN channel. The projections of the complete wave function u«
LST 6(dot-dashed line) and its components, u «(solid line) and s (dotted line), are shown at energies E~,b =5 MeV (a), 200 MeV (b), 1000

LST
MeV (c), 1500 MeV (d), and 2000 MeV (e). The projections of u «onto hh (dashed line) and CC (long dashed line) are shown at en-

ergy E&,b =200 MeV.

term (49) are orthogonal to each other].
Figure 3 shows the projections of the component

a(6) ~s [6]x[2 ]csLST ) onto the NN, b, b, , and CC

channels [for the case of E&,b =200 MeV, shown in Fig.
2(b)] and Fig. 2(b)—the analogous projections for the
component u 6 at an energy Ei,b =200 MeV. (At other
energies the relation between the projections NN, hA, CC
does not change qualitatively. ) We see that the com-
ponents s [6]z and u6q diff'er qualitatively in relative
value of the amplitudes of the functions @~&(r) and
4~~(r), where 88=66, C, CJ. The symmetric com-
ponent s [6]x is projected onto any of the baryon chan-
nels NN, b,h, CC with the weights close to unity (i.e.,

none of the baryon channels is predominant) whereas the
component u 6 is projected mainly onto the XN channel
(4~~ )) @zan, @cc ) not only in the asymptotic region but
in the overlap region, r ~ r„„&as well. This means that in
the configuration s p [42]x there forms (dynamically) a
such superposition of states [fcs], which corresponds to
the predominantly clustered wave function in the form of
%+X with the other nonexcited baryon cluster, 6+6
and C;+Cz, being suppressed. This is not connected
with some kind of special status of the configuration s p,
since each basis state in this configuration belonging to a
definite Young scheme [fcs ], does not possess the
predominant XX-clusterized XX states and its projec-
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FIG. 3. The projections of the s component at E&,b =200
MeV. The notations are the same as in Fig. 2.

e„„(r)=&10(X(123)~X(456) ~u,',") (51)

at small distances r =b is stable in a wide energy interval
0 & Ei,b ~ 1 GeV (Fig. 2) which accounts for the negative
slope of the phase shifts in the S, waves up to energies
E»b ~ 1.2 GeV. Only at the energies E&,b = 1.2 —1.5
GeV, when the relative weight of the component s [6]»
starts to decrease [Figs. 2(d) and 2(e)] and the relative
sign of the components s [6]» and u6 changes, the

tions onto baryon-baryon channels are uniformly distri-
buted [see the series expansion (41)].

Thus, upon solving the set of equations (12), we get
that the NN-scattering wave function in a wide energy
range has a characteristic structure —it consists of two
qualitatively difFerent components. The component u «,
defined in (50), is the clustered XX state which in the re-
gion of small distances is described by the superposition
of states in the configuration s p [see (50)] and has (in
the projection onto the NN channel) a node at distances
r =b (see Fig. 2). The second component is the sym-
metric shell states s [6]» which is more like a 6q bag
(none of the baryon channels is predominant in it). Both
the components coexist in the region of distances r ~ 2b
and for the understanding of the NN dynamics at small
distances this efFect of mixing of the configurations s and
s p is very essential (this was first noted in the paper by
Harvey [26]).

Here we note that the configuration s p plays the
significant role in the NN scattering. The nodal position
of the wave function

S&-phases start to decrease slowly in absolute value
(reach the Born region).

These nodal wave functions 4&&(r) could play a key
role in the optical model description of NN scattering
[17—19] mentioned in the Introduction.

In the P waves the wave function seems to have the
analogous structure (indicative of the constant negative
slope of the experimental phase shifts at E„„~0.3 —0.5
GeV). To make sure, it is necessary to perform micro-
scopic calculations including the contribution of the
configurations s p [Sl]» and s p [3 ]». Thus, the calcu-
lations should be continued to include I. =3 and it is
necessary to take into consideration the tensor forces.

In the present work we obtained not only the absolute
values of the amplitudes of the configurations s and
s p, entering into the wave function of the NN system,
but also their relative sign (negative) which remains un-
changed up to energies E„b=1 —1.2 GeV. There is no
doubt that in the deuteron the relative sign will also be
negative (and the preliminary calculations [SO] confirm
it). The latter is especially important since it permits one
to understand that in the deuteron electromagnetic form
factors the contributions of the s and s p configurations
will interfere destructively [51,52]. Just because of the
destructive interference of the quark contributions the
deuteron magnetic form factor takes on a zero value in
the region Q =2 GeV /c and, accordingly, rapidly de-
creases in absolute value at Q ~0.8 —1 GeV /c . This
behavior of the magnetic form factor is quite difFerent
from the previous predictions made in the hybrid model
[53,54] in which the 6q bag (configuration s ) and the XX
component are spaced apart and their contributions in-
terfere weakly in the electromagnetic processes.

According to our calculations, the node of the NN
component of the wave function is stable only up to ener-
gies E&,b = 1 GeV, and at higher energies it starts to shift
into the region of small r [Figs. 2(d) and 2(e)]. As a re-
sult, the S& phase fails to pass through an additional in-
terval m prior to its transition into the Born region, as it
is predicted by the phenomenological FSP models
[17,18]. However, it should be kept in mind that in our
model we use the efFective qq potentials, which well de-
scribe the baryon spectrum only in the region of lowest
excitations (the mass region of 0.94—1.6 GeV), and the
use of these potentials at higher energies is not
guaranteed at all. Besides, we use the nonrelativistic ap-
proach and in the region E&,b & 1 GeV this is not justified
at all. Further, the contact interactions (31)—(33), whose
contribution should increase with increasing energy and
momentum transfer, is used in our calculations on a lim-
ited basis (configurations s and s p ) which strongly de-
forms the contributions of the 5-shaped functions. At the
same time, if the basis is extended, the interactions, pro-
portional to the 5 functions, will lead to the collapse of
not only the 6q but also 3q system. Thus, to describe ade-
quately the region of intermediate energies E&,b ~ 1 GeV
it is necessary to have a more detailed description of the
interaction at r —+0 and to carry out calculations by
means of the adequate procedure of regularization of the
matrix elements of the interactions (17) and (31)—(33).
[Here we have carried it out only for the effective interac-
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tion (20) which at F ( Q ) = 1 would generate the singular
terms -6(p), —1/p'. ]

Finally, there exists the intriguing problem of the
colored van der Waals interaction between nucleons [55].
It gives a rather strong attraction and is based just on the
excited quark configurations of each nucleon
s p[21]x[21]c which is in line with the discussed phe-
nomenology [17]. However, the present status of this
problem is not free of some difhculties with the gauge in-
variance.

In view of these reasons our results at E1,„~1 GeV
should not be considered as contradicting the FSP model
[17] in which the nodal position of the NN wave fu-nction
in the S and P waves is stable at least in the energy range
E„b=0—4 GeV and the Born region starts at E1,b )4—5
GeV [17]. It seems that experiment should play here the
decisive role. If S and P phases do pass through an addi-
tional interval ~, this would be a vivid quantitative mani-
festation of the quark degrees of freedom in the NN in-
teraction and, also, this would be indicative of the
significant contribution of the contact terms of the attrac-
tive qq interaction. Note that the phenomenological FSP
model [17], which agrees very well with the differential
cross sections and the polarizations in the XN scattering
in a wide energy interval 0(E„b(5 GeV, proceeds ex-
actly from this behavior of the S- and P-phase shifts and
a more sluggish behavior of the phase shifts in the highest
partial waves I.)2.
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APPKNMX

We shall demonstrate that in the impulse approxima-
tion the amplitude of quasielastic knock-out of a baryon
in the reaction d (e,e'8, )82 is proportional to the
Fourier transform of the wave function (42). If the
momentum k is greater than the characteristic quark
scale b ' (b =0.5 fm, k ))b ') the final-state wave func-
tion can be written as the antisymmetrized plane wave,

8)82 (k, q;r„. . . , r6)
1/2

6
A IB&(123)82(456)(2~) e'"'e'

normalized, as usual, to the 6 function. Here
X = —,'g6, r; is a coordinate of the center of mass, q is

the photon momentum received by the baryon B1 in the
process of quasielastic knock-out, A is antisymmetriza-
tion operator (43) normalized like a projector A =A. In
the impulse approximation the amplitude of quasielastic
knock-out of the baryon B1 is of the form

1/2
6

T =
3 (A IB,(123)Bz(456)(2~) e' 'e'~

6

X yt, e" ~q,', (1,... ,6)&,
j=l

iq r.
where t e ' is the interaction operator of an incident
electron with the jth quark. We shall write the quark
wave function of the deuteron 0'6q(1, . . ., 6) as the frac-
tional parentage cluster expansion (40) and make use of
the interaction symmetry with respect to quark permuta-
tion which allows the antisymmetrization operator A to
be transposed to the right-hand side of the matrix ele-
ment (Al) and next exclude it, considering that A =A
and A, %& =4& . The elementary calculations give

1/2
6

T=Z '
3 QI (B,(123)~3t e '~8, (123))$ (k —q/2)

+( 1)1+s+Tyf csT (8&(456)~3t6e
J

' 8 (456) )Pe ~ ( —(k —q/2) )

We made use of the fact that, owing to the symmetry of
the expression (A 1) with respect of the quark numbers, it
is possible to make a replacement

6

g tJe '=3t3e '+3t6e
j=1

in which case r3 =X+r /2 —2g, /3 and r6 =X
—r/2 —2g'2/3. The matrix elements

(8)(123)~3t3e '~8;(123) &

(8, (456)3t6e 'iB (456) )

are amplitudes of the electroproduction of the baryon B,
from the clusters 8, (123) or B.(456)., entering into the
right-hand side of Eq. (40). If we restrict ourselves to the
diagonal transition B1~B1,we shall get a very simple
expression

T=F~ (q )C&~ ~ (k —q/2), (A2)

where k —q/2 is the recoil momentum of the baryon
spectator 82, F~ (q ) = (8,~g, tJe '~8, ) is the form

factor of the baryon quasielastic knock-out. The terms of
the expression (Al), neglected in (A2), are the corrections
for the electroproduction of the baryon B1 from the
initial-state virtual baryons 8;, i%1 or 8, , j&1. They
can be, in principle, taken into account too.
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