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A shell-model study is made of first-forbidden P decay and related processes in A = 205—212
nuclei. The interactions used are modifications of the Kuo-Herling realistic effective interactions
for particles above and holes below Pb and a cross-shell G-matrix interaction connecting these
two. Large-scale diagonalizations are made of 1p-1h excitations across the double-shell closure at

Pb. The calculations of the first-forbidden rates use effective single-particle matrix elements
which incorporate core polarization of the final state to first order. All first-order initial state 1p-1h
admixtures are included explicitly in the diagonalization. A least-squares fit of theory to experiment
for eighteen A 1 = 0 and 1 decay rates was made with two unknowns: (1) an enhancement factor e
for the rank-zero matrix element of y5, and (2) an overall scaling factor for the rank-one component
of the decay rate. A good fit is achieved yielding e „=2.01 + 0.05 and a rank-one scaling factor
of 0.97 + 0.06. The agreement of the latter with unity indicates a satisfactory understanding of
the rank-one component of the decay. The result e „=2.01 + 0.05 indicates an enhancement
of the matrix element of yz by 100% over the impulse approximation. A 40+0 effect is predicted
from meson exchange. Thus, a deficiency in the meson-exchange calculation or some further as-yet-
unforseen contribution is suggested. Predictions for twenty other decays in A = 205—211 nuclei are
compared to experiment and found to be in good general agreement. A calculation of the capture
of neutrinos by Tl is described in detail.

I. INTRODUCTION

In 1978 Kubodera, Delorme, and Rho [1] and Guichon,
et al. [2] predicted a large meson-exchange-current (mec)
contribution to the timelike component of the weak ax-
ial current p5 in the nuclear medium. The enhancement
over the impulse approximation is predicted to be 40—
70'%%uo and to be insensitive to nuclear structure [3—8]. The
prediction is based on chiral-symmetry arguments and
soft-pion theorems and is insensitive to the details of the
meson exchange. This is in contrast to other mesonic ef-
fects such as occur for Ml and Gamow-Teller processes
and which involve complicated dependencies on vr and p
mesons, isobar currents, etc. [9]. The mec enhancement
of the timelike component of the weak axial current, i.e.,

the matrix element of y5, is most easily observed via its
eAect on first-forbidden beta-decay rates since p5 is one
of the two operators contributing to the rank-zero com-
ponent of first-forbidden decays. The prediction of this
very large mec enhancement stimulated a great deal of ex-
perimental and theoretical activity. Most of the activity
centered on the A = 16 region and theoretical studies are
still being carried out there [10]. Results for A 16 have
been reviewed by Towner [8], Warburton [11],and Mil-
lener and Warburton [12]. The available data for A 40
was examined for possible evidence of mec eff'ects [13] and
some evidence was found. One case at A = 96, namely
9sY(0 ) ~ 9sZr(0+), was shown to suggest an enhance-
ment of 70% [14].

Until this present work there had been no detailed
study of mec eA'ects in first-forbidden decays in the lead
region. This is startling for two reasons. First, because,

as illustrated in Fig. 1 and Table I, the lead region
provides a large number of first-forbidden decays among
which are the fastest known. Second, because there was a
great deal of theoretical interest in first-forbidden decays
in this region prior to and just after the mec predictions
in 1978 [16—19]. Furthermore, this pre-1978 work left un-
explained discrepancies and unresolved inconsistencies in
the comparison of theoretical predictions to experiment.
The fact that the activity has been centered on A 16
with none at A 208 is even more surprising after one
becomes familiar with the systematics of both regions;
there is no doubt that the shell-model calculations nec-
essary to display the mec enhancement are more accurate
at A 208 than at A 16 and near Pb the eA'ect is
more transparently and accurately exposed. One reason
for the decade-long neglect of the lead region by those
interested in the mec eKect is the small overlap between
studies in the two regions. There are several instances
where eA'ects well-known to practitioners in one region
are unknown to those in the other. Also, there seems
to be a lack of awareness of the diA'erent behavior of the
decays in the two regions. In the present work some at-
tempt will be made to redress this insularity. The same
formalism will be used for first-forbidden decays through-
out the periodic table and an attempt will be made to
relate results in the lead region to those in the A 16
region.

II. THE SHELL-MODEL INTERACTIONS

The P-decay matrix elements are calculated in the
usual way:
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FIG. 1. (a) First-forbidden decays in A = 205—208 nu-
clei. (b) First-forbidden decays in A = 209—214 nuclei. The
branching ratio and the log f0t value are given for each branch.
The data are from Ref. [15].

Equation (1) introduces notation to be used throughout
this article. In Eq. (I) n labels the specific matrix el-
ement of rank R, MR(j;j/) is a single-particle matrix
element for the transition j; —+ jy in the impulse ap-
proximation, and the quenching factor q (j;j/) corrects
MR(j;j/) for the finite size of the model space and some
efFects of the nuclear medium so that the effective value
of MR(j;j/) is q (j;j/)MR(j,j/)—:MR(j;j/, eff). The
DR(j,j/) are the one-body transition densities which are
the result of the shell-model calculations. The calcula-
tions were carried out with the spherical shell-model code
OXBASH [20]. A complete set of calculations for all
A = 205—212 nuclei of Fig. 1 was performed with both
a surface-delta interaction (SDI) and a combination of
realistic interactions based on t -matrix descriptions of
nucleon-nucleon potentials.

A. The Poppelier-Glaudemans interaction

The SDI interaction used is that of Poppelier and
Glaudemans [21] which has a model space consisting of
the four closest orbits below and the three above the
Z =82, N =126 energy gap for both protons and neu-
trons (see Fig. 2). The single-particle energies and the
two other parameters of the SDI were determined by a

TABLE I. Fast A J = 0, 1 first-forbidden P transitions in the lead region. For the last five columns the number in
parenthesis is the uncertainty in the least significant figure. For f0, the number in square brackets is the power of ten. The
data are from Ref. [15].
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B. The Kuo-Herling hole and particle interactions

The residual interaction of Kuo and Herling [22] was
derived by reaction matrix techniques [23] from a free
nucleon-nucleon potential [24] with renormalizations due
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least-squares fit to 74 experimental energies in A = 207—
209 nuclei assuming at most 1p-lh (one-particle-one-
hole) excitations relative to the doubly closed Z = 82,
K = 126 (~osPb) core. This interaction gives quite good
agreement with binding energies and other observables
with some exceptions which will be discussed in Sec. IV
A.

to the finite extension of the model space (Fig. 2). The
fact that eA'ective realistic residual interactions give a
good description of nuclei near closed shells throughout
the periodic table is a great success for nuclear structure.
Nevertheless, shell-model calculations have revealed sig-
nificant discrepancies [25—27] in the Kuo-Herling inter-
action which can be laid to approximations made for
reasons of computational simplicity. For each two-body-
matrix-element (TBME) the I&uo-Herling interaction has
a bare matrix element, a 1p-1h core polarization "bub-
ble" and a further renormalization due to 2p-2h excita-
tions. Single particle energies (SPE) are taken from the
experimental spectra of A = 207—209 and are shown in
Fig. 2. Better agreement, with experiment is obtained if
the 2p-2h part of the interaction is omitted [25, 26] and
this we do. A very large improvement is gained by tuning
selected TBME to match experimental binding energies
[28, 29, 26]. The 1&uo-Herling interaction is in two uncon-
nected parts, a hole interaction, KHH, for nuclei below
zosPb and a particle interaction, KHP, for nuclei above
zosPb. In a previous study [26] the best fit to experi-
mental energy spectra was found as a function of K&~
for

&ii~~ II'lisi4)

= (iiiz II'lisigba. e + It pr (/ii~ IV liaise ip-ih (2)

The justification for Eq. (2) and the adjustment of the
lp-1h strength is discussed in detail by Warburton and
Brown [26]. The modified Kuo-Herling particle space—
labeled KHP, to distinguish it from the unmodified KHP
interaction —also has some proton-neutron TBME varied
so as to match the experimental spectrum of Bi for E~( 2.0 MeV [26]. The I&HP, interaction is used to describe
the A = 210—212 decays.

We designate the Kuo-Herling hole interaction with

Kzg ——1 as KHH. The "tuned" form of this interaction—
designated KHH, —uses the changes published by Ryd-
strom ef al. [28] for the proton-proton (pp) and proton-
neutron (pn) parts of the interaction and a modification
starting from I&zg = 0.75 for the neutron-neutron (nn)
part. This latter nn part, due to McGrory [29], also has
52 diagonal TBME varied so as to better reproduce the
experimental spectrum of Pb and Pb. The KHH,
interaction is used to describe the A = 205 and 206 de-
cays.

FIG. 2. The Kuo- Herling and Poppelier-Kuo-Herling
(PKH) model spaces. Single-particle energies are taken from
experiment and given in keV. The Kuo-Herling interaction is
for either (a) particles above Pb or (b) holes below Pb.
Each includes all the particle or hole orbits shown. The two
model spaces are not connected. The PKH model space con-
sists of the orbits denoted by solid lines. The interaction
includes excitation across the Z = 82, N = 126 energy gap,
i.e., the particle and hole spaces are connected. It uses the
same single-particle energies as the KH interactions which are
diferent than those of the Poppelier-Glaudemans interaction
(Ref. [21j).

C. PKH: a cross-shell interaction

In order to incorporate 1p-1h excitations into the cal-
culations performed with the KHH, and KHP, interac-
tions and to calculate the A = 207—209 decays, an inter-
action which connects the KHH and KHP model spaces
is desirable. Experience with the Poppelier-Glaudemans
SDI interaction demonstrated the utility of its model
space for the A = 205—212 decays of interest. Thus,
an interaction (PKH) was constructed in the Poppelier-
Glaudemans model space with the KHH and KHP inter-
actions connected by 1p-1h TBME. Single-particle ener-
gies were taken from experiment and thus are the same
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as for the I&H interaction (Fig. 2). The model space con-
sists of all the orbit denoted by solid lines in Fig. 2. The
particle-particle and hole-hole parts of the PKH interac-
tion were obtained by truncating the two KH interactions
to this model space, i.e. , omitting the orbits denoted by
dotted lines. To compensate for this truncation the K&h
of Eq. (2) was increased so as to best reproduce the spec-
tra of A = 204—206 and 210—212 nuclei in the manner
previously described [26]. For the pp and pn parts of the
KHH, interaction no change was made because the low-

lying states were eAected very little by the truncation.
For the nn part of KHH„a significant improvement in
the spectra of ' Pb was found if the omission of the
v0hg(2 and vl f7(2 orbits was compensated for by adding
0.60(jij2~v~g3$4) ip-ih to each TBME. For the KHP inter-
action, the values of K&g determined for the pp and nn
parts of the interaction were 1.16 and 1.56 (as opposed
to 0.92 and 1.07 for the untruncated KHP, model space
[26]). The pn part of the interaction was left unchanged
since the low-lying states of Bi were not significantly
afkcted by the truncation.

The KHH and KHP parts of the interaction were con-
nected by TBME generated by a potential (H7B) due
to Hosaka, Kubo, and Toki [30] plus the Coulomb po-
tential [31] for the pp TBME. The H7B potential is ex-
pressed as a superposition of seven one-boson-exchange
potentials, the oscillator matrix elements of which were
fit to the G-matrix elements derived from the Paris [32]
nucleon-nucleon potential. Thus, this is a "bare" inter-
action with no 1p-lh corrections. However, this may be
a better approximation than one might suppose. The 1p-
1h renormalization of the KHH and KHP interactions is
large and important; but from the only published results
for Kuo's calculations of ph TBME, it would seem that
the renormalization of this type of matrix element is con-
siderably less. The reason for this would seem to be that
the "hole" orbits just below ~ Pb are of low spin while
the particle orbits just above Pb are of high spin so
that the overlap between particle and hole orbits is small.
This point is illustrated in Table II. Specifically, the av-

erage renormalization (abs(G„,)) is seen to be 20% of the
average Kuo (Gb g. For comparison, the average lp-1h
renormalization, (abs(Gi& ih)), is 80% of (abs(Gba«)) for
the KHH neutron-neutron interaction [26]. Table II also
displays the good agreement between the bare TBME of
Kuo [33] and of the H7B potential.

The H7B + Coulomb lp-lh interaction was tested by
comparison of calculations for the low-lying odd-parity
levels of Pb to experiment. In this comparison we as-
sume the spin-parity assignments from the recent work of
Maier e( al. [34]. Experimental information [35] on strip-
ping and pickup spectroscopic factors S, and the g factor
of the 5& level of Pb at 3198 keV provided stringent
tests of the wave functions that result from a delicate bal-
ance between neutron and proton 1p-1h excitations. A
significant improvement was achieved in the description
of the 8 and g factors by adding to the H78 + Coulomb
interaction a fraction of the Poppelier-Glaudemans SDI
interaction. Thus the PKH interaction is given (schemat-
ically) by H7B + Coulomb + I~sDr SDI. After a system-
atic search, a value of I&SDI ——0.096 was found to give

good agreement with experiment without significantly af-
fecting energy spectra or diagonal TBME, i.e., the prin-
cipal efI'ect is on the ofI'-diagonal TBME. This then is our
"cross-shell" PKH interaction used to join the KHH, and
KHP, interactions. The PKH interaction alone gives the
results reported for A = 208 and is the main ingredient
in determining the results for A = 207 and 209.

III. THE MATRIX ELEMENTS AND
THE DECAY RATE

A. Definition. of the matrix elements

The nuclear matrix elements which enter into first-
forbidden beta decay in the impulse approximation in
normal order are formed from the following two classes
of operators,

r, [r, a] R = 0, 1, 2,

p5 ) Ck) (3b)

22 (~,~, )v(~, ~', )

h /

hg/2

hg/2

hg/2

P1/2
Pl /2

fs(2
f5(2
fs(.
fs(2
fs(2
fs(2
P3/2
P3/2
P3/2
P3/2
&13/2

$13/2

~13/2

&13/2

C13/2

&13/2

&13/2

&13/2

f13/2
113/2
P1 /2

P1/2

4+
5+
2+
3+
4+
5+
6+
7+
3+
4+
5+

+

2+
3+
4+
5+
6+
7+
8+
9+
10+
11+
3+
4+

—0.0771
—0.2503
—0.1805
—0.1132
—0.0551
—0.1605
—0.0439
—0.4846
—0.3971
-0.1371
—0.1144
—0.1761
—1.0463
-0.5811
—0.3504
—0.3806
—0.2002
—0.3518
—0.1234
—0.4242
—0.0613
—0.8490
—0.3676
—0.2682

—0.0680
—0.2480
—0.1458
—0.1011
-0.0401
—0.1563
—0.0348
—0.4843
—0.3946
—0.1324
—0.1110
—0.1662
—1.0677
—0.5718
—0.3388
—0.3813
—0.1879
—0.3540
—0.1256
—0.4179
—0.0759
—0.8068
—0.3617
—0.2517

G„
(KUO)
—0.0356
+0.0304
-0.3106
—0.0027
—0.0152
+0.0486
+0.0546
+0.0038
-0.0114
+0.0179
+0.0778
—0.0615
—0.2064
—0.0433
+0.0018
+0.0137
+0.0421
+0.0202
+0.0669
—0.0074
+0.0927
—0.1301
—0.0122
—0.0582

Averages: —0.2998 —0.2821 0.0569

The average of the absolute values, designated (abs(G„)).

TABLE II. Selected diagonal two-body-matrix-elements
illustrating the degree of agreement between Kuo (Ref. [33])
and the H7B results of Hosaka, Kubo, and Toki (Ref. [30I)
for the bare G-matrix TBME (labeled G). The sum of the
four renormalizing TBME (labeled G„,) listed by Kuo is also
included to illustrate the magnitude of the renormalization
due to the finite model space.
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where R is the rank of the operator. The four non-
relativistic operators of Eq. (3a) arise from an expansion
of the lepton wave functions, while those of Eq. (3b) oc-
cur in the hadronic weak current, connect the large and
small components of nucleonic wave functions, and are
relativistic. Matrix elements of diferent rank contribute
incoherently to the decay rate. The rank R has the se-
lection rule

IJ; —Jfl «& IJ;+ Jfl. (4)

The matrix elements of r, and n are of rank-one while p5
is the timelike component of the rank-zero axial current
discussed in Sec. I. The conserved-vector-current (CVC)
theorem can be invoked to eliminate the matrix element
of n via

(Jf +f llcr~ll J'&
&

= E&(Jf+f ll~rci~ll~ &) (5)

B. The evaluation of the Afrv(j;jf)

The single-particle matrix elements M& (j,jf ) were
evaluated using Woods-Saxon (WS) radial wave func-
tions with the parameters of Streets, Brown, and Hodg-
son [38]. These parameters reproduce the experimental
rms charge radius of 20sPb of 5.503(2) fm and give a
neutron rms radius 0.2 fm larger. With normal shell oc-

where Cl, = [4'/(2L + 1)]if2YL, . For p decay, E~ is
the energy separation (natural units) in the final nucleus
between the initial state's analog and the final state. For
A = 205—212 it is well represented by [36]

E~ =
i

'
~ ~

—0.811 —0.782+ Q(P ). (6)0.511 q 2A'. j
We expect Eq. (5) to hold to a high accuracy in the lead
region (relative to lighter nuclei) just because E& is larger
here and its uncertainty is roughly independent of A. We
thus have five independent matrix elements: two each of
rank-zero (RO) and rank-one (Rl) and one of rank-two
(R2) which we denote as

RO. M M
R1: M~, M~, (7)
R2: Mz

where n of Mg is S, u, and z for the R =0,1,2 operators
of [r, cr],T for 75, and z for r. The notation for the
RO matrix elements is intended to remind us that they
are the matrix elements of the space-like and time-like
components of the axial current. The notation for the
Rl and R2 values symbols are historical [37].

The evaluation of these matrix elements is made via
Eq. (1). There are three steps: (1) the evaluation of
single-particle matrix elements M&(j,jf), (2) the evalu-
ation of the quenching factors q (j,jf), and (3) the com-
bining of these quantities with the Dfr(j;j f) to form the
M&(j;jf) and finally Mg. We consider the first two of
these steps in the next two subsections. The final step
will be discussed in Sec. IV after we first describe how
the matrix elements are combined to form the decay rate
and other observables.

cupancies, these radii correspond to harmonic-oscillator
(HO) parameters of hu = 6.701 and 7.183 MeV for pro-
tons and neutrons, respectively. If the M&(j,jf) are eval-
uated with HO wave functions with hu equal to the av-
erage of the neutron and proton values, then the results
are usually close to those obtained with Woods-Saxon
wave functions. The exceptions involve those transitions
between single-particle states with zero and one node,
respectively. For example, vlgg/2 ~ wOhg(2 for which
the integrals have two contributions which are opposite
in sign but nearly equal in magnitude.

The Mfr(j; jf ) evaluated with Woods-Saxon radial
wave functions are dependent on the separation energies
of the active orbits. The question arises as to how to
handle this dependence when the parentage of the orbits
is fractionated. We now address this question with RO
decays chosen to illustrate the approach.

For RO matrix elements the single-particle transitions
are constrained by j; = jf = j. Thus Eq. (1) simplifies
to

Mo —) Ds(j)qs(j)MO (j) (8)

where j simultaneously specifies the possible single-
particle transitions and the spin of the common A —1
core states which are labeled for given j by the inde~
i. These core states have the spectroscopic amplitudes
A„(j,i) and Az(j, i) for the initial and final states of the
P decay, respectively. The spectroscopic factor 8 is the
square of A which is reduced in both J and T. The
spectroscopic factors satisfy the sum rules

where n(j) [p(j)] is the mean number of neutrons [pro-
tons] in orbit j of the initial [final] state of the P decay.

For realistic radial wave functions such as the Woods-
Saxon or Hartree-Fock forms, the radial integrals of
Mo (j) and Mo (j) are dependent on the neutron and pro-
ton separation energies of the active nucleons and thus
depend on the nuclear structure of the initial and final
states. Millener [12] formulated a prescription for dealing
with this dependence which, for present purposes, follows
from Eqs. (9)—(10):

Mo —) (2j + 1) &A„(j,i)A&(j, i)qs(j)MO (j, i),

where a specific proton and neutron separation energy

with a similar relationship for Mo . Strictly speaking,
Eqs. (1) and (8) are correct only in as far as the M&(j;jf )
and Dfi(j;jf) have no nuclear structure dependencies in
common. For spin-zero initial and final states the DIr(j )
can be formulated by

D.(~) =) D.u ) =(2j+I) ').A-u )A.(j )
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is associated with the index i . A simple and reveal-
ing method of utilizing Eqs. (8)—(11) is to make use
of the fact that the neutron and proton separation en-
ergies depend linearly on the excitation energy, E (j, i),
of the ith state of spin j in the A —1 nucleus. Thus
M() (j) and Mo (j) can be expressed as power series in
the F (j, i) and are therefore given in terms of energy
moments weighed by the Q,. DR(j, i) of Eq. (9). It is
found that a linear dependence on E (j,i) is adequate
for present purposes, i.e. ,

Ms (j i) = Ms (j, 1)(1+ bs [E (j i) —E (j, 1) ),
(12)

so that with

E, & (j i)&~(j i)E (j &) E (, ,)E;& (j i)&~(j i)

we have

Ms (j) = M, (j, l)(1+ is(E, ))

with a similar exPression for Mo+(j).
In order to use this approach the energy spectra and

wave functions of the &, &, 2, &, and 2 states of

Hg, and the — — — — and — states of 2 Tl
were calculated and the A„(j,i) and Az(j, i) for i = 1, 20
were extracted for both Hg and o Tl decay. The same
calculation was made for the — and — states of Pb9+ 11+

for use with Pb(0+) —+ i Bi(0 ). Details of these cal-
culations and their application to Eqs. (8) and (14) are
given in Appendix A. Results are summarized in Table
III. This table illustrates that the dependence of the Mo
and Mo on the separation energies is negligible. We note
that this result is contrary to what might have been in-
ferred from arguments put forth by Millener, Warburton,
and colleagues [39, 12], who displayed figures emphasiz-
ing the strong dependence of the RO matrix elements on
S(p) and S(n) but left as implicit the relationship be-
tween S(p) and S(n) given by their definitions:

S(p) —S(n) = Q(P-) —0.782 MeV.

When this relationship is used, the dependence of the ma-

TABLE III. Evaluation of the Mo (j) and Mo (j) of Eqs. (8) and (14). The number in brackets in columns 5 and 6 is the
power of tea.

M,'(j; 1)

(fm)

M() (j; 1)

MeV

b (E,) Ms(j)

(fm)

M(~)(j)

(fm)
206 H 206 EIi)

11
2

+8.212

—8.069

+16.38

—7.076

+26.11

—104.0

—196.2

+172 2

—366.3

+0.165

—1.461

—11.689

+0.620

+0.030

—7.82[—4]

+6.1O[—3]

+5.6O[—2]

—4.5O[—3]

—9.87[—5]

+8.41[—4]

—4.65[—3]

—2.71[—2]

+3.9O[—3]

+9.57[—5]

+8.206

+17.30

—7.044

+26.10

—104.1

+124.1

—190.9

+172.9

—366.3

206T] 206 pb

11
2

+8.179

-8.012

+26.21

—104.6

—198.1

—366.0

+0.224

—5.511

—0.116

—8.96[—4]

+1.38[—2]

+2.52[—2]

—5.14[—3]

+3.95[—4]

+1.O5[—3]

—1.10[—2]

—1.14[—2]

+4.39[—3]

—2.59[—4]

+8.172

—8.123

+16.74

—6.944

+26.22

—104.7

+124.0

—195.8

—365.9

209 pb 209B.

11
2

—7.417 +164.8

—358.9

+0.245

+0.947

—1.51[—3]

—3.73[—3]

+1.46 [—3]

+2.31[—3]

—7.406

+26.71

+165.1

—359.7
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trix elements on separation energy in the A = 16 region
is reduced over that explicitly displayed [12]. However,
it is still larger near A = 16 than in the lead region, e.g. ,
the results of Table III, simply because at A 208, S(n)
is considerably larger, and S(n) and S(p) are more nearly
equal.

Because of the insensitivity to S(n) and S(p) illus-
trated here, we evaluate the matrix elements of all ranks
assuming a single parent in the A —1 nucleus. However,
the excitation energy of this parent was chosen after con-
sideration of the shell-model results so as to minimize the
error introduced by this approximation.

C. Core polarization and effective operators

INITIAL
CONFIGURATIONS

K V

x 2p1 /2

leading
terms

FINAL
CONFIGURATIONS

K V

2s1/2 2s1/2

K V

1 1/2

1 /22p

Ol11/2

x 2p1 /2

2s1/2 2s1/2

First-order contributions from excitations of the core
can have a large efIect on the first-forbidden matrix ele-
ments [40]. The important core-excited admixtures in
the initial (final) state are those connected by a one-
body operator to the dominant terms in the final (initial)
state wave function. A schematic of typical configura-
tions involved is shown in Fig. 3. Restrictions on the
matrix elements of r and its derivatives eflectively lim-
its first-forbidden decay to transitions between adjacent
major shells. This selection rule (exact for HO wave func-
tions) and Pauli blocking due to the large neutron excess
severely restricts the contributions from initial-state ad-
mixtures for the lead region. For the decays considered
here, only those involving Oh&&~2 proton holes contribute
and —with the exception of the rank-two vlg7/2
~0hqq~2 transition —all are included in the PKH model

space and thus need not be added perturbatively. This
is just as well, since the energy denominators for these
initial-state admixtures are not always large or constant
enough to render the perturbative result accurate in all
cases.

Specifying the major shell by the quantum number Q
[q = 2n+ I, where n is the principal quantum (= 0, 1,...)
and I is the orbital angular momentum], there are many
possible AQ = +I transitions involving the 2p-2h ad-
mixtures in the final state. Those aR'ecting the allow-
able transitions from the neutron-hole states of the PKH
model space were considered in a recent treatment of core
polarization in the lead region [40]. These results give ex-
plicit values for the q (j;jy) of Eq. (1) derived using the
H78 interaction discussed in Sec. II C. We use the re-
sults obtained with Woods-Saxon wave functions. For
the present application we also need q (j;jy) for the al-
lowable P single-particle transitions commencing from
the neutron-particle orbits of Fig. 2. These q (j;j~) were
calculated with the H7B interaction and Woods-Saxon
radial wave functions by the procedures of Ref. 40 and
are listed in Table IV.

D. The Behrens-Buhring expansion

X. Inta odmcjtion

In this subsection we delineate the relationship be-
tween the P decay rate and the nuclear matrix elements
contributing to it. Although the approach used has been
fully discussed previously [13], it was not used by the
present author for nuclei heavier than ssY [14] and an
examination of its applicability to the lead region is in
order. We follow the Behrens-Biihring [41, 19] formula-
tion. In this formulation the beta decay formulas are
derived by expanding the electron radial wave functions
in powers of the mass and energy parameters of the elec-
tron and of the nuclear charge and size via the products

Z, R'r„, pr„, and qr„where 8 and p are the electron
energy and momentum and q is the neutrino momentum.
In this treatment additional matrix elements occur which
contain both the nuclear and electromagnetic structure of
the nucleus via the shape of the nuclear charge distribu-
tion. The use of a uniform charge distribution of radius
r„ is a very good approximation provided it implies the
correct experimental rms size of the nucleus. We use for
r„ the expression given by Brown et al. [42]. The addi-
tional RO and Rl matrix elements needed are obtained
from the definitions of Mo, M&, and M& by including
in the radial integrals an extra factor [41]

p-h
admixture

1 1/2

final state
"correlations"

1 1/2

1t4 t4

5
FIG. 3. Schematic illustrating the role in first-forbidden

P decay of 1p-1h admixtnres in the initial state and 2p-2h
"correlations" in the final state. Arrows indicate the configu-
rations linked by the P decay. The example shown is specific

206Tl ~ 206Pb

and are denoted Mo, M&, and M& . We shall use

as variables, Mos, Mi, Mi, r' (:—Mos /Mos), r' (—:
Mi /MP), rl (= Min /Mi ), and M2s.
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It was found that the terms generated by the next order
in the Behrens-Buhring expansion were negligible for all
cases encountered in the A 16, 40, and 96 regions [1'2,
13]. However for A 208 it is desirable to make a careful
assessment of higher-order terms, especially those gener-

Matrix
element

Orbit

»11/2
1gg/2

1g7/2
2dg/2
283/2
381/2

1gg/2

1g7/2
2dg/2
283/2
381/2

1gg/2
1gg/2
1gg/2
1g7/2
1g7/2
1g7/2
2Ig/2
2d5/2
2dg/2
243/2
2d3/2
2d3/2
381/2
381/2
Oj1S/2

Oi11/2
1gg/2

1 gg/2
1gg/2

1g7/
lg7/,
1g7/2
2d5/2
2lg/2
2d5/2
2d3/2
2d3/2
2d3/2
381/2
381/2
Oi1S/2

0h11/2
Ohg/2
l f7(g
l fsg2
283/2
271/2

0h11/2
Ohg/2

lf7(~
l fs(2
273/2
271/2

0h11/2
Ohg/2

0h11/2
Ohg/2
l f7(2
Ohg/2
l fp(2
1 fsg2
1f7(2
l fs(2
2P3/2
l fs(2
2+3/2
2+1/2
2@3/2

2+1/2
0Z13/2

0h11/2
Ohg/2

Oh»/

l f7(2
Oh /
l f7(2
l fs(2
l f7(2
ifs)2
2P3/2
lfs(2
2P3/2
2P1/2
2P3/2
2+1/2
Oi13/2

g-(j'jx)
0.8426
1.2856
0.8512
1.1388
0.9017
0.9782
1.1520
0.8317
1.1472
0.8963
1.1025
0.9870
0.6001
0.3102
0.6636
0.4683
0.3596
0.5957
0.5241
0.3295
0.5946
0.5668
0.4728
0.5993
0.5401
0.4340
0.5581
0.5602
0.4259
0.5942
0.5936
0.7874
0.9899
0.5957
0.6378
0.5707
0.5633
0.7896
0.8723
0.7003
0.7801
0.6843
0.6721
0.7888
0.8255
0.6668

+0.0333
—0.0723
+0.0196
—0.0088
+0.0348
+0.0183
—0.0319
+0.0399
—0.0200
+0.0076
—0.0371
—0.0180
+0.0655
+0.2088
—0.0416
—0.0420
+0.0811
+0.0963
+0.0947
+0.1740
+0.1019
+0.0717
+0.0427
+0.0351
+0.0986
+0.1503
+0.1279
+0.0701
+0.0469
+0.3431
+0.1572
—0.0354
+0.3911
+0.0004
—0.0023
+0.3468
+0.1010
+0.0760
—0.0227
+0.0257
+0.0748
+0.1975
+0.1136
+0.0991
+0.0206
+0.0164

For occupancy of the vlgg/2 orbit in the initial state by
n(lg9y2) neutrons, g (j,j~) is given by the value listed minus

Qn(lggg, )/10&„.

TABLE IV. The first-order perturbative quenching factor
g (j,jy) calculated for Q = 6 ~ Q = 5 transitions with WS
radial matrix elements and the H78 residual interaction. The
results are valid for a final state with Z & 82, N & 126.

ated by the power series in o,Z since this parameter is
0.61 for, e.g. , ~iPPb P decay (as opposed to (0.019 for
Wpr„). This assessment has been made for RO decays
since these are our major interest [43]. All second-order
terms and several third-order terms were considered ands'were found to be small compared to Mo ) Mo ) and Mo
They will have a noticeable effect on the RO P decay
rate only if there is strong cancellation between the three
first-order terms and the very low fpt values for the de-
cays under consideration here show that this cancellation
cannot be strong. Higher-order terms are large enough
to inhuence the shape factor, and, in fact, Wiesner et
af. [45, 46] obtained an experimental verification of the
combined eA'ect of these terms from a careful measure-
ment of the shape factor for the Hg(0+) ~ 2PGTl(0 )
transition. The role of higher-order rank-zero terms is
summarized in Appendix B.

2. Construction of the decay rate

Past usage relates experimental and theoretical decay
rates via

ft = 6166,

where

Wp

C(W)F(Z, W)(W —1) W(Wp —W) dW

A(sec ') = 1/r = ln2/t = f/8896.

The integrated Fermi function for allowed decays is

Wp

(20)

F(Z, W)(W —I)'/ W(Wp —W) dW. (21)

The Wilkinson-Macefield [47] parametrization of fp is
used to evaluate Eq. (21). Some remarks on the ac-
curacy of this evaluation are given in Appendix C. The
integral in Eq. (18) has four terms corresponding to the
four terms in C(W) of Eq. (19). For the first term we use

fp The other th. ree terms are evaluated by numerical in-
tegration. Behrens and Biihring [19] define the averaged
shape factor by

C(W) = f/fp (22)

and t is the partial half-life of the transition. In Eq.
(18) C(W) is the shape factor, F(Z, W) is the Fermi
function, W is the electron energy, and Wo is the total
disintegration energy —both including the rest mass-
and all quantities are in natural units h = c = m, = 1.
The unit of time is the second and of length the electron
Compton wavelength, Ac, ——386.159 fm. With dominant
terms retained, the shape factor can be expressed as [37,
19, iS]

C(W) = k+ kaW+ kb/W ~ keW .

A more directly pertinent observable than f is the decay
rate:
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C(W)(fm ")= '
(n forbidden)

6166%~, "
pt

(23)

in terms of which experiment and theory for n-forbidden
P decay can be related via

dependence of the rates on the matrix elements. If we re-
tain just the RO term (oz (g = zeta) and the Rl term (r2

contained in the energy-independent term k of Eq. (19)
and described in Eqs (30)—(31) of Ref. 13, we have

For convenience, we choose to give the erst-forbidden
matrix elements in fm rather than natural units, hence
for first-forbidden decays C(W) is in fm2 and is given by

Bi = [Mi ] = [e „Mo +asMo],(o) (o) 2 T S 2

BI"= [M&"]' = [a„M,"—a.M, ]'
(27)

9195 x 10
C(w)(ym') = (1st forbidden)

ot
(24) (( approximation),

For allowed (Gamow-Teller) decays C(W) is just the
square of the Gamow-Teller matrix element of as which
we term the Gamow-Teller beta-moment Bo . First-(~)

forbidden decays are incoherent in the rank so that C(W)
can be expressed as the sum of the RO, Rl, and R2 con-
tributions, i.e. ,

c(w) = B',"+B"+-', +~,„BI" (25)

where n in B„denotes the degree of forbiddeness.(R)

Equation (25) should be regarded as a definition of the

B~ .' it does not imply that RO and Rl first-forbidden
decays have allowed shapes, i.e. , see Eq. (19). Our eval-

uation of C(W), or alternately the BI l, follows the pro-
cedures outlined by Warburton eI al. [13] and previously
applied to Z & 40 decays. The expressions used to cal-
culate the Bi contain the Coulomb functions [19] pi
and A2. These were assumed to be constant at unity in
applications to Z & 40. In the lead region, this is still a
fairly good approximation for pi for the decay energies
of interest here (~pr —1~ ( 0.06). However, for Z 82,
A2 deviates considerably from unity [19]. It transpires
that for the RO and Rl components of the decay, the
terms proportional to these Coulomb functions are rela-
tively very small and the assumption that p~ ——A2 ——1
generates (0.3% error in the decay rates considered here.
Therefore, we retain this assumption in deriving the RO
and Rl contributions. This insensitivity to A2 follows
from the dominance at high Z of those first-forbidden
terms which are proportional to Z: these terms do not
depend on pi or A2. The atomic number Z is contained
in ( = nZ/2r„. The "( approximation" (( = xi) is the
expression used to describe calculations in which only the
terms proportional to ( are retained [19]. The R2 shape
factor,

(2)C(w)unique = s Bi [q + &2p ] (26)

is not proportional to Z and thus is normally negligible
for 4J = 0 or 1 decays for Z 82. In fact, it is negli-
gible for all cases considered here. However, it is clear
from Eq. (26) that AJ = 2 decays are sensitive to A2.
For these R2 decays we extract the experimental beta-
moment Bi [:—z(Mz ) ] using the results of Gove and

Martin [48] for log[C(W)] since Gove and Martin treat all
Coulomb terms with adequate accuracy. The dominance
of the ( terms for RO and Rl decays in the lead region al-
lows approximations, which are useful for displaying the

where

as(&, Wo, r„) = r„'(+ —,'Wo,

a„(z, w„.„)=.„'g ——,'w. ,

a (Z, Wo, r„) = E~ —r'( —swo.
(28)

In the g approximation the decays have the allowed
shape. Note that this is different than the "( approxi-
mation" because some terms not proportional to Z are
retained. A more important diAerence is that in the full
expansion for the Rl component there is a contribution
from the ka term of Eq. (19) which is proportional to (.
This term is 10'%%uo of the k term and, logically should
be retained in the ( approximation although it is often
not. In any case, because this term is neglected, the (
approximation for Rl decays has an error of 10% for Z

82 while for RO decays all terms in ( are retained but
the neglect of the kb/W term of Eq. (19) causes an error
of 4% (see Appendix B).

From now on we will explicitly display the expected
enhancement of Mp over the impulse approximation by
means of the meson-enhancement-contribution (mec) pa-
rameter e, as in Eq. (27). For HO wave functions
Mo (j;jg) and Mo (j,jg) are related by [13]

Mo (j;jy) = — " M (jo;jg)
77lgC

(29)

(( and HO approximations). (30)

It is immediately clear from this approximate result why
the observation of fast RO decays calls for strong mec
eA'ects. The parameters a„and a~ are rather constant
for the Rl decays we will consider. A typical case is
2 sHg(0+) ~ Tl(l ) for which

[12.IMr —22.2Mr ] (( approximation).

On the average ~Mr ~
2(Mr (

so that the Rl decay
rate depends critically on the relative sign of M& and
My which varies with j; and jy .

To summarize, we choose to present our comparison of
experiment and theory via Eqs. (24) and (25). Specifi-

Using Eq. (29) with E „=h~ = 7 MeV and as 14,
and neglecting the quenching factors qs z (j;jy) which are
close to unity for RO decays, we have

B, l [14e „—14] (Mo )



E. K. WARBURTON

cally we will give experimental and theoretical values of
1/2

log fat and C(W) (in fm) which are related by this
1/2

equation. If the decay is pure RO or Rl, C(W) is

equivalent to Mi or Mi, respectively [see, e.g. , Eq.(o) (i)

(27)]. Otherwise it is the square root of the sum of the
allowable beta moments. We display Eq. (27) for peda-
gogical reasons; our results do not rely on either the ( or
( approximation.

IV. EFFECTIVE OPERATORS DETERMINED
FRDM A LEAST-SQUAR. ES FIT

A. The shell-model calculatiorx

We have described all the ingredients of Eq. (1) and
have explained how to combine the matrix elements to
obtain a theoretical decay rate or values for f, fot, or

1/2
C(W) . We shall give some specific examples of the
shell-model calculations of the DJi(j;j~) of Eq. (1) in
the next subsection where we discuss specific decays. In
general the shell-model results for the D~ included in-
put from two calculations: (1) either the KHH, interac-
tion (A = 205—206), or the KHP, interaction (A = 210—
212), and (2) all lp-lh excitations across the Z = 82,
N = 126 interface of both the initial and final states
with the PKH interaction. For A =207, 208, and 209
the transitions of interest are either non-existent or triv-
ial in the IZHH or KHP model spaces and only the PKH
calculation was made. The J dimensions of the PICH
calculations varied from 24 for the — states of Tl
to 2538 for the 2 states of Tl. The calculations for

Pb and Pb decay involved rather large J dimen-
sions in the IZHP model space and a full lp-lh calcula-
tion was not possible. In these two cases the important
v0i11/2 zr0h11/2 and vi@9/2 ~ x0h11/2 lp-lh contribu-
tions were determined perturbatively by diagonalizing in
a highly-truncated PKH model space containing only the
very basic ingredients contributing to the decays. That
this method was accurate was verified by repeating the
lp- lh calculations for A = 206 and 210 with the same
highly truncated model space and thereby demonstrat-
ing good agreement of the DIt(j,jy) with those obtained
with the full model space.

A major part of the calculations were repeated with the
SDI interaction of Poppelier and Glaudemans [21]. How-
ever, the Coulomb energy was not treated consistently in
the derivat, ion of this interaction so that, e.g. , it cannot
be used for the 2 sT1 decays (Fig. 1) since the wave func-
tions of the Pb lp- lh states depend sensitively on the
relative energies of proton and neutron excitations. Also
its single-particle energies will be somewhat distorted.
Thus we concentrate our attention on the results using
the KHH and PKH interactions, but sometimes use the
SDI interaction for comparison or ancillary calculations.

It is our assumption that the matrix elements con-
tributing to the first-forbidden decay rates are all fairly
well determined with the exception of the two-body
(mec) contribution to the matrix element of p5. Thus
our procedure is (1) to calculate the one-body matrix

C(W) = [B, (c „)+ B, (ski)]' (33)

with sq1 = sq~ = sq„. The result of the fit to Eq.
(33) was e,„„=2.01 + 0.05, qi ——0.97 6 0.06, and yD
(chi-squared-per-degree-of-freedom) = 1.00 if a uniform
uncertainty of 13%%uo is ascribed to the calculation of all

1(2
eighteen C(W), or, alternatively, if an uncertainty in

1/2 1/2
C(W) of 0.07C(W) + 3.2 fm is assumed. From
past experience we know that the latter is more mean-
ingful since the weaker decays have larger fractional un-
certainties. [With this latter theoretical uncertainty, a
least-squares fit to Eq. (32) yields e „=2.01 + 0.05,
sq = 1.10 + 0.18, and sq„= 0.75 + 0.20.] The results
of the fit to Eq. (33) are summarized in Fig. 4 and Table
V. An important question is just how sensitive is the re-
sult to the specific shell-model interaction used to obtain
it. The result obtained for e „with the SDI interac-
tion for all decays of Table V except those for A = 208
was consistent with the result of e „=2.01 but with a
larger spread in individual values (a least-squares fit was
not performed). It is clear that the parametrization of
Eq. (33) results in a highly successful description of the
decays of Table V and Fig. 4. The possible significance
of the values obtained for e „and sq1 will be discussed
in Sec. VI. But first we will consider the decays of Table
V and some others as well.

B. Discussion of the specific decays

The eighteen decays under consideration show a great
deal of regularity and can be qualitatively understood
with rather simple ideas. As an aid to this understand-
ing a calculation was made of the (MQ )2, (Mi ), and
(Mi*)~ transition strength distributions connecting Tl
0 and 1 states with the o Pb 0+ ground state. The
calculation was done in the PKH model space with all
possible lp-lh excitations of the initial and final states
included. There are 114 0+, 185 0 and 514 1 states in
the diagonalization. The strength distribution for these
0 and 1 states is shown in Fig. 5. The distributions
have been folded with a Gaussian resolution function for
ease of viewing and to simulate experimental spectra for

elements, including the cere-polarization corrections, as
accurately as possible, (2) to combine these to obtain the
R0 and Rl beta moments, and then to perform a least-
squares fit to

C(W) = [Bi( )(~ „)+ B(i )(sq, sq„)] i (32)

where the quantities varied in the fit are explicitly dis-
played as variables and sq and sq„are scaling factors
multiplying M1 and M1 and assumed to be orbit and
state independent. The fit was made to the eighteen
decays for A = 205—212 shown in Fig. 1. The shape fac-
tor for the O7T1(- ) ~ 20 Pb(- ) decay [45] was also
included in the fit. It was found that the individual R1
scaling factors were poorly determined and highly depen-
dent on the theoretical uncertainty assumed in the fit. It
is more meaningful to assume an overall Rl scaling factor
via
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TABLE V. Results of a least-squares 6t to eighteen decay rates and one shape factor. The last column gives the percentage
of the decay rate due to rank zero.

Transition log f0t C(W)

205H (1 —
)

206 H (0+ )
Hg(0+ )

'"Tl(o )
207Tl( 1 +

)
Tl(5+)

208TI(4+)
208TI(5+)
209 TI( 1 +

)
209 pb( 9 +

)
'"Pb(o+)
'"Pb(o+)
211pb(2+)
211pb( 9 +

)
21lpb(9+)
'"Pb(o+)
212pb(0+ )
212pb(0+)

205 Tl( 1 +
)

206Tl(0-)
206Tl(1 —

)
206 pb(0+ )
207 pb( 1 —

)
"'Pb(5-)
208 pb(4 )
208 pb(5 —

)
209 pb( 1 —

)
209B ~ (9 —

)
210B (1

—
)

210B (0-)
211B (9 —

)
211B (9
211B (9 —

)
212B (1

—
)

212B (0-)
212B'(1—

)

(keV)

0
0

305
0
0

3198
3475
3708
2152

0
0

47
0

832
1109

0
239
415

expt.

5.274(12)
5.42(9)
5.23(9)
5.184(5)
5.128(7)
5.619(11)
5.700(9)
5.379(12)
5.189(17)
5.544(3)
7.827(66)
5.46S(43)
6.O15(7)
5.754(19)
5.627(37)
6.so9(9o)
5.190(20)
5.363(38)

5.307
5.173
5.181
5.270
5.119
5.705
5.591
5.327
5.068
5.664
7.838
5.567
6.096
5.828
5.597
7.130
5.234
5.632

69.9(9)
59.4(59)
73.6(72)
77.4(2)
82.7(2)
46.8(6)
42.9(4)
61.7(8)
77.1(12)
51.3(1)
3.7(3)

55.9(10)
29.8(15)
40.3(20)
46.6(23)
11.9(12)
77.O(11)
63.1(11)

67.3
78.6
77.9
70.3
83.6
42.6
48.5
65.8

44.7
3.7

49.9

37.0
48.2

8.3
73.2
46.3

3.7
—32.1
—5.8

9.1

9.1
—13.2
—6.7

—15.0
13.0
1.3

10.7

—3.4
31.0
5.0

26.6

45.6
100.0

0.0
100.0
38.1
40.8

0.0
76.0

99.0
0.0

100.0
95.0
99.8
99.7
0.0

100.0
0.0

1/2
is (expt. —theory)/expt. for C(W)

the inverse reaction 206pb(n, p)206TI. The distribution
for (MII ) will be, af course, nearly identical to that of
(Mes)2, i.e. , see Eq. (29).

As expected, the spectra of Fig. 5 are dominated by
a particle-hole "giant resonance. " Since the placement

100

80

CD
CL

40

20

20 40

Theory
100

FIG. 4. Comparison of experimental and theoretical val-
1/2

ues of C(W) for the eighteen decays of Table V. Experi-
mental uncertainties are shown only if they exceed the size of
the symbols.

of the Fermi surface is, as usual, arbitrary, it should be
made clear that "particle-hole" in this context means a
transition between a less than one-half-fuH shell and a
more than one-half-full shell. The terms particle-particle
and hole-hole have the same logic. As discussed in con-
nection with core-polarization corrections (Sec. III C and
Ref. 40) the large neutron excess and Pauli blocking lilnit
the possible particle-hole terms contributing to the ma-
trix elements to v0~)q(q +Ohio(2 for RO and v0igg]g
—+ +0hz&~2 and vlgg~~ —+ +Oh~~~~ for Rl in first order.
Secand-order transifians, i.e. , those connecting np-nh ad-
mixtures in the initial state to mp-mh admixtures in the
final state (transitions between the battom two diagrams
of Fig. 3) would not be discernable above the level of
perception of Fig. 5 and thus this figure shows all the
structure expected for this hypothetical experiment no
matter hour muck further tke model space mere enlarged
Recall that other first-order eftects have been incorpo-
rated via the q„(j,jf) which, in this case, represent the
effects of "particle-hole" admixtures in Pb (see Fig. 3)
and thus would be manifested by "giant resonances" in

Pb if the reverse experiment were performed.
Iet us consider RO decays. The contributions to the

206Hg(0+) ~ 206TI 01 decay shown in Table VI show
a pronounced coherency. All single-particle transitions
are in phase except the v0i~i/2 ~ x0h~~/2 particle-hole
transition. This behavior is due to the general nature
of the interact, ion; the particle-particle and hole-hole
interactions are attractive so that —as explained by
the schematic model [49] —the hole-hole plus particle-
paltlcle strength ls concentrated ill olle (ol.' R few) sf Rfe
and pushed to low energy in the same manner and to a
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TABLE VI. Predicted values for the rank-zero DR(j;j/) and matrix elements of Eq. (1) for the decay of Hg(0+) to the
erst 0 state of Tl.

&fr/2
&fs/2
2p3/2
211.j2

0&~x]2

1gs/2

Og7]2

183)g
28' g2

0&~i]2
Ohggg

Do(j*j/)
0.0021

—0.0184
0.0630

—0.8078
0.0613
0.0036

Totals:

Mo (j,j/, eff)
—5.6855
14.5822
—8.2489

7.5419
22.0930
—8.9272

~o (j j/)
-0.0119
—0.2683
—0.5199
—6.0926

1.3552
—0.0320
—5.5696

Mo (j;jr,eff)

165.8134
—217.1670

123.1460
-112.5725
—421.9811

143.8030

~o (j j/)
0.3465
3.9959
7.7619

90.9394
—25.8843

0.5163
77.6757

206Pb(& p}206Tl

3/2 P1/2

11/2 ~9/2

1/2 P1/2
11/2 lV2

C0
12

11/2 11/2

8/2 ~9/2

1/2 P1/2

40

11/2 11/2

20

10

0
—2

1l

0 2 6 8

2osTI Excitation Energy (MeV)

10 12

FIG. 5. Strength distributions (matrix-elements squared)
for AO and R1 matrix elements connecting excited states af

Tl ta the 0 graund state of Pb. The thearetical distri-
butions have been folded with a Gaussian for ease af viewing
and to simulate the experimental resolution which might per-
tain for the inverse charge-exchange reaction. The dominant
v —x transition is indicated for the major structures.

comparable degree as the familar 2& state in even-even
nuclei. Likewise, the particle-hole interaction is repulsive
so the particle-hole strength is concentrated at higher en-
ergies and the particle-hole contribution to lower states
will be destructive. With two exceptions, this simple be-
havior is observed for all the RO contributions of Table
V. These exceptions are connected to the concept that
the hole-hole plus particle-particle strength is isolated in
a very few states —usually only one. Let us call this
strength a "pygmy" resonance, It is expected that initial
states will have a "pygmy" resonance in the final nucleus
as well. The exception to the coherency occurs when the
initial and final states are not each others "pygmy" reso-
nances. Transitions between other states will, of course,
not display this strong coherence, and, in fact, can be
expected to display a great deal of destructive interfer-
ence. In some instances we observe a state for which the
destructive interference is maximal with all other terms
except the dominant one in phase with each other and
out of phase with the dominant term. We term this state
"anticoherent, ." Again, initial states can have a (p, n)
"anticoherent" state in the final nucleus just as well as
final states have (n, p) "anticoherent" states in the initial
nucleus.

For the decays of Table V there are two cases for which
the "pygmy" resonance does not include the lowest-lying
state. These are Tl(5+) ~ 2osPb(5i ) and Pb(2 )~ 2ii Bi(s ). In the first case, the (p, n) "pygmy" reso-
nance of the 2osTl(5+i) state is isolated in the Pb 52
state —in the RO decay to the 5y state all other single-
particle contributions are destructive to v2pg(2 m2sg(2
and so this is a classic "anti-coherent" state. Neverthe-
less, the v2pq/2 ~ m2sq~2 transition is dominant enough
so that the branch to the 5i state has a low log fot. In
the A = 211 case, the decay to the — state exhibits
the same "anti-coherent" behavior, with the vlgs~2 ~
2r0h9g2 transition dominant. The (p, n) "pygmy" reso-
nance resides in the 2 and — states which share the
strength found to reside in only the lamest state in most
cases considered here.

The Rl decays can be understood in the same way,
but the remarkable clarity of the eA'ects observed for RO
decays is diminished by (a) the relaxation of the KJ rule
from 0 to (I, and (b) the larger spread in the magni-
tude of Mi (j;jg,eff) as compared to Mo (j,jg,eff) and
Mi (j,jy,eff) seen by comparing Tables UI and UII. In
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TABLE VII. Predicted values for the rank-one D&(j;jy) and matrix elements of Eq. (1) for the decay of Hg(0+) to the
first 1 state of Tl.

Ohg/2

lf7g.
1 '(2
1fr(~
1f5)2
2P3/2
lfsg~
2P3/2
2@1/2

2P3/2
2J 1 /2

»i3/2

lgg/2

lgg/2
1gg/2

0jets/2

Dg7/2

Dg7/2

Ogy/2
1dg/2
1l5/2
ldll/2
183/2
1d3/2
1d3/2
2sy /2
2sy /2

ohio/2
Oh~z/

Ohgg/2

Ohg/2

Ohg/2
Ifr(2

Oi&3

Di(j'6)
—0.0012

0.0005
0.0004

-0.0004
—0.0062
—0.0049
—0.0585

0.0206
0.0583
0.1224

—0.7810
—0.0021

0.0354
0.0286

—0.0019
—0.0027

0.0004
0.0000

Totals:

Mi" (j;jg,eff)
—7.0938
—2.9945

2.2938
5.7366

—7.9171
—3.2010
—3.4826
—3.9660

2.6324
2.7530

—4.4675
19.4398

—15.7455
—4.4843
—5.3612
—3.3391

5.1674
9.1293

~i(j iy)
0.0089

—0.0014
0.0008

—0.0025
0.0490
0.0158
0.2038

—0.0818
0.1535
0.3370
3.4889

—0.0404
—0.5569
—0.1284

0.0099
0.009D
0.0022
0.0000
3.4673

M,~(j;jg,eK)

7.6417
—0.4032

2.4710
6.1797
1.2744
3.4487
4.6400

—1.2445
2.6867
3.2577
2.4062

15.4223
1.0307
4.2213
8.1391

—0.5600
6.7910

11.3392

~i (j jy)
—0.0096
—0.0002

Q.0009
—0.0027
—0.0079
—0.0171
—0.2715
—0.0257

0.1567
0.3987

—1.8792
—0.0321

G.0365
Q.1209

—0.0151
G.0015
0.0029
0.000D

—1.5427

Fig. 5 the effect of (a) is seen to spread the "giant"
and "pygmy" resonances although they are still concen-
trated at high and low energy respectively. A noticeable
effect of (b) is the diminished strength of the v0iii~2 -+

+Ohiigz (Mi ) strength due to the unusually small value
of Mi (j;jg,eff) for this transition. In spite of these di-
minishing eA'ects, the decay shown in Table VII exhibits
similar coherency to the RO decay of Table VI. For in-
stance, the Mz~ matrix element of Table VII can be de-
composed into a "hole-hole + particle-particle" contribu-
tion and a "particle-hole" contribution: 3.4673 = 4.1526
—0.6853 fm2. The collectivity manifest in the "pygmy"
resonance is such that the out-of-phase contribution to
the first term on the right is only 2%. The behavior of the
Mi (j;j~,eff) and Mi (j;j~,eff) matrix elements for the
other Rl contributions of Table V follows quite closely
to that described for the RO matrix elements, including
the abnormal behavior for Tl and Pb decay.

The major distinction between the RO and Rl decays
is in how the matrix elements combine to form the to-
tal B& . The simple relationship between the two RO
matrix elements [Eqs. (29) and (30)] is such that in P
decay in the lead region the two matrix elements will al-
ways add destructively. In contrast, the relative sign of
Mi (j;jy,eff) and Mi*(j;jg,eff) depends on j, and jg and,
as was noted in the discussion of Eq. (27), the strength
of Rl decays depends critically on this relative sign. This
phase is constructive for v2pg/2 ~ x2sg]2 transitions
with the result that the Rl contributions to the first nine
listed transitions of Table V have constructive contribu-
tions from M&~ and M~~ and are strong. The dominant
Rl contribution to all the remaining decays of Table V
except the last is vlg9/~ ~ m0hg/2. As shown in Table
VIII, the contributions of MP(j;jy, eff) and Mi (j;jy,eff)
are destructive for this transition and, in addition, the
magnitude of Mi (j;jy, eff) is very small. These condi-

tions result in relatively weak decay rates. Thus, the
decays listed in Table V for Pb and Pb are almost
pure RO decays and the decays of ~~ Pb to the 1
ground states of ~ ' Bi shown in Fig. 1 all have
large log fot values.

The one strong Rl decay not considered is gi2Pb(0+)~ 2i28i(12 ) listed last in Table V and detailed in Table
VIII. The largest contributions to the matrix elements
are v0iii/g ~ 7l0hg(2 and vlgg/2 ~ 7l 1f7/2 which add
destructively for M&~ and constructively for M& . The
result is that the transition is dominated by I& and is
relatively strong.

The three 4Pb —+ 4Bi decays shown in Fig. 1 show
strong similarities to the three Pb ~ Bi decays.
This similarity was discussed in terms of a generalized
seniority scheme in a recent study of 2i4Pb —+ ~i4Bi [50].

The three decays of Table V for which theory disagrees
with experiment by more than 15% merit some discus-
sion. One of these, the decay to the 1 ground state
of i Bi has a very large log fot value which results from
the strong cancellation between M& and M& discussed
above. Essentially insignificant (from any other point-of-
view) changes in the wave functions would be necessary in
order to reproduce experiment and there is the possibil-
ity of higher-order Coulomb effects (see Ref. 43) so that
this disagreement is not serious. It is likely that the dis-
agreement for the decay to the 12 state of Bi is due to
inadequacies in its wave function. The basis states which
are dominant in the 1& and 13 states, respectively, have
closely equal unperturbed energies and are predicted to
mix rather strongly with the consequence that the log fot
values for the branches to these two states are consid-
erably more sensitive to the interaction than the other
decays of Table V. The most serious disagreement is for
the Hg(0+) —+ Tl(0 ) branch. Actually the large
experimental uncertainty for this branch results from an
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uncertainty in how the decay is divided between the 0&

and 1& states of Tl. The prediction for the average
1/2

of the two C(W) is 19% too large. This is probably
due to a deficiency in the wave functions and that for
the ~ Hg 0+& wave function seems most likely at fault.
Very little experimental information is available for the
20sHg energy levels [5II, and the adjustment made by
Rydstrom, e/ al. [28] in the KHH pp interaction in order
to obtain the KHH, interaction is more arbitrary than
for the nn or pn parts of the interaction. ~e note that
in the KHH, interaction the 2 Pb ground state is 51%
v2p

/
while the ~osHg ground state is 71% +2s

/
. A de-

crease in the latter would result in improved agreement
with experiment.

We now turn to a discussion of further decays in
A = 205—211 nuclei and to neutrino capture by 205Tl.

In the remainder of this article all transitions are calcu-
lated with e „=2.0, and sqt ——sq = sq„= 1.0 unless
otherwise specified.

V. SQME ADDITIONAL DECADES

A H (P ) TI

In addition to the 205Hg(2& ) ~ 2 sT1(z ) decay,

Hg decays to two further
&

states, three 2 states3+

and the 619-keV
&

state in Tl. The decays to the 2

TABLE VIII. Predicted values for the rank-one Dn(j;j/) and matrix elements of Eq. (].) for the decay of '2~~pb(0+) to the
first two 1 states of Bi.

D~(j j/) M,"(j;j/, efF) ~i (j j/) MP (j;j/, efF) ~i (j'j/)

212g' J7t ]—

Oi11/2

1gg/2

1gg/2
1g7/2

1gg/2
1g7/2
2 dg/2

1g7/2
2dg/2
2d3/2
2dg/2
2d3/2
381/2
2 d3/2
381/2

Oi1S/2

Oh11/2
0h11/2

Ohg/2
Oh

Ohg/2
& f7/2
lf»,
& f7/2
&fs/2
1fg/g
&fs/~

2P3/2
2P3/2
2J 3/2
2/I /2
281/2

oi13/2

0.0092
—0.0003

0.0019
—0.4702

0.0179
0.0037
0.0025

—0.0009
0.0001

—0.0038
0.0012
0.0007
0.0003
0.0000
0.0000

—0.0006
0,0074

Totals:

—15.3354
—4.1577
—4.3571
—3.5705

3.1110
4.7712

—9.4245
—3.2398
—3.7021
—5.3554

3.6372
4.6373

—6.7930
—3.0435
—2.8672
—4.3932

9.0837

—0.1406
0.0015

—0.0084
1.6790
0.0557
0.0175

—0.0233
0.0030

—0.0003
0.0204
0.0043
0.0032

—0.0017
0.0001

-0.0001
0.0026
0.0674
1.6799

0.8581
3.8934
7.6299

—0.5139
2.7802
6.7240
0.8799
3.4943
5.6452

-1.1416
3.7133
5.5393
1.6496
3.5264
3.7316

—2.6384
11.5820

0.0079
—0.0014

0.0147
0.2417
0.0497
0.0247
0.0022

—0.0032
0.0005
0.0043
0.0043
0.0038
0.0004

—0.0001
0.0002
0.0016
0.0859
0.4373

212@ JK ]—

0&11/

1gg/2
Oi

1gg/2
1g7/2

1gg/2
lg7/2
2d5/2
Ig7/2
2d5/2
2d3/2
2 d5/2
2d3/2
381/2
2d3/2
381/2

Oi15/2

0h11/2
Oh»/2

Ohg/2

Ohg/2

Ohg/2

&f7/2
If7/~
1f7/2
&f~/2

1f5/2
'Ifs/2
2@3/2

273/2
~13/2
Pl /2

271/2
Oiq3/2

—0.0008
0.0100

—0.1594
0.0535

—0.0080
-0.1110
—0.0009
—0.00,26
—0.0066

0.0016
—0.0012
—0.0024
-0.0004
—O.0007
-0.0011

0.0010
—0.0198

Totals:

—15.3354
—4.1577
—4.3571
—3.5705

3.1110
4.7712

—9.4245
—3.2398
—3.7021
—5.3554

3.6372
4.6373

—6.7930
—3.0435
—2.8672
—4.3932

9.0837

0.0126
—0.0416

0.6944
—0.1910
—0.0247
—0.5297

0.0088
0.0086
0.0242

—0.0085
—0.0043
—0.0113

0.0025
0.0020
0.0031

—0.0043
—0.1796
—0.2388

0.8581
3.8934
7.6299

—0.5139
2.7802
6.7240
0.8799
3.4943
5.6452

-1.1416
3.7133
5.5393
1.6496
3.5264
3.7316

—2.6384
11.5820

—0.0007
0.0390

—1.2160
—0.0275
—0.0221
—0.7464
—0.0008
—0.0092
—0.0370
—0.0018
—0.0044
—0.0135
—0.0006
—0.0023
-0.0041
—0.0026
—0.2290
—2.2789
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states were considered with the PKH interaction
alone. The results are compared to experiment in Table
IX. For the results of Table V the KHH, interaction pro-
duced the main part of the Dtt(j;j y) for A = 205 with
input for the j =

2 and 2 orbits from the PKH inter-
action. A comparison of the results for the Tl ground
state given in Tables V and IX reveals quite good agree-
ment between the KHH, and PKH interactions.

The agreement with experiment for the decays of Ta-
ble IX is satisfactory. For both the 2 and 2 states
the experimental log jot values have a small-large-small
pattern with increasing E (or k). This is well produced

by the PIZH interaction. The decays to the 2 states
are all found to involve comparable contributions from
both RO and Rl. The decays to the 2 states are Rl
with, as expected, insignificant contributions from R2.
Both the RO and Rl components of the three — decays

~
2 zare predominantly ~2p&~2 ~ 7t.2~&~2 for ~high M, and

M& contribute constructively to the R1 rate. The indi-
vidual contributions of the M&(j,jy) to the RO and Rl
rates have the same general behavior as k increases: the
k = 1 state is the "pygmy" resonance and k = 3 is the
"anticoherent" state with some leakover into k = 2.

For all three 2 states v2p3~2 ~ +28~~2 is dominant.
For these transitions the M& and M& contributions are
out of phase so that these decays are inherently weaker
than those to the 2 states. The (n, p) "pygmy" reso-]+
nance for both Mi~ and M& is divided between the k = 1

and k = 3 states whose decays, therefore, have strong,
rather coherent contributions fram the individual single-
particle transitions. The M& and M& are nearly equal
so that the decay rates are determined by the latter [see
Eq. (31)]. The I; = 2 decay has small values of M&~ and
M& whose contributions nearly cancel.

The R2 decay to the z state is the first unique first—
forbidden decay we have considered. The experimental
and KHH (+PKH) values for the beta-moment, B&, are(2)

5.3 + 2.1 and 4.89 fm, respectively. The decay is found
to be largely v2p3~2 ~ m2s~g2 with significant v2p&g2

TAB(,E IX. P branching ratios (BR) and logfpt values

for the decay of Hg to lorn-lying states of Tl. The index
k orders the Tl levels of a given J in energy.

aids~2 and vl f7~2 ~ n'Ids~2 contributions. It is highly
coherent with only 2% out-of-phase contribution, i.e. , it
also has the characteristics of a "pygmy" resonance. Thus
it is relatively insensitive to variations in the wave func-
tions so that the good agreement with experiment is en-
couraging.

B. Pb(~ ) ~ Tl(~ ) EC decay

Eorm ali8m

%e are interested in the neutrino capture process

v, + (Z, A) ~ (Z+ 1, A) + e (34)

which is energetically possible for W ) 4 where [52]

A = [M(Z + 1, A) —M(Z, A)] + E,„. (35)

The extraction of the experimental value for the beta-
moment of this electron capture transition is described in
Appendix D. The result is Bt 1 = (5.0 + 0.6) x10 s fm2.

Comparing to the value B& —(5.3 + 2.1) fm2 for the

Hg(2 ) ~ Tl(2 ) decay just described, we see that
this EC decay is highly forbidden. In fact from the theo-
retical point of view the beta-moment is essentially zero.
The KHH, prediction for this decay was made with a
large-scale calculation with dimensions of 3092 and 2538
for the initial 2 and final 2 states, respectively. The
~ sPb

z ground state is found to be largely vl f~&22p&&z

(65%) and vl f&&&2p&&2 (15%) while the sT1 -+ ground

state is largely vr2s 2v2p &z (43%), vr2s v2p 2 (15%),
and +2s&&&vl f&&2 (16%). The DIr(j;jy) for the vlfs~2 ~
+2s~~2 transition is overwhelmingly dominant but is Al
forbidden and so only proceeds via the care-polarization
effect (see Sec. V E). The result is that the decay is com-
posed of incoherent contributions from small components
which nearly cancel. For instance, if a constant quench-
ing factor is used, rather than different q, (j;jy) for each
j; ~ jy transition, the sign of M2 is reversed. In view

of this, the PKH result of B& ——22 x 10 is considered
to be in excellent agreement with experiment.

C. Neutrino capture by Tl

1 +
21
y+
22
y+
23

0.0
1219.2
1434.5

Jg E (keV)

Experiment Theory (PKH)

BR(%%uo)

96.s(is)
0.007(4)
O.oos(s)

log fpt

7.02

6.03

log fpt BR('Fo)

5.274(i2) 85.4

7.05-o.24 0.0074
+0.3S

5.64-0.23 0.0019+0.40

» Eq. (35+, the term in brackets is the atomic mass
difference, E,„ is the average excitation energy of the fi-
nal atom, and, as usual, all energies are in natural units
unless otherwise specified. For E,x we use the approxi-
mation, due to Bahcall [52], of 23Z ~ eV when Z ) 10.
The energy of the continuum electron is

(36)
3+
21
3+
22
3 +
23

s+
21

203.7

1140.7
1340.3

619.4

s.2(is)
o.oo4(z)
0.006(s)

o.ois(7)

+0.23
6.53—o.ss

+0.30
7.64-o.~s

+0.30
6.45—o.zs

2.45

0.0078

0.0043

+0.30
8.27—o.is 0.0065

7.32

6.59

where we follow the previous custom of designating
the electron energy lV as W, when discussing neu-
trino capture. For small enough values of R" and lV,
where the long-wavelength approximation applies, i.e.,

pI, R && 1,p, R && 1, W, R &( 1, and the condition
(W + W, )R ( 1 is fulfilled, neutrino capture bears a sim-
ple and exact relation to the analogous P decay process.
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In the Behrens-Biihring formalism [19] the cross section
for neutrino capture in the long-wavelength limit is

o. = 2.629 x 10 Sp, W, I"(Z, W, )
' 2„cm,

6166K~, "
(37)

where S = (2' + 1)/(2J; + 1), I" (Z, W, ) is the Fermi
function and C(W, )„ is the P decay shape factor C(W, )
in fm but with p„~ —p~. In the Behrens-Biihring
treatment p„does not directly enter up through first or-
der, and since the first-order expansion should be ade-
quate, we can use the normal P shape factor C(W, ) for
C(W, )„.

Equation (37) is valid for all degrees of forbiddeness.
For allowed transitions (n = 0) calculated to first order,
C(W, ) is a constant and 6166/C(W, ) is the fot value of
the analogous P decay in sec. Since the capture cross
section is inversely proportional to it, the fot value pro-
vides a convenient and familiar measure of the depen-
dence of the cross section on the nuclear structure of the
initial and final states.

Recall that for first-forbidden transitions the P shape
factor is

C(W, ) = k(l+ aW, + b/W, + cW,').

2. Results at threshold

From a recent determination of the 2o5Pb —2osTl atomic
mass difference of 51.3(6) keV [53], E = 2.3 keV for the

state of 2 Pb, and Eq. (35) we have 4 = 53.7(6)
keV for the 2 state; while, in general, A(J& ) = 51.4 +
E (J& ) keV. 14atrix elements were calculated for each of
the first ten Pb 2 and 2 states. These were then
used to calculate the shape factor and effective log fot
value at threshold [W, = 1, Wo(J& ) = 1+ 4(J&)]. The
results are given in Table X.

One important feature of the v, + Tl reaction is the
low threshold which renders it, potentially sensitive to so-
lar pp neutrinos [54]. Thus the important state in Table

X is the 2 state which also has the largest cross section
at threshold. How reliable is the shape factor calculation
for this state? To help answer this question, the contribu-
tions of the single-particle transitions to the total matrix
elements are shown in Tables XI and XII. It is clear
that that this transition is in the "anticoherent" class

In conventional P decay, k, ka, kb, kc are all functions
of the end-point energy Wo. In the present application
they are to be used with Wo ——lV, +R"„=2R', +4—1 so
they are no longer independent of W, . As in P decay, the
shape factor contains all the information on the under-
lying nuclear structure. For forbidden neutrino capture
6166AC, /C(W, ) can be thought of as an "effective" fot
value but it is energy dependent and so this is not a rig-
orous analogy and, as we will see, the energy dependence
must be taken into account in any quantitative calcula-
tion of neutrino-capture cross sections.

discussed in the last section. The (n, p) "pygmy" reso-

nance for the ~o5Pb(z ) state is found to be the i state
of o Tl which experimentally is at 1434 keV. The hypo-
thetical log fotiv. i value for Tl(2 ) ~ 2 Pb(2 ) is
predicted to be 5.'210. From the large log fotiv i values

for the capture into 2 states of Pb shown in Table X,
it is clear that the 2 state of Tl does not have a pro-

nounced low-lying 2 (p, n) "pygmy" resonance in Pb.
This lack is made plausible from the fact thai, the domi-

nant configuration of Tl( — ) —(+2si~2) (v2pi~q)—cannot connect to
&

states of Pb by a particle-
particle or hole-hole transition.

Closely related to this latter point, it has been asserted
[55, 56, 28] that this transition will be retarded because
the zeroth-order wave functions for the initial and final
states are

Tl) = (n.2sii2) '(v2pi( )

I Pb) = (v2pit2) '(v2ps(2, If5)2)
We find that this by itself is not a pertinent argument;
for instance, the 2o5Hg(z ) —+ 205T1(z ) transition of
Table V has the low log fot value of 5.274 and yet for
this transition we find DIi(2 2) = 0.46 for both RO and

Rl as opposed to D~(2i 2) = 0.60 for the 205TI(z ) ~
2o5Pb(z ) transition. Rather, the important difference

between the two decays is that 2 5Hg(z ) ~ 2O5T1(2 )
displays the classic coherency of a pygmy resonance while
2O Tl(z ) ~ Pb(2 ), shown in Tables XI and XII,
is a classic anticoherent transition. To illustrate, if the
magnitudes of all the DIr(j;jy) for this latter .ransition
were left unchanged but the signs were changed so as to
produce a pygmy resonance, then the calculation would
give log fotiv. —i ——5.116.

Because of the anticoherency of this transition, it is
considerably more sensitive to the wave functions than
the faster decays of Table V. To illustrate this sensitivity,
the same large-basis calculation was repeated with the
SDI interaction. The main difIerence between the SDI
and KHH, (+ PI&H) results was in the D~(j;jy) which
was 0.46 for the SDI interaction for bot, h RO and RI as
opposed to the magnitude of 0.60 of Tables XI and XII.
The same complete anticoherence was found as shown in
Tables XI and XII; the smaller value of DR(j,jy) results
in increased cancellation and the final result of the SDI

i/2
calculation is C(W)iv, ——219 fm, log fot~. i ——6.62. —
In conclusion, the calculation of the decay parameters for

Tl(2 ) —+ 2 Pb(2 ) is considerably less reliable than
for the fast decays of Table V.

8. The effect of increasing neutrino energy

If the incident neutrino energy rises significantly above
threshold then there is a further complexity and source of
uncertainty in the calculation of the total capture cross
section. This uncertainty is connected to the energy de-
pendence of the C(W, ) value. At threshold, i.e. , W, —1
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TABLE X. Predictions for matrix elements, shape factors and effective log fot values for neutrino
capture by Tl leading to the lowest ten — and — states of Pb. Both C(W, ) and log fat were
evaluated at threshold, i.e. , for W, = l.

1
2

10

—1.863
1.426

—0.308
0.197

—0.562
0.480

—0.299
0.090

—0.524
0.380

—0.131
0.018

—0.151
0.041

—0.298
0.304

—0.029
0.056

—0.129
0.064

Mo /M,*

50.50
—0.495

9.47
—0.344
16.28
—0.226

9.04
—0.047
15.86
—0.131

3.98
0.018
4.56
0.054
9.03

—0.193
0.89

—0.052
3.90

—Q.008

C(W, )

1504.8

156.8

187.1

27.0

127.0

6.0

90.0

5.0

4.0

log jot

5.786

6.768

6.69

7.54

6.86

8.35

8.20

7.01

8.46

3
2 1

2
3

5
6
7
8
9
10

1.424
0.408
0.335
0.159
0.023
0.192
0.089
0.169
0.110
0.006

1.754
—0.055

0.250
0.282
0.046

—0.083
0.180
0.155
0.097
0.057

480.2
35.1
3.2

27.0
1.0

18.0
13.0
5.0
1.0
2.0

6.282
7.419
8.46
7.53
9.10
7.72
7.84
8.30
9.08
8.66

For the evaluation of C(W, ) as a function of incident neutrino energy the parameters r', r'„, and
r' of Sec III D 1 are also needed. These are approximately state independent. The three values for
the ~ state are all equal to 0.81.

= 0.0, the shape factor for the 2 state is calculated to
be [57]

C(W, ) = 1438.6+ 54.8W, + 10.2/W, + 1.24W,
= 1505 fm (W, = 1). (39)

which, using Eq. (24), gives a logfot~. —
& value of 5.786.

At a neutrino energy of 9+ A = 4.7 MeV such that W,
= 10, the shape factor becomes

C(W, ) = 787.8+ 41.85W, + 3.1/W, + 1.05W,'
= 1312 fm (W, = 10). (40)

The explicit dependence on W, increases markedly with
energy but when the energy dependence (via Wo) of k,
ka, kb, kc are taken into account the shape factor is
changed very little. It has decreased from its threshold
value by 2.5% at W, = 2 and 7.5% at W, = 10 and is

TABLE XI. Predicted values for the rank-zero Dn(j;jy) and matrix elements of Eq. (I) for the
neutrino capture by Tl(2+) leading to the lowest z state of Pb.

&friz
&fa)2
~jP3/2

2+1/2
Os

1gg /2

Qg7/2
1d5/2
1J3/g
28' /2

Ohg g/2

Ohg/2

Do(j'jf)
0.0042

—0.0622
0.0614
0.6031

—Q.0235
0.0004

Totals:

Mo (j,jg, eff)

4.0235
—10.0806

5.7910
—5.3560

—15.5370
6.4366

~o (j'ji)
0.0168
0.6272
0.3557

—3.2303
0.3649
0.0024

—1.8633

Mo (j'jx eff)
—117.2423

158.0203
—87.5424

79.5947
298.8035

—101.3038

~o(j i y)
—0.4889
—9.8314
—5.3774
48.0051
—7.0175
—0.0374
25.2526
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TABLE XII. Predicted values for the rank-one Dn(j;j y) and matrix elements of Eq. (1) for
the neutrino capture by Tl(- ) leading to the lowest 2 state of Pb.

Ohgtg
1f, (2
&f5(2
I fp(2
&fs(~
2+3/2
& fs(2
2p3/2
2p1 /2

2p3/2
2pl/2

Oi&3/2

19g/2
Gird/2

19g/2
19g/2

0ji5/2

Oa'7/2

Og7/
1d, /,
1dg/g

1ds/2
1d3/2

ld3/2
1d3/2
28' /2

28' /2

Oh~i/2

Oh

Ohgt~

Ohg/2
1fy(2

0&~3/2

Di(~ 6)
0.0024

—0.0015
0.0035
0.0035
0.0210
0.0139
0.0973

—0.0114
0.0000

—0.0072
—0.6025

0.0067
0.0145
0.0140
0.0004
0.0003
0.0002
0.0000

TGt Rls:

Miu(j;jt, eff)

—5.0111
-2.1191

1.6399
4.0426

—5.5819
—2.2593
—2.4555
—2.7993

1.8587
1.9417

—3.1515
13.7106

-11.1041
—3.1649
—3.7811
—2.3564

3.6447
6.4432

~i (j iy)
—0.0122

0.0033
0.0057
0.0143

—0.1173
—0.0314
—0.2389

0.0319
0.0001

—0.0140
1.8988
0.0918

—0.1606
—0.0443
—0.0016
—0.0008

0.0009
0.0000
1.4258

M, (j;jt,etf)

5.3981
—0.2853

1.7666
4.3549
0.8985
2.4341
3.2715

—0.8784
1.8970
2.2977
1.6975

10.8771
0.7269
2.9792
5.7401

—0.3952
4.7898
8.0029

A4i (j'jf)
0.0131
0.0004
0.0061
0.0154
0.0189
0.0338
0.3182
0.0100
0.0001

—0.0166
—1.0227

0.0728
0.0105
0.0417
0.0024

—0.0001
0.0012
0.0000

—0.4948

slowly varying from threshold to the latter point. That
this slow variation of C(W, ) with neutrino energy is ac-
cidental is shown by a consideration of the shape factor
for the 2 state of Pb at E = 263 keV for which 4
= 825.3 keV. For it we find

C(W, ) = 489.2 —48.7W, + 37.2jW, + 2.49W,
= 480 fm (W, = I) (41)

with an log fot~ i value = 6.282. At W = 4.91 MeV
(W, = 10) the shape factor becomes

C(W, ) = 3227.3 —153.5W, + 87.4jW, + 2.49W,
= 1980 fm (W, = 10) (42)

leading to an effective log fot of 5.666. Thus at W = 4.91
MeV the cross section for capture into the 2 state is
calculated to be 4 times larger than would be predicted
from C(W, = 1) assuming an energy-independent shape
factor.

2OBHg(P —
)208TI

In addition to the 0i and Ii states of ~osTI, ~osHg

has a branch of (3 + 2)'%%uo into the 12 state at 649 keV
in 2osTI [51]. The KHH, (+KPH) calculation for this
branch gives 1.9% from log fot = 5.87 in agreement with
experiment. No other P branches are known. We pre-
dict log fot = 5.88 for the third 1 level. If it is at 940
keV (its lowest likely placement) its predicted branch is
0.27%. These decays illustrate that the (n, p) pygmy res-
onances for Mz and Mz are more diA'use than encoun-
tered for RO decays. For instance, that for M& is spread
over the k = 2—4 1 levels of Tl. The 0& state is
not known experimentally. With the KHH, interaction
it is predicted at E~ = 1361 keV and is therefore not
accessible for P= decay.

Branches of 0.055(5)% and 0.09(2)% to the 2+i and 02+

states of Pb are known in Tl P decay as well as
the ground-state decay already considered. Experimen-
tally the branch to the 1165-keV 0& state has log fot =
6.08(10). The KHH, (+ PKH) interaction result is log fot
= 5.88 in rather good agreement with experiment. The

Pb 0~ state is found to have a large v2p~]2 compo-

nent —40% as opposed to 52% in the 0+i state —and
this is responsible for the fact that the decay branch is
relatively strong even through the level is a classic anti-
coherent state to the Tl ground state.

From data listed in Ref. [51], an experimental beta
moment of B& ——7.4+

3 fm is derived for the decay
branch to the 803-keV 2i+ state (the lower limit is due
to the possibility of p feeding from the 0&+ state). The
KHH, (+ PKH) prediction of B& —3.30 fm is detailed
in Table XIII. Two possible reasons for the rather poor
agreement are immediately obvious. The first is that the

Pb 2y wave function is somewhat in error. To illus-
trate this possibility, the KHH (+ PKH) prediction is also
detailed in Table XIII. For both interactions the first 2+
state of 2osPb is mainly vl fz&22p~&z and the second 2+

state is closely orthogo nal with a. dominant v2p~~&2p&f&

component. The P decay proceeds mainly through the
latter configuration since the Tl Q ground state is al-
most a pure v2p&&2ir2s&&& state and a vl fs~2 ~ ir2si(2
transition is 4/ forbidden. However, the mixing of the
vl fz&22p&&z and v2pz&22p&&z configurations is consider-
ably greater for the KHH interaction than for KHH, so
that, as seen in Table XIII, the unique first-forbidden
matrix element is increased. Since BI ) = (M2~)2 j4, the
beta moment for the KHH interaction is 5.70 fm, in
agreement with experiment.
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TABLE XIII. The Tl(0 ) ~ Pb(2i+) unique first-forbidden decay calculated with the KHH, and KHH interactions.

Da(j'jX)

KHH, KHH

v. (i i y) M,'(j;jq,ea')

KHH

~2 (j'jy)

KHH

Ohg/2

1f7g~
1f7)~
1fvy~
lfsI~
1f5(2
1f5(2
1fsI2
2@3/2

283/2
2J 3/2
211/2
2J 1/2
Oi13

0&13/2

lgg/2
lgg/2
1gg/2
0j1s/2

Oev/2

Og7/2

ld5/2
1d3/2
Ou7/2
1d5/2
1d3/2
2$1/2
ldll/2
1d3/2
2S1/2
1d5/2
1d3/2

0h11/2
Ohg/2

0h11/2
Ohg/2
0h11/2
Oh

1fgg2
Oi13/2

+0.0002
+0.0017
+0.0047
+0.0211
+0.0187
—0.0212
—0.0181
—0.5761
+0.0094
+0.0155
+0.2312
—0.0542
+0.0423
—0.0016
—0.0205
+0.0306
+0.0009
+0.0026
+0.0008
—0.0002
+0.0000

+0.0003
+0.0019
+0.0051
+0.0233
+0.0013
—0.0242
+0.0214
—0.5026
+O.O1O2

+0.0262
+0.3273
—0.0460
+0.0633
—0.0016
—0.0205
+0.0306
+0.0009
+0.0026
+0.0008
—0.0002
+0.0000

Totals:

0.66
0.66
0.66
0.66
0.66

0.5952
0.5967

0.7316
0.7118
0.6233
0.6589
0.7426
0.66

0.3973
0.7238
0.66

0.8420
0.66
0.66
0.66

—17.025
+ 5.056
+23.077
+30.199
—5.206
—12.782
—9.458
—o.465b
+14.306
+ 5.879
+20.842
—15.811
—3.052
+32.058
+50.809
—21.093
—20.307
+11.442
+ 5.673
+25.422
+34.281

—0.0024
+ 0.0055
+ 0.0714
+ 0.4199
—0.0042
+ 0.1610
—0.1023
+ 0.2680
+ 0.0964
+ 0.0651
+ 3.0031
+ 0.6471
—0,0956
—0.0341
—0.4144
—0.4676
—0.0121
+ 0.0253
+ 0.0028
—0.0039
—0.0007
+ 3.6308

—0.0031
—0.0232
+ 0.0769
+ 0.4648
—0.0045
+ 0.1843
—0.1209
+ 0.2338
+ 0.1062
+ 0.1097
+ 4.2513
+ 0.5497
—0.1434
—0.0341
—0.4144
—0.4676
—0.0121
+ 0.0253
+ 0.0028
—0.0039
—0.0007
+ 4.7767

The average value of the ten listed computed values.
From core polarization alone.

[1'I i, 0] T (43)

with I = 1 and 2, respectively. Higher-order corrections
to the Gamow-Teller operator are incorporated via the
operator [58]

(44)

with I = 1. A similar operator with I = 2 will express
the same corrections to unique first-forbidden decays and
this operator can connect the vl fs/g alld x2siI2 orbits.
A theoretical estimate of the matrix element of this op-
erator would be of interest.

F 20'I
TI (P

—
)
20' Pb

In addition to the decay rate for Tl( 2 ) —+

o Pb(2 ) the shape factor for this decay and the de-

The second possible contribution to the small value
for the IZHH, beta moment is our neglect of the possi-
ble role of an induced operator which breaks the At =
2 selection rule for R2 single-particle transitions. The
role of such an operator could be important here because
the largest D~(j;jI ) is that for vl f5~~ ~ +2si~2. In

contrast, this D~(j,jI) is very small for the ~o5Hg(2 )
Tl(2 ) R2 transition discussed in Sec. VA. The

Gamow-Teller and unique first-forbidden operators are
related since they can be expressed as

cay rate for the z level of ~o7Pb are known [59, 60].
The decay rate and the shape factor of the ground-state
decay were included in the least-squares fit used to de-
termine the effective rank-zero and rank-one operators
(Sec. III). The prediction far the ground-state decay rate
agrees with experiment to 4.0%. The shape factor is pre-
dicted to be
C(W) = It(01)[l+ 0.029W —0.0046/W+ 0.0006W ].

(45)
Experimentally, a fit to the first two terms yielded a W
term of 0.024 + 0.008 with no improvement in the fit
with a 1/W term included [59]. Over the region of W for
which the fit was made the predicted 1/W and W terms
are everywhere less than 8'%%up of the W term. Thus, the
predicted and experimental shape factors agree within
the experimental uncertainty.

The predicted log fog value far decay to the
&

level
is 6.20 as compared to the experimental value of 6.24(7).
This decay is dominated by v2p3/~ ~ ~2sq/2 for which
the contributions of M& are out of phase with those of
Mz . Hence the decay is weak even though this state is
the pygmy resonance for both M& and Mz . The predic-
tions for Tl decay are seen to give an excellent account
of experiment.

21 1 Pb(P —
) 211 B'

There is a wealth of information on first-forbidden de-
cays fram the P decay af Pb. The experimental
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information [15] is shown on the left in Fig. 6. The
lowest-lying even-parity level to which Gamow-Teller de-
cay could occur is predicted with the KHP, interaction
to be the 2 level at 1821 keV while Q(P ) = 1379 keV.

Thus only RO and R1 decays from the
&

~ 1Pb ground9+ 211

state to &, &, and 2 of Bi are expected to be ob-
served with log fat values as small as those shown on the
left in Fig. 6. The KHP, energy spectrum [61] and log fat
values for the k = 1—5 z&, z&, and 2 &

levels are shown
on the right in Fig. 6. Two sets of theoretical logfot
values are listed. They difI'er in the efI'ective Rl oper-
ators. That labeled (a) is calculated with sq = sq„=
1.00 while (b) uses sq = 1.24, sq„= 0.58. Both are cal-
culated with em« ——2.0. The two R1 results are given so
that the sensitivity of the log fat to the possible variation
in the sq and sq„allowed by the least-squares fitting to
Eq. (32) can be explicitly displayed. Let us consider the
individual decays. In this discussion we assume the cor-
respondence between theoretical and experimental levels
shown in Fig. 6.

As already discussed the It; = 1, 2, 3
&

levels are dom-
inated by the RO vlg9~2 +069~2 transition and there is
excellent agreement with experiment. All other decays,
including those to the I- = 4,5 2 levels are dominantly
R1. The R2 contributions are negligible. All fifteen of

the calculated Rl decays have destructive contributions
from M1 and M1, i.e. , these two matrix elements have
the same sign [see Eq. (31)]. Thus, in general, the Rl
rates are small. From a consideration of the theoretical
log fat it is expected that the decays to the ih = 1—5 9

levels, k = 1—2
&

levels, and k = 3—4
&

levels should

be observable, The results for the k = 1—2 2 and It,
' = 3

levels are in excellent agreement with our preferred

(a) calculation, and the non-observation of the k = 3—
and k = 1—2 2 decays is consistent with the predic-
tions. Thus excellent overall agreement is achieved for
the k = 1—3 decays of all three J values. For the re-
maining four experimental branches there is not enough
information to make a meaningful association with
theory at this time. Note, for instance, that there are two
possibilities for the strong decay to the 1271-keV level:
this level could be either 2 or 2 . The Rl rates to the

and 2 levels are predicted to be relatively strong
because M& is unusually large due to coherence of the
individual contributions. The Rl rates for the k = 3—5

levels are unusually weak due to very poor overlap
with the 1 Pb ground state.

VI. DISCUSSION

log tot

( expt. )

9, 111271
1234
1197

5.845 ( 93 )
7.61 {12 3

6.758 (82)
5.627 (37)
7.902 (92)
6.929 ( 23 )

1109
«as &

1080
1014 7, 9, 11
9517.88 (26)

5.754 (19)
&7.7 766

9
9, 11

log fat
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FIG. 6. Comparison to experiment of the KHP, predic-
tions for the energy spectrum of Bi and the Pb(2 ) —+

Bi log fat values. The two predictions for logfot use (a) sq
= sq = 1, and (b) sq = 1.24, sq = 0.58.

A. VVhy the beta moments are so large

The present results provide a somewhat diA'erent un-
derstanding of the plethora of fast first-forbidden P de-
cays in the lead region (vis a vis lighter -nu-clei) than was
the previous conventional wisdom. The explanations for
RO and R1 decays differ in some aspects but have the
common feature of the "coherency" of the single-particle
matrix elements for those transitions which are fast. This
"coherency" is quite remarkable —especially for RO de-
cays and leads to the descriptive term pygmy resonance.
This coherency is an important contribution to the speed
of these decays. It results in large matrix elements even
in those cases where the transitions are not very single-

p ar ticle-like.
For R1 decays a well-known important contribution is

the increased value of ( (= nZ/2r„) which is 3.2 at
A = 16 and 16.3 at A = 208. Since E~ —given in Eq.
(6) —is essentially the Coulomb displacement energy,

Eqs. (27)—(28) display the strong dependence of B, on
Z which potentially can enhance it considerably above its
value at, say, A = 16 when M1 and M1 have opposite
phases. This dependence on phase is an interesting as-
pect of Rl decays not present for RO decays (since the
relative phase of the RO matrix elements is fixed as de-
structive by fundamental considerations). It causes the
dramatic difference in the log fot values of the decays to
the 11 states of 2 Bi on the one hand and the 11
state of Tl and the 1 states of ' ' Bi on the
other.

In contrast, we find that the RO decays are not en-
hanced by increasing Z. The ratio Mz+/Mo is roughly
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equal to h~ and as such decreases with increasing A. At
the same time ag is increasing with A. The result is that
without mesonic enhancement, i.e. , e „=1 in Eqs. (27)
and (30), the two contributions to Bg~ l would nearly can-

cel and Bo would be very small indeed. Thus, in our
formulation of the problem, there are two reasons for the
very large values of the RO beta moment: the large values
of Mo and Mo+ —due to "coherency" —and the large
value of e

of the Mg ' discussed above [10]. Rather, the best ap-
proach appears to be one similar to that presented here;
namely, an omnibus comparison of all relevant AJ = 0
decays. Such an approach [12, ll] leads to e „1.64 in
the 0 region.

C. Mesonic enhancement of p5

B. Comparison of A. 16 and 208 AJ =0 decays

First-forbidden decays in the isO region have very
different characteristics from those in the Pb region.
First, for 0, N = Z and the orbits just below the
Fermi surface are Opi~& and Ops~2 (Q = 1) while those
just above the Fermi surface are Od5/2, Od3/2, and 1s&/2

(Q = 2). The two possible Ej = 0 transitions for, say,
N(0 ) ~ O(0+) are vlsi~2 ~ x0pi?2 and v0ds~2 ~

x0p3/2 These are bath particle-hale transitions so that
they add destructively. This leads to the first difference:
unlike AJ = 0 transitions in the Pb region, there is
no coherency to enhance and stabilize the decay.

The second difference has to do with radial wave func-
tions. The dominant single-particle transition for the
faster 43 = 0 transitions in the isO region is vlsi~2~ x0pi?2 [12, ll]. The radial integrals for this transition
involve a nodeless orbit and an orbit with one node and
thus result from the difference between two large num-
bers just as for vlgg~2 ~ TOhg/2. Also S(n) is quite
small and the neutron and proton separation energies
differ considerably for all the fast decays. The result of
these three factors is that the radial integrals are more
sensitive to the parameters of the radial wave functions
than the v2p~/2 ~ m2s~/2 transition which dominates the
A = 205-208 decays [39, 12, 13].

The third difference relates ta the effect of np-nh ad-
mixtures of which the "final-state" correlations of Fig. 3
are a subset. The fact that N = Z and that j&

——jh
orbitals of opposite parity are available near the Fermi
surface means that np-nh admixtures play a more direct
and larger role in determining Mo and Mo at 0 than
at 2 Pb where j~ —

j& orbitals of opposite parity are
not available (see Fig. 2). A serious problem in eval-
uating the effect of np-nh admixtures at A 16 is the
slaw convergence of the results in an np-nh expansion
[13,62]. The convergence is faster at 2 Pb as can be
surmised from the large energy denominators in a per-
turbative treatment. Another way to view the difference
is that in the lead region the dominant np-nh admixtures
do not contribute directly to the transitions while near' 0 they do.

A great deal of effort has gone into determining the
effects of np-nh admixtures [3, ll, 10] and inexact knowl-
edge of the radial wave functions [12, 13]. About 10 years
ago it was thought that simultaneous consideration of
muon capture by isO and isN(0 ) P decay would give
the best value of r „.It is naw clear that this consider-
ation does not resolve the problems in the determination

We have made the assumption that e is state in-
dependent. Our results would suggest that this assump-
tion is good to within an uncertainty roughly equal to
that we term the theoretical uncertainty, 6%. [Note
that an uncertainty in em« is equivalent to twice that

X/2
uncertainty in C(W) .] The justification for this as-
sumption comes from the studies [3, 4, 7, 8] showing that
the mec enhancement is expected to be —and actually is—well approximated by a matrix element proportional
to that of a. p/M which is the nonrelativistic form of y5.

The only published calculation of the two-body mec
contribution for the lead region appears to be that of
Kirchbach and Reinhardt [5] who found an enhancement
of 40% for the v2pi~g ~ 7r2si~2 transition in A = 206.
This result is in serious disagreement with the present
findings. Let us discuss the ingredients of this disagree-
ment.

Possible errors in the present calculation. We are look-
ing for a 40—50% error(s) in our calculations which is
systematic enough to be parametrized successfully and
leaves the Rl decays essentially unaffected. One thinks of
np-nh effects such as can be treated by RPA approaches
as systematic enough but this is quite unlikely to be the
problem for several reasons: (1) Core-polarization con-
t, ributions are included in the Kuo-Herling effective in-
teraction (we are concerned here with additional effects
specific to the operators under consideration), (2) first-
order effects on the RO and Rl decay are included, (3) the
R1 predictions are in overall agreement with experiment
and higher-order contributions would be expected to have
similar effects on the RO and R1 decays and to quench the
decays rather than the opposite. A more likely possibil-
ity has to do with the very large effect of the tensor part
of the nucleon-nucleon G matrix on the core-polarization
corrections qs and qz [40]. Because Mo and Mg are
conjugate operators, we have 1 —qz —(1 —qg) so that
any change in these quenching factors has a magnified
effect in the RO beta moment. The large contribution
of the tensor part of the interaction is illustrated by the
HYB result for the v2p~/~ ~ x2s~/2 single-particle tran-
sition; for it, q~ ——1 —0.381+ 0.305, where the last two
terms on the right are the central and tensor contribu-
tions, respectively [40]. A 60% reduction in the tensor
component, coupled with ~~„= 1.4, would give agree-
ment with experiment.

Relativistic effects. Kirchbach and Reinhardt [5] noted
that the enhancement of 40% was not enough to bring
the RO log fgt values for 2gsHg ~ Tl ~ Pb into
agreement with experiment. They proposed the pres-
ence of relativistic (or other'?) effects which could be
parametrized by an effective nucleon mass, M* via
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non —@el P
(46)

The present results would give M* 0.7M assuming this
parametrization to be equally applicable to the one-body
and two-body contributions.

VII. CONCLUSION

In conclusion, the result c~« ——2.01 + 0.05 is in very
poor agreement with the only calculation of the mec ef-
fect in the lead region. This calculation would give E~ec

1.4 if the enhancement were due to mec eA'ects alone.
Either the calculation of Kirchbach and Reinhardt [5] is a
severe underestimation of the mec contribution or some
other eAect is also contributing to the decay. There is
no obvious explanation for this discrepancy and so one
is lead to consider unobvious explanations. One possi-
bility is that the tensor contribution to the eAective nu-
clear interaction is seriously overestimated. Kirchbach
and Reinhardt suggest the possibility of relativistic ef-
fects. Certainly, more theoretical work needs to be done
to address these questions.
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APPENDIX A: SPECTROSCOPIC AMPLITUDES
AND EFFECTIVE SEPARATION ENERC IES

tal spectroscopic factors $& are from the (e, e'p) analy-
sis of Quint ef al. [64] for the z states and the (t, n)
analysis of Flynn et al. [65] otherwise. Poppelier and
Glaudemans [21] presented E and $& values for the first
ten — states of Tl in their original report of results
from the SDI. They did not consider J ) 2 states. The
good agreement of the present E and gz values with
those of Poppelier and Glaudemans shows that —for
A = 205 and 206 at least —the x0i]3/Q and ~0j$5/Q oi-
bits play no significant role in the low-lying states. The
comparison to experiment of Fig. 7 indicates satisfactory
agreement with experiment. Poppelier and Glaudemans
commented on the fact that the total experimental lz

—0
pickup strength is less than predicted and is spread over
three states as opposed to being almost entirely confined
to the first two in the calculation. From Fig. 7 it is seen
that the same situation appears for the

2 states, al-
though, in this case, appreciable strength appears in the
fourth s2 state predicted at 1524 keV (see Table XIV).
For z, the bulk of the pickup strength is predicted to
lie at 1550 keV. Experimentally, Flynn et al. observed
possible 2 strength of the same magnitude at 1.8—2.1
MeV' Final y t;he l& 5 pickup strength to

2 states is
predicted to reside mostly in the first, second, third, and
sixth states with E:$& values of 1743:7.30, 2510:2.46,
2580:0.55, 2978:0.55. Again, Flynn et al. observed pos-
sible l&

—5 strength of comparable magnitude in the
1.5—2.6 MeV region.

The dimensions D(J) of the J matrices for the three
cases of Table XIV are D(2 ) = 2072, D(z ) = 3983,
and D(& ) = 5606. In spite of these rather large di-
mensions it is seen that the first 20 states or less contain
the bulk of the spectroscopic strength. In evaluating the
(F~~z) for use with Eq. (14) the remaining contribution
to the D~(j) not contained in the first 20 states, i.e. ,

zi L, &J& D~(j, i), was assumed to lie in the 20th state.
The evaluation of the Mo ' via Eq. (14) is summarized
in Table III for the three LJ = 0 decays considered in
this appendix.

In this appendix some details are given of the calcula-
tion of spectroscopic factors and DR(j) for use in eval-
uating the Mg and Mo via Eqs. (8)—(15). Since there
is experimental data for Pb ~ 2 5Tl+p—but not, for
the other five A —+ A —1 cases considered —we will
illustrate our approach in more detail for the 2osT1(0 )~ ~06Pb(0+) decay. A secondary motive for presenting
these results is the present interest in Pb ~ o5Tl+p
spectroscopic factors [63]. The calculations were per-
formed with the SDI interaction working in a truncated
PKH model space. The truncation consisted of omitting
the ~niqu~ parity ~0~&3/q and v0j~5/2 orbits from the
PKH model space of Fig. 2.

We first compare the calculations to experiment. SDI
spectrum and spectroscopic factors of low-lying Tl

, and ~ states are compared to experiment inj+ 3+ 5+

Fig. 7 and the relevant energies, A(j, i,) and $(j, i) val-
ues, and D~ are collected in Table XIV. The experimen-

APPENDIX B: CONTRIBUTION OF
HIGHER-ORDER TERMS TO THE RANK-ZERO

BETA DECAY RATE

In this discussion of higher-order terms we confine our-
selves to the rank-zero contribution to the P-decay rate.
For first-forbidden decays, the shape factor t (W) is an
incoherent sum of rank 0, 1, and 2 shape factors, i.e. ,

C(I4) = ) C~"&(W) = ) S'pre)W~.

In normal order, we use the expressions for the IC(A'R)
given by Warburton ef al. [13]. In the Behrens-Biihring
treatment the rank-zero shape factor is given by (Eq.
(7.56) of Ref. [19])
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C'( l(W') = Mo(1, 1)+me(1, 1)— Mp(1, 1)mp(1, 1),

where R specifies the rank of the operators and W is
the electron energy. In Eq. (B2), the Mo(1, 1) and
mo(l, 1) are defined as simultaneous expansions in pow-
ers of the three parameters Q.Z, m, r„, and Wr„ times
form factor coeKcients F@1, and Flail, (l, m, n, p). The
form factor coeKcients I'"~I, are simply related to nu-
clear matrix elements. Thus, the Mo and e „Mo+-
of paramount importance in rank-zero decay —are de-

fined by Mo = r Fo&s and e Mo = oooo
F/ 1,(l, m, n, p) are obtained from the Fgl, by includ-

ing in the radial integral an extra factor I(l, m, n, p), e.g. ,

Eq. (17). The I(l, m, n, p) only occur in terms contain-
ing powers of nZ; explicitly, I(l, m, n, p) accompanies
(nZ)i' and I(1,m, n, 0) = l. Algebraic expressions for
the I(1,m, n, p) are given by Behrens and Biihring (Ta-
ble 4.3 of Ref. [19]). The FJL, (l, rn, n, p) (including p
= 0) are obtained from the FIor&, (l, m, n, p) by including
in the radial integral an extra factor (r jr„)2~ Bec.ause
we are interested in the relative size of the higher-order
terms, it is convenient to introduce the ratios

TABLE XIV. SDI results connecting the low-lying 2, 2, and 2 levels of Tl to the 0, and 0+ ground states of
Tl and Pb. The neutron and proton separation energies S(n) and S(p) of Tl and Pb, respectively, are based on

experiment when known while E~ is the model energy. All three of these energies are in keV. Do(j, i) is for Tl -+ Pb.

0
1282
1447
1586
1612

0.726
0.256

—0.541
0.130
0.401

—1.121
—0.718

0.063
—0.106

0.184

Ds(j;i)

2
—0.575
—0.130
—0.024
—0.010

0.052

0.527
0.065
0.293
0.017
0.160

1.256
0.516
0.Q04

0.011
0.034

6504
7722
7938
8090
8116

7252
8470
8686
8838
8864

i=1,20

Do(j) n(j) p(j) = —0.696

1.156

1.221

1.887

1.999

124
1222
1442
1524
1576

0.448
0.325

—0.065
—0.637
—0.244

1.536
—1.065

0.104
0.451

—0.133

0.344
—0.173
—0.003
-Q.a44

0.016

0.201
0.105
0.004
0.406
0.059

2.360
1.135
0.011
0.204
0.018

6708
7645
7845
8108
8160

7456
8393
8593
8856
8908

i= 1,20

Do(j) n(j) p(j) =

0.054

0.074

3.590

3.998

1
2
3
4
5
6
7
8
9

10
11
12

753
1428
1604
1681
1744
1892
1958
2139
2188
2292
2320
2358

—1.130
1.122

—1.124
1.232

—0.158
0.196
0.219
0.231

—0.201
0.270
0.188

—0.277

0.672
—0.055
—0.109

0.012
—0.144
-0.107

0.032
0.255

—0.356
1.585
1.131
0.618

—0.310
—0.025

0.050
0.006
0.009

—0.009
0.003
0.024
0.029
0.175
0.086

—0.070

1.277
1.259
1.264
1.518
0.025
0.039
0.048
0.053
0.041
0.073
0.035
Q. 077

0.451
0.003
0.012
0.000
0.021
0.011
0.001
0.065
0,127
2.513
1.279
0.382

7323
7684
7974
8051
8114
8262
8328
8509
8558
8662
8690
8728

8071
8432
8722
8799
8862
9010
9076
9257
9306
9410
9438
9476

i =1,20

Do(j) n(j) T(j) =

—0.046

—0.060

5.751 5.262

5.989
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rs (1 rn n p) = Foii(1, m, n, p)/Foii
(B3)

rg(I, m, n, p) = Flop(I m n, p)/Fooo.

Thus r' of Sec. III D1 is equivalent to Ir&o(1, 1, 1, 1).
With these defi. nitions we can now incorporate the sec-

ond and third order terms which might influence the P
decay rate. In this we follow Wiesner et at. [45] who made
a detailed and careful study of the eA'ects of higher-order
terms on 2osHg(0+) ~ Tl(0 ). For the Ii(A/0) of Eq.
(Bl) we find

I&(00) = (,'+ —,'(M,')',
Ii(10) = ~gnZr„r T(1, 1, 1, 1)e~„Mp, (B4)

I&(—10) = —spipi(pMo [1 —ip(nZ) rs(1, 3, 2, 2)]

with
=1 (bi'-(2I+3)

I

—I,3 b2%i (B7)

., = [.„' ——,', (nZ)2r,'(1, 3, 3, 3)]g+ -,'W,
= ~s[rs(1, 1, 1, 1) —io(nZ) rs(1, 3, 3, 3)](+~sWo.

(B6)

In evaluating the relative importance of the higher-
order terms in the lead region we use o, Z = 0.6, r„

0.0184, and Wp ( 4.57 (see Table I). Values for
the rgT(1, m, n, p) calculated by numerical diff'erentia-

tion and integration with HO wave functions (b = 2.490
fm) are listed in Table XV for the orbits of interest. A
check on the numerical calculations is provided by the
fact that analytic expressions for Mo, Mo, and rT are
available for HO wave functions. For rT» an expression
given by Rose and Osborne [66] can be used to give

(0 = Mi —tI2&mecMp + &sMp(o) T S

q2
—1 —

s (nZ) r7. (I, 2, 2, 2), (B5)
where

+n 1+n' 1' d~1
1+2 (B8)

1484
1438
1434
1341

1219
1180
1141

2$

11/2
/

/
/

/
/

/
/

/
/

5.3 11/2 ' 1/2+
5/2+, 3/2 ~3/2+

0.08 1/2+
0.4 3/2+, r

1/2+
0.20 1/2+ -- 3/2+

(5/2+)
0.8 3/2+

7/2+

C2

7.29 1743

0.00 1447
0.01 1442
0.00 1428

0.52 1282

1.14 1222

the Z,„~ are Ho wave functions, l = l'+ 1, and n = n' or
n' —1. Thus the rT of Table XV are simple multiples of
-'(b/r„)~ = 0.1233/2.

There is also a second-order W2 term, Ii. (20)
yg P& P+ E'~pc Mo 1

which we do not include since it is of
negligible importance to the decay rate, i.e. ,

I~ (20)W /I~ (10)W & & 0.035.
4o.Z

TABLE XV. Ratios of radial integrals calculated with
harmonic oscillator wave functions with an oscillator length b
= 2.490 fm. The listed integrals are for the five possible Aj
= 0 particle-hole ~ vacuum transitions involving the orbits
of Fig. 2. The values of Mp (j) and M&& (j) (in fm) are also
listed.

619 0.3

5/2+

r
5/2+

0.45 753

Quantity

Mp (j,jf) 8.304

orbits

8.877 16.309

11
2

9.925 27.720

Mo (j jf) 108.8 116.3 213.6 130.0 363.1

rs(1, 1, 1, 1) 1.1902 1.1489 1.2256 1.0281 1.2248

204

0 1.10 1/2+ 1/2+ 1.26

Expt. SDI

1.6 3/2+

3/2+ 2.36 124

0.3081 0.1233 0.4316 0.0000 0.6782

rT(l, l, l, l) 0.4282 0.2513 0.5696 0.2102 0.8631

r~(1) 2, 2, 1) 0.4436 0.2398 0.5967 0.1640 0.9130

rz(1, 2, 2, 2) 0.6244 0.3864 0.8237 0.3570 1.2388

rz(1, 3, 2, 2) 1.7642 2.0640 1.5940 2.5901 1.6251

FIG. 7. Comparison to experiment of the Poppelier-
Glaudemans SDI predictions for the energy spectrum of Tl
and for Pb ~ Tl + p spectroscopic factors (C S).

rs(1, 3, 3, 3) 2.0220 2.3488 1.8733 2.8257 1.9484
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TABLE XVI. Relative contributions of various terms
to the Hg(0+) ~ Tl(0 ) single-particle rr2s

&

»p, &'2~2', &'2 deca, y ca.lcula. ted ~ith ha.rmonic oscilla. tor ~»e
functions with an oscillator length b = 2.490 fm, qs T (2) =
1.0, and e„=1.61.

Term

K(—10)

K(10)

Order

1st

1st

2nd

% contribution or value

+0.22%%uo

+4. l%%uo

—0.010%

2nd 0.964

as(1st+ 2nd order)
as(1st order)

2nd 0.946

2nd order change in fot 2nd —1.09%

Vr'e have dropped a similar term, —9Wpp FTE' Mp
[= 2I~ (20)Wo] from both I~ (10) and I~ (—10) because in
both cases it is also of negligible importance to the de-
cay rate. A simplification has been made in Ix(10): we
have made the approximation I(1,2,2, 1) = I(l, l, l, l)
which is true enough so that it will generate negligi-
ble error. All of I~(20) is from second order and the
(nZ) term in I&(—10) is from third order. The rest
of the higher-order terms are contained in (o which dif-
fers from our first-order definition (Sec. II) in the intro-
duction of qg and a modification to ag. For the latter
a third-order term in (nZ) has been subtracted from
r&(1,1,1,1). The factor q2 modifies e „Mo by another
(nZ)2 term. Once again we have neglected terms in Woe„
and r„because of their relative unimportance, in this
case, (nZ—W-or„— r„)r&-~ has been dropped from q2.

Vfe illustrate the relative importance of the lesser first-
order terms and the higher-order terms by a calculation
for the 2osHg(0+) ~ 2osT1(0 ), single-particle 7r2s&&z ~
&2pyg 2 &28 y(g transition carried out with the HO parame-
ters of Table XV. In this calculation we use qg ——qz ——1.0
and c~« ——1.61. This value of e~«gives agreement with
the experimental beta moment Bi = 59 + 6 fm when

used with the single-particle Mp ' of Table XV. The re-
sults, listed in Table XVI, are entirely representative of
more realistic calculations and of other transitions. It is
seen that the higher-order eff'ects are indeed quite small
and can be neglected.

The W term, Ii (10), was retained in Eq. (B4) in spite
of its small effect on the decay rate because of its poten-
tial importance in the determination of e~«. Unlike the
decay rate, I~(10) is dependent on e „Mo alone (i.e. ,

not in combination with Mos) and thus its measurement
would oA'er an attractive alternative method of assessing
the mesonic effect on Mo . Wiesner et al. [45] did in-
deed make a careful measurement of the 2osHg(0+) ~

Tl(0 ) shape factor from which they extracted, via a
least-squares fit, values for Ii(00), It(—10), and Ic (10).
Tantalizingly enough, the result for Ii(10) was twice as

large as predicted from the impulse approximation, and
thus consistent with e~«2.0. However, no uncertain-
ties were given and they were probably rather large. A
measurement of the shape factor accurate enough to give
I~(10) with an uncertainty of 10'%%uo would be of great
value.

APPENDIX C: HIGHER-ORDER RADIATIVE
CORRECTIONS AND NUCLEAR SIZE EFFECTS

1. Radiative corrections

The Wilkinson-Macefield [47] parametrization of the
allowed P decay phase space factor fo contains the
"outer" radiative correction to order n [67]. This is ad-
equate for Z ( 30 but for Z 82 higher-order terms
will contribute measurably to the decay rate and other
observables and it is not presently clear as to how to
make these corrections. A rough guess as to their mag-
nitude can be made based on the studies aimed to de-
termine them accurately for superallowed Fermi tran-
sitions [68—70]. These higher-order terms are of or-
der Zo. , Z o. , Z o. , etc. The first two of these are
discussed explicitly by Jaus and Rasche [68] and by
Sirlin [69] and at Z = 82 together increase the de-
cay rate by 4%. We might expect terms of order
Z3o.4 and higher to contribute an additional increase of
0(Zsn4ln(M)/(1 —nZ)) 3%. So the total effect of
higher-order "outer" radiative corrections might increase
the decay rate of hypothetical superallowed Fermi de-
cays in the lead region by 7%. The question of how
this relates to axial currents is presently not understood.
However, it probably represents a good guess as to the
magnitude of the eff'ect. A 7'%%uo increase in the RO decay
rate would result in a decrease in e „of-1.8%.

2. Size efFects

One of the corrections to the basic Fermi function
I" (Z, W)—calculated for a point nucleus —is the convo-
lution of the lepton and nucleon wave functions over the
nuclear volume. Wilkinson [71] has recently presented
a more accurate (for Z ( 60) calculation of this correc-
tion C(Z, W) based on the Behrens-Biihring formalism
[19]. C(Z, W) deviates 14% from unity near Pb for
low Q(P ) values. These new results give a C(Z, W) at
low Q(P ) and Z = 82 such that fo is larger by 2.9%%uo

than the Wilkinson-Macefield treatment [70]. There are
several sour es of uncertainty in both the old and new
calculations of C(Z, W): (1) In the new version the ac-
curacy of the calculation is not verified for Z ) 60; (2)
in the expansion of C(Z, W) in terms of the nuclear pa-
rameters (see Sec. IIID 1), terms higher than n = 1 in

(nZ) " were not considered and (nZ)4 0.13; and (3)
the convolution uses single-nucleon wave functions which
are uniform throughout the nucleus rather than realistic
radial wave functions. It is conceivable that these three
effects could cause an uncertainty O((nZ) 13%) in
1 —C(Z, W) so that correcting fo for these deficiencies
could cause fo to be 5% larger than calculated here

with the result, that e „would be 1.3% smaller.
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3. Sumznary

The two efkcts discussed in this appendix could con-
ceivably increase the calculated value of fo by 12%.
This is a large enough correction to be of concern in nu-
clear structure studies such as the present one. It would
appear desirable to attempt more refined calculations of
these and other possible effects on fu at Z 82.

APPENDIX D: THE EXPERIMENTAL BETA
MOMENT FOR '"I b(-,' ) '"TI(-', +)

Ec DECAY

The decay of Pb by electron capture is unusual in
that the available disintegration energy, Q(EC) = 51.3
6 0.6 keV [53] is very small —not even large enough to
allow capture from the K shell. Furthermore, the tran-
sition is first-forbidden unique. For these two reasons it
is dominated by capture from the p3~2 atomic shells, i.e.,
LIII, MIII, NIII, and OIII [72]. We are interested in the
fPt value and thus in the evaluation of fi and the half-
life t The .unique first-forbidden fi value of interest is
given by [72]

f,~ = -[P.+ PM+ P~+ Po],1 2
(D1)

il „=Q(EC) —E „—Ett. (D3)

In Eq. (D3), E „ is the binding energy of the captured
electron in the daughter atom and E~ is the rearrange-
ment energy for which we use the approximate relation-

where the P (z = I., M, N, O) are the probability of
capture from the indicated atomic orbit. The P are
given by

4 2 4 2 2 2 2 2 2 2P = V.i&.i+ V.2&.2+ &.sp s&.s+ &.4p.4P.4

(D2)

where the xn refer to LI, LII. . . MI, etc. , and p and q are
the electron and neutrino momenta with

ship of Bahcall [52] which yields 133 eV. Using the P „
and P „p „ofMann and Waber [73] listed by Bambynek
et al. [72], we find

fi = —(4.428 + 2.006 + 0.567 + 0.102) x 10

= 1.116 x 10 (D4)

with an uncertainty of 3' due to that in Q(EC).
The evaluation of fiU is given in some detail to clearly

expose its dependence on Q(EC). This is felt desirable be-
cause there has been convicting evidence as to the best
experimental value of Q(EC). Pengra, Genz, and Fink
[74] measured the M/I and N/M electron capture ra-
tios and obtained values of 0.525(8) and 0.271(10), re-
spectively. Using Eqs. (D2)—(D3) and working backward
from these ratios, a value Q(EC) = 41.4 6 1.1 keV is
obtained as opposed to the latest mass-evaluation [75]
result of 53.5 6 1.6 keV and the recent measurement [53]
of 51.3 6 0.6 keV. For Q(EC) = 41.4 keV, we find fi= 0.633 x 10 3, However, it should be stressed that the
measured value [74] of the N/M ratio is 2.4 standard de-
viations from the value expected for Q(EC) = 41.4 keV,
i.e. , the two ratios are not consistent. Thus, there is rea-
son to doubt the experimental results or the ancillary
measurements or theory used to interpret them. We use
the recent result for Q(EC) of 51.3 6 0.6 keV, but the
discrepency should be kept in mind.

The half-life also depends on Q(EC). This dependence
arises because it is evaluated from the L x-ray activity as
measured by Wing, Stephens, and Huizenga [76]. These
authors results can be expressed as

t = (8.0+0.32) ( x
~

x 10 y. (Di)0.40 .P.)
Using uL, = 0.333 [74] and the P of Eq. (D2), we find
t = (1.56+0.17) x 10 y, fi~t = (5.48+0.60) x 10" and
logfi t = 11.74 + 0.04 for Q(EC) = 51.3 + 0.6 keV.

The beta moment Bi is given by [13,77] 10 Bi ) ——

2758/fiUt fm2. For Q(EC) = 51.3 keV we have B&( ) ——

(5.0 + 0.6) x10 fm .
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